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Enhanced predictive accuracy of
mortality in VLBW infants with
late-onset sepsis through a
time-specific nomogram

Lun Yu1, Yanhong Li2* and Yang Zuming1

1Suzhou Municipal Hospital, Suzhou, China, 2Children’s Hospital of Soochow University, Suzhou,

Jiangsu Province, China

Objective: This study aims to develop and validate a nomogram-based scoring

system to predictmortality in very low birthweight (VLBW) infantswith late-onset

sepsis (LOS). Timely risk stratification in this vulnerable population is critical for

optimizing clinical outcomes.

Methods: Weconducted a retrospective analysis on 202 VLBW infants diagnosed

with LOS between January 2018 and December 2022. Predictive models

were created at three key time points: 0 h, 6 h, and 12h post-sepsis onset,

utilizing Least Absolute Shrinkage and Selection Operator (LASSO) regression for

variable selection and multivariable logistic regression for model construction.

Internal validation was performed with 1,000 bootstrap resamples to correct

for potential overfitting. External validation was conducted on an independent

cohort of 71 infants from January 2023 to March 2024. Model performance was

assessed using Area Under the Curve (AUC), calibration plots, and decision curve

analysis (DCA).

Results: The models exhibited excellent discrimination with AUCs of 0.83, 0.92,

and 0.94 at 0 h, 6 h, and 12h, respectively, in the development cohort, and

0.95, 0.95, and 0.97 in the validation cohort. Calibration plots showed strong

agreement between predicted and observed outcomes. The significant disparity

in maternal COVID-19 infection rates between cohorts (1 vs. 89%) may have

contributed to the enhanced predictive accuracy in the external cohort.

Conclusion: This dynamic, time-specific nomogram demonstrates high

predictive accuracy and clinical utility for mortality in VLBW infants with LOS.

The impact ofmaternal COVID-19 infection on neonatal outcomes o�ers a novel

perspective for future research in sepsis prognostication.

KEYWORDS

neonatal late-onset sepsis, nomograms, very-low-birth-weight (VLBW) infants,

prediction model, COVID-19

1 Introductions

Late-onset sepsis (LOS) represents a critical infectious condition associated

with significant morbidity and mortality rates within neonatal intensive care units

(NICUs), particularly affecting preterm infants, especially those with very low birth

weight (VLBW) (1). These infants exhibit heightened susceptibility due to their

underdeveloped immune systems and extended hospitalizations, which increase their

exposure to nosocomial pathogens (2). LOS in VLBW infants is associated with

numerous severe complications, including bronchopulmonary dysplasia, intraventricular
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hemorrhage, necrotizing enterocolitis, and neurodevelopmental

impairments (3). Despite advancements in neonatal care, the

mortality rate associated with LOS remains considerable, ranging

from 5 to 20% (4), necessitating the development of more accurate

prediction tools to aid clinical decision-making. Furthermore,

survivors are at an elevated risk for long-term disabilities, thereby

exacerbating both clinical and financial burdens (5).

Diagnosing and predicting late-onset sepsis (LOS) in neonates

presents significant challenges due to the non-specific nature of its

symptoms, which frequently overlap with those of other neonatal

conditions, resulting in treatment delays. Current diagnostic

modalities, such as blood cultures, are limited by prolonged

turnaround times and suboptimal sensitivity, highlighting the

necessity for more rapid and reliable prediction approaches (6).

Various predictive models have been developed that incorporate

clinical signs, biomarkers (e.g., C-reactive protein, procalcitonin),

and demographic data to assess the risk of sepsis and associated

mortality (7, 8). However, these models often lack real-time updates

and do not adequately reflect the dynamic progression of sepsis.

As a result, they may overlook critical, time-sensitive changes in a

patient’s condition that are vital for informing timely therapeutic

interventions. These limitations emphasize the pressing need for

a more advanced tool that not only integrates static clinical

parameters but also continuously monitors the evolving disease

process, thereby facilitating prompt interventions and improving

prognostic accuracy.

This study aims to address these gaps by developing and

validating a nomogram-based scoring system specifically designed

to predict mortality in VLBW infants with LOS. This model

is unique in that it leverages time-dependent variables at three

critical time points (0 h, 6 h, and 12 h post-onset of sepsis),

allowing for continuous risk stratification as the infant’s condition

evolves. Such an approach enables clinicians to anticipate clinical

deterioration more accurately and adapt treatment protocols

accordingly. Furthermore, this study seeks to validate the model

both in internally and externally, using an independent cohort with

a markedly different maternal COVID-19 exposure rate, thereby

testing the model’s robustness across different clinical contexts.

The innovation of this study lies in two key aspects: first,

the time-sensitive nature of the model, which allows for dynamic

risk prediction and clinical management adjustments during the

critical early phases of LOS; and second, the exploration of the

potential influence of maternal COVID-19 infection on neonatal

outcomes in VLBW infants. The stark difference in COVID-19

exposure between the development and external validation cohorts

provides a unique opportunity to investigate how maternal viral

infectionsmight impact neonatal susceptibility and outcomes in the

context of sepsis. To our knowledge, this is one of the first studies

to integrate these two novel components into a sepsis mortality

prediction model for VLBW infants, providing both immediate

clinical relevance and contributing new insights to the broader field

of neonatal sepsis research.

Abbreviations: LOS, late-onset sepsis; nSOFA, Neonatal Sequential Organ

Failure Assessment; VLBW, Very-Low-Birth-Weight; OI, oxygenation index.

2 Methods

2.1 Study cohort

This study was designed as a retrospective analysis of data

collected from neonates diagnosed with late-onset sepsis who were

admitted to Suzhou Municipal Hospital. The dataset was divided

into a training set and a test set based on the chronological order

of data collection. Specifically, neonates admitted between January

1, 2018, and December 31, 2022, while those admitted between

January 1, 2023, and April 30, 2024 formed the test set. This

temporal split was employed to mimic a real-world prospective

scenario, where the model, developed using past data, is validated

on more recent, unseen data.

Inclusion criteria were as follows: (a) gestational age of ≤32

weeks and (b) birth weight <1,500 g. Exclusion criteria included:

(a) infants with missing information and (b) infants whose

guardians abandoned or withdrew them from treatment within 7

days of the onset of sepsis. A flowchart was provided to illustrate

the detailed process (Figure 1). The analysis was conducted in

accordance with the TRIPOD statement (9).

2.2 Data collection

Clinical characteristics and laboratory results were obtained

from the hospital’s electronic medical record system, following

a predetermined protocol. The data collection encompassed the

following categories: (1) general data, including gender, gestational

age, birth weight, delivery method, and Apgar score; (2) clinical

manifestations, such as apneic episodes, lethargy, tachycardia

or bradycardia, abdominal distension, and skin perfusion

abnormalities indicative of microcirculatory irregularities; (3)

laboratory results, comprising routine blood tests (white blood

cell counts, absolute neutrophil counts, and platelet counts),

biochemical indices (procalcitonin and C-reactive protein), and

arterial blood gas analyses (pH values, blood lactate concentration,

sodium concentration, and blood glucose levels), along with

blood culture results; (4) complications associated with sepsis and

other prognostic factors (4), including necrotizing enterocolitis

(≥ stage II) (10), pulmonary hemorrhage (11), septic shock (12),

the neonatal Sequential Organ Failure Assessment (nSOFA) score

(13), modes of respiratory support (14), and the oxygenation index

(OI), calculated as [(FiO2 × Mean airway pressure × 100) ÷

PaO2]. Further details and additional information are provided in

Supplementary Table S1.

2.3 Definitions

LOS was defined as (1) sepsis occurring after 72 h of life (1),

(2) blood culture was drawn, and empirical antimicrobial therapy

was initiated at the time of evaluation, continuing for a minimum

of 5 days or until the patient’s demise (13). Sepsis episodes were

defined by the occurrence of acute clinical deteriorations indicative

of suspected infection, with the 0-h time point established based

on specific clinical manifestations, including: (1) hypothermia
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FIGURE 1

Flow chart for the participants and research process.

or hyperthermia; (2) hypotonia or lethargy; (3) tachycardia or

bradycardia; (4) increased frequency of apnea or the emergence

of new episodes; (5) an elevated requirement for respiratory

support; (6) abdominal distension accompanied by decreased

feeding tolerance; (7) poor peripheral perfusion, characterized by

pale, cold, and mottled skin; and (8) glucose instability, presenting

as either hyperglycemia or hypoglycemia (5). At this 0-h time point,

prior to the initiation of antibiotic therapy, a minimum volume

of 1mL of peripheral blood was collected from the infant using

aseptic techniques to facilitate the isolation of bacterial or fungal

pathogens from the bloodstream (4, 13). Subsequent time points

were designated at 6 and 12 h following this initial reference.

The earliest manifestation of necrotizing enterocolitis (NEC)

and pulmonary hemorrhage in the training set occurred after

the diagnosis of suspected sepsis (i.e., after the 0-h time point).

Consequently, at the 0-h mark, neither NEC nor pulmonary

hemorrhage had yet presented, ensuring that these complications

were not present during the initial feature selection phase via

LASSO regression. If these complications emerged within 6 h post-

onset, they were incorporated as covariates into the 6-h time-point

model. Additionally, should they occur between 6 to 12 h post-

onset, they were included in the 12-h time-point model to reflect

their temporal relationship with the onset of sepsis. This structured

approach ensured that the temporal dynamics of complications

were appropriately captured and integrated into the respective

predictive models.

Components of the nSOFA score include (1) mechanical

ventilation and oxygen requirement (score range 0–8), (2) systemic

inotropic and steroid application (score range 0 to 4), (3) severity

of thrombocytopenia (score range 0 to 3). Based on an online

calculator, each infant’s nSOFA scores at different time points were

calculated (http://www.peds.ufl.edu/apps/nsofa/default.aspx) (13).

2.4 Outcome measurements

Sepsis-related deaths were defined as any fatalities occurring

within 7 days of a positive blood culture or in the presence

of clinical and laboratory evidence of sepsis despite negative

blood cultures (8, 15). The primary objective of this study was

to determine the incidence of sepsis-related mortality among

VLBW infants.

2.5 Feature selection and modeling

A two-step process was required to select the component for

the prediction model. Firstly, the least absolute shrinkage and
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selection operator (LASSO) regression algorithm was applied to

screen for features related to prognosis for minimizing overfitting.

“Lambda.1se” selects the most regularized model within one

standard error of the lambda that minimizes cross-validation

error. This approach enhances model sparsity and generalizability,

reducing overfitting while retaining key predictors. In 10-

fold cross-validation, we confirmed that “Lambda.1se” was the

optimal tuning parameter (λ), with the least number of variables

and the greatest lambda, contributing to achieving the highest

prediction performance (16). The variables retained after LASSO

regularization, indicated by non-zero coefficients, were included

in the final logistic regression model. The variables retained after

LASSO regularization, indicated by non-zero coefficients, were

included in the final logistic regression model.

Following variable selection by LASSO, a multivariable logistic

regression was conducted to further refine the prediction model

and estimate the adjusted odds ratios (ORs) for sepsis-related

mortality. Both forward and backward selection strategies were

used, with a significance level of 0.05 for variable entry and

retention in the model. The stepwise approach allowed for the

identification of the most statistically significant predictors, while

also adjusting for potential confounders.

2.6 Model performance and validation

The model’s performance was evaluated in terms of

discrimination, calibration, and clinical utility. Discriminative

ability was measured using the area under the ROC curve (AUC-

ROC), with values between 0.7 and 0.9 indicating acceptable to

excellent discrimination between survivors and non-survivors.

Calibration was assessed using the Hosmer-Lemeshow test (p >

0.05 indicating a good fit) and further confirmed with calibration

plots to visually compare predicted and observed outcomes.

Internal validation was conducted using 1,000 bootstrap

resamples to address potential overfitting, resulting in bias-

corrected estimates of AUC and calibration. The model’s

generalizability was then confirmed through external validation

on an independent dataset, with consistent performance metrics

across both datasets.

Decision curve analysis (DCA) evaluates a model’s clinical

utility by quantifying its net benefit across probability thresholds,

integrating both true positives and the cost of false positives.

Unlike traditional metrics (e.g., AUC-ROC), DCA directly assesses

a model’s decision-making value in clinical settings.

2.7 Statistical analysis

Continuous variables with skewed distributions were reported

as medians and interquartile ranges (IQR: P25–P75), while

normally distributed variables were expressed as mean ± standard

deviation (SD). Categorical variables were summarized as counts

and percentages. Comparisons between survivors and non-

survivors were performed using the Wilcoxon rank-sum test for

non-normally distributed continuous variables and the chi-square

test for categorical variables. All statistical tests were two-sided,

with statistical significance defined as p < 0.05. Data analysis was

conducted using Stata version 18.0 and R 4.3.1 software.

3 Results

3.1 Study population and cohort
characteristics

Between January 2018 and March 2024, a total of 1,546 very

low birth weight (VLBW) infants were admitted to the neonatal

intensive care unit (NICU). After applying strict exclusion criteria

(incomplete data, n = 4; withdrawal of care within the first 7

days of sepsis treatment, n = 3), a final cohort of 273 infants was

enrolled. These infants were prospectively divided into a training

set (n = 202, admitted between January 2018 and December 2022)

and a validation set (n = 71, admitted between January 2023

and March 2024). Table 1 summarizes the baseline characteristics

of both the training (primary) and test (validation) cohorts. The

overall mortality rate was comparable between the two groups (p

= 0.512). Sepsis-related mortality was observed in 20.3% in the

primary cohort and 23.9% in the validation cohort.

3.1.1 Baseline demographic and clinical features
The study population exhibited similar baseline characteristics

across both cohorts. Median gestational age was 29.4 weeks

(interquartile range IQR, 28.4–30.6 weeks) in the training cohort

and 29.7 weeks (IQR, 28.7–30.9 weeks) in the validation cohort (p

= 0.917). Similarly, birth weight was comparable, with a median

of 1,078 g (IQR, 1,000–1,150 g) in the training cohort and 1,024 g

(IQR, 980–1,130 g) in the validation cohort (p = 0.116). Maternal

clinical features, including gestational hypertension, gestational

diabetes, prolonged rupture of membranes, antenatal fever,

and antenatal steroid administration, were similarly distributed

between the two groups. Neonatal characteristics, such as gender

distribution, Apgar scores at 1 and 5min, and the incidence of

positive blood cultures, were also consistent across both cohorts.

3.1.1.1 Gestational age and birth weight

Survivors in the training cohort had a median gestational age of

29.6 weeks (±1.5) compared to 29.0 weeks (±1.8) in non-survivors

(P = 0.053). In the validation cohort, survivors had a significantly

higher median gestational age of 30.0 weeks (±1.4) compared to

28.8 weeks (±1.8) in non-survivors (P = 0.009). Birth weight was

slightly higher in survivors (training: 1,080 g ± 136; validation:

1,040 g ± 107) than in non-survivors (training: 1,068 g ± 155;

validation: 986 g ± 165), though differences were not statistically

significant (P = 0.616 and P = 0.143, respectively).

3.1.1.2 Mode of delivery

Cesarean delivery was more common among survivors in the

training cohort (80%) than among non-survivors (10%; P= 0.004).

However, this association was not statistically significant in the

validation cohort (survivors: 29%; non-survivors: 5%; P = 0.219).

3.1.1.3 Pathogen distribution

In the training cohort, survivors had a higher proportion

of Gram-positive pathogens (32.3%) compared to non-survivors
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TABLE 1 Perinatal characteristics of very low birth weight (VLBW) infants with late-onset sepsis (N = 273).

Variables Development cohort Validation cohort

Survivor
(n = 161)

Non-survivor
(n = 41)

P-value Survivor
(n = 54)

Non-survivor
(n = 17)

P-value

Median gestation (weeks) 29.6± 1.5 29.0± 1.8 0.053 30.0± 1.4 28.8± 1.8 0.009

Median birth weight (g) 1,080± 136 1,068± 155 0.616 1,040± 107 986± 165 0.143

Gender (male/female) (103/58) (24/17) 0.52 (34/20) (9/8) 0.461

Birth mode (CS/vaginal) (80/81) (10/31) 0.004 (29/25) (5/12) 0.219

Median Apgar score at 1min 8 (7∼9) 8 (6∼9) 0.25 8 (8∼9) 8 (6∼9) 0.458

Median Apgar score at 5min 9 (8∼10) 9 (8∼9) 0.315 9 (8∼10) 9 (8∼9) 0.686

Species of pathogens of blood culture

1. Gram-positive bacteria 52 (32.3%) 10 (24.4%) 0.327 13 (24.1%) 2 (11.8%) 0.278∗

2. Gram-negative bacteria 45 (28.0%) 15 (36.6%) 0.28 18 (33.3%) 5 (29.4%) 0.7630

3. Fungemia 14 (8.7%) 3 (7.3 %) 0.777 2 (3.7%) 2 (11.8%) 0.209∗

4. Culture negnative 50 (31.1%) 13 (31.7%) 0.936 21 (38.9%) 8 (47.1%) 0.556

Antenatal fever 6 (3.7%) 2 (4.9%) 0.508∗ 0 1 (5.9%) 0.239∗

Antenatal steroids (%) 103 (64.0%) 26 (63.4%) 0.947 32 (59.3%) 10 (58.8%) 0.9750

Prolonged rupture of membrane (%) 67 (41.6%) 15 (36.6%) 0.558 21 (38.9%) 6 (35.3%) 0.7900

Pregnancy-induced hypertension (%) 40 (24.8%) 6 (14.3%) 0.164 11 (20.3%) 3 (17.6%) 0.556∗

Gestational diabetes (%) 21 (13.0%) 7 (17.1%) 0.505 10 (18.5%) 5 (29.4%) 0.261∗

Histologic chorioamnionitis (%) 3 (1.9%) 0 0.504∗ 1 (1.9%) 0 0.761∗

∗Fisher’s exact test.

(24.4%), while non-survivors exhibited a higher incidence of Gram-

negative bacteria (36.6%) and culture-negative cases (31.7%; P =

0.28 for Gram-negative). In the validation cohort, survivors had

a lower proportion of Gram-positive pathogens (24.1%) and a

higher incidence of culture-negative cases (38.9%) compared to

non-survivors (Gram-positive: 11.8%; culture-negative: 47.1%; P=

0.556 for culture-negative).

3.1.1.4 Obstetric complications

Gestational hypertension was more common among survivors

in the training cohort (24.8%) than non-survivors (14.3%; P =

0.164), while gestational diabetes showed no significant difference

(P = 0.505). In the validation cohort, gestational hypertension

was observed in 20.3% of survivors vs. 17.6% of non-survivors

(P = 0.556), while gestational diabetes was more common among

non-survivors (29.4%) compared to survivors (18.5%; P = 0.261).

3.2 Feature selection and dimensionality
reduction

Clinical characteristics and laboratory results were assessed

as potential predictors of sepsis-related mortality and included

in LASSO regression analyses across different time points

(Supplementary Figure S1). Distinct prognostic features were

identified at each time point based on the optimal lambda values

(17): (1) at 0-h time point model: nSOFA score and oxygenation

index (OI) with lambda = 26.67; (2) at 6-h time point model:

nSOFA score, OI, pH, lactate, and pulmonary hemorrhage with

lambda = 18.39; (3) at 12-h time point model: nSOFA score, OI,

and lactate with lambda= 25.82. These features were subsequently

incorporated into binary logistic regression modeling, retaining

only variables with a p < 0.05 for the final model.

At the 0-h time point, two predictors associated with mortality

were identified: nSOFA score (OR: 1.32, 95% CI: 1.09–1.59) and

oxygenation index (OR: 1.07, 95% CI: 1.01–1.13). In the 6-h model,

four predictors emerged: nSOFA score (OR: 1.27, 95% CI: 1.03–

1.57), pulmonary hemorrhage (OR: 4.61, 95% CI: 1.01–21.10), pH

< 7.25 (OR: 4.86, 95% CI: 1.76–13.45), and lactate (OR: 1.38,

95% CI: 1.18–1.61). Finally, at the 12-h time point, two predictors

were identified: nSOFA score (OR: 1.45, 95% CI: 1.19–1.75) and

lactate (OR: 1.64, 95% CI: 1.36–1.97). Each contributory variable

is represented by odds ratios (OR) and 95% confidence intervals

(Figure 2).

3.3 Development and calibration of the
predictive model

Based on the selected features, three predictive models were

developed using logistic regression. The dataset was divided into

a training set and a test set based on the chronological order of data

collection. This temporal split was employed to mimic a real-world

prospective scenario, where the model, developed using past data,

is validated on more recent, unseen data.

In order to predict the risk of mortality for patients at different

time points based on the logistic regression results, three different
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FIGURE 2

Forest plot for prognostic factors of LOS. The odd ratio of each factor is presented with a 95% confidence interval. Continuous variables are

expressed as median and interquartile ranges (25%–75%). Percentages are used to express categorical variables.

models were developed with the following variables: (1) 0 h: nSOFA

score and OI; (2) 6 h: nSOFA score, pH, the lactate and pulmonary

hemorrhage; (3) 12 h: nSOFA score and lactate.

The discriminative ability of the prognostic models was

evaluated by calculating the area under the receiver operating

characteristic (ROC) curve. Sensitivity and specificity profiles were

examined using Lsens plots. Youden’s index was employed to

identify the optimal cutoff for distinguishing high-risk patients

in the primary cohort (Supplementary Figure S2). The models

demonstrated progressively enhanced predictive accuracy for

mortality over time, with areas under the curve (AUCs) of 0.83 at

baseline (0 h, 95% CI, 0.76–0.89), 0.92 at 6 h (95% CI, 0.87–0.97),

and 0.94 at 12 h (95% CI, 0.90–0.98; Supplementary Figure S3).

The Hosmer–Lemeshow test was applied to measure the

model’s goodness of fit. We observed excellent agreement between

expected and actual results based on the calibration plots with

slopes of 1.0 (Figure 3), and no significant over- or under-

prediction was detected during the Hosmer-Lemeshow test (0 h: p

= 0.78, 6 h: p= 0.86; and 12 h: p= 0.38).

3.4 Nomogram construction and practical
application

Finally, three nomograms of different times to predict the

probability of mortality for individuals were developed based

on the significant indicators extracted from logistic regression

(Figure 4). A weighted score was assigned to each component

of the nomogram; the total score was then summed to predict

the risk of death for each infant. Generally, the higher the

total score, the higher the mortality risk. For example, if we

aim to assess the prognosis for one infant using the 6 h model,

he had a level of blood lactate concentration of 6 mmol/L

(3 points), pH of 7.1 (2.5 points), pulmonary hemorrhage occurred

3 h after the onset of symptoms of infection, and the nSOFA

score was 12 points (4.5 points), respectively. The total score

is approximately 12.5, indicating estimated mortality of 95% for

this case.

3.5 Model performance: internal and
external validation

3.5.1 Internal validation
To assess the internal validity of the predictive models, we

utilized bootstrap resampling with 1,000 iterations. This approach

provided robust estimates, with AUC values demonstrating

excellent discriminatory ability at different time points: 0.77 (95%

CI: 0.76–0.89) at 0 h, 0.87 (95% CI: 0.84–0.92) at 6 h, and 0.90

(95% CI: 0.86–0.94) at 12 h post-sepsis onset in very low birth

weight (VLBW) infants. Calibration plots also confirmed the strong

agreement between predicted and observed mortality outcomes,
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FIGURE 3

Calibration curves of the prediction models at di�erent time points. The calibration curves evaluate the agreement between predicted and observed

mortality rates at 0, 6, and 12 h within the development and validation cohorts. Each curve plots predicted probabilities against actual outcomes, with

the 45-degree reference line representing ideal calibration. In both cohorts, the model demonstrates robust calibration at each time point, with

predicted risks closely aligning with observed mortality rates, particularly at later time points. This consistency underscores the model’s reliability and

precision in mortality risk estimation across both cohorts. Panels (a–c) displayed calibration curves for the development cohort at 0, 6, and 12 h;

while panels (d–f) showed the corresponding curves for the validation cohort.

with Hosmer-Lemeshow test results showing non-significant p-

values (0 h: p= 0.78, 6 h: p= 0.86, 12 h: p= 0.38), indicating good

model calibration (18) (Supplementary Figure S4).

3.5.2 External validation
External validation was conducted in an independent cohort,

where maternal COVID-19 infection was significantly more

prevalent (89%) compared to the training cohort (0.01%). Despite

these differences, the models exhibited superior discriminatory

ability with AUC values of 0.95 (95%CI: 0.89–1.00) at 0 h, 0.95 (95%

CI: 0.88–1.00) at 6 h, and 0.97 (95% CI: 0.94–1.00) at 12 h. Hosmer-

Lemeshow test results also remained non-significant (0 h: p= 0.42,

6 h: p= 0.22, 12 h: p= 0.50), confirming good model calibration in

this independent cohort (Figure 3).

3.5.3 Decision curve analysis (DCA) for clinical
utility of sepsis mortality prediction models

To evaluate the clinical utility of timepoint-specific prediction

models (0 h, 6 h, 12 h) for sepsis mortality in VLBW infants, we

performed decision curve analysis (DCA) across a range of risk

thresholds (Figure 5). The 12% risk threshold emerged as optimal

for all models, balancing harm-to-benefit trade-offs (3:22 ratio;

i.e., avoiding 3 deaths per 22 unnecessary interventions) and

maximizing net clinical benefit (Supplementary Figure 5).

3.5.3.1 Zero-hour model

At the 12% threshold, the model classified 49.01% (95%

CI: 30.7–100) of patients as high risk, achieving a net benefit

of 0.47 (95% CI: 0.25–0.61), with 47% of deaths correctly

identified (sensitivity) and 67% of non-fatal cases accurately

excluded (specificity).

3.5.3.2 Six-hour model

Refined risk stratification reduced high-risk classifications to

28.7% (95% CI: 20.8–38.6) while maintaining a net benefit of 0.47

(95% CI: 0.28–0.62). Specificity improved to 81% (95% CI: 0.68–

0.88) without compromising sensitivity (47%, 95% CI: 0.28–0.62).

3.5.3.3 Twelve-hour model

Precision further improved, narrowing high-risk classifications

to 22.7% (95% CI: 14.95–34.02) with specificity of 80.3% (95%

CI: 0.648–0.907). While net benefit remained clinically meaningful

(0.38, 95% CI: 0.03–0.57), sensitivity variability increased (38.1%,
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FIGURE 4

Nomogram for predicting mortality risk based on clinical variables. The nomogram indicates the mortality risk for individuals at the early stages of

LOS (0, 6, and 12 h). For clinical use, the score of a variable is determined by drawing a line straight to the point axis to establish the di�erent values.

The scores of each variable are added, and the total score is located on the total score points axis. A line is drawn straight to the risk of the Prob axis

to obtain the probability.
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FIGURE 5

Decision curve analysis (DCA) for the prediction models in Development cohort and Validation cohort at di�erent time points. The decision curve

analysis (DCA) plots illustrate the net benefit of the mortality prediction model at 0, 6, and 12 h across both development and validation cohorts,

evaluated over a range of threshold probabilities. Net benefit, represented on the y-axis, reflects the balance between true positive identifications and

the avoidance of false positives, with the x-axis representing threshold probability. At each time point, the model demonstrates a greater net benefit

than alternative strategies (such as treating all or no patients), underscoring its clinical utility in identifying high-risk patients. Notably, net benefit

increases at later time points, suggesting enhanced decision support as prediction time progresses. Panels (a–c) depicted DCA curves for the

development cohort at 0, 6, and 12 h, respectively; while panels (d–f) illustrated the corresponding curves for the validation cohort.

95% CI: 0.034–0.574), reflecting heterogeneity in late-stage

sepsis trajectories.

The consistent 12% threshold across all models underscores

its reliability for early intervention decisions. These nomograms

provide actionable guidance for initiating or intensifying

interventions in VLBW infants with late-onset sepsis. By

identifying 38–47% of fatal outcomes and avoiding over-treatment

in 67–81% of non-fatal cases, themodels align with harm-to-benefit

preferences in neonatal critical care.

3.5.4 Interpretation of superior discrimination in
the testing cohort

The striking disparity in maternal COVID-19 infection rates

between the testing and training cohorts may provide a compelling

explanation for the superior discrimination observed in the testing

cohort. Notably, 89% of mothers in the testing cohort had COVID-

19 during pregnancy, compared to only 1% in the training

cohort. This stark difference likely influenced neonatal outcomes,

particularly in preterm infants. Maternal COVID-19 infection

is known to profoundly affect fetal and neonatal physiology,

potentially altering the trajectory of conditions such as LOS in

preterm neonates. These maternal-infection-induced physiological

changes could have contributed to the enhanced discriminatory

power seen in the testing cohort.

4 Discussion

The primary goal of this study was to develop and validate a

nomogram-based scoring system for predictingmortality in VLBW

infants with LOS, a cohort known for its high morbidity and

mortality rates. In this discussion, we reflect on the importance

of our findings, emphasizing the novel aspects of the study,

the unexpected performance in the test cohort, and how these

results extend the current knowledge of sepsis in VLBW infants.

Additionally, we will evaluate the clinical utility of the model, its

implications for practice, and potential avenues for future research.

4.1 Innovation and clinical importance

A notable innovation of this study is the dynamic, time-

dependent approach used to predict mortality risk in neonates with

LOS. This is particularly significant given that existing models tend

to rely on static parameters, often limited to a single time point. Our

model, by incorporating three distinct time points (0 h, 6 h, 12 h)

after the onset of sepsis, addresses a critical gap in neonatal care,

where the clinical status of VLBW infants can rapidly deteriorate.

Moreover, this approach aligns with recent trends toward

dynamic risk assessment in critically ill patients, recognizing

the importance of continuous monitoring and time-sensitive
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interventions. In neonatal intensive care units (NICUs), where

clinical deterioration can occur rapidly in VLBW infants with

sepsis, having a tool that adapts to changes in physiological

parameters over time allows for more timely interventions. This

dynamic approach aligns with the latest advancements in neonatal

sepsis management, which emphasize the need for continuous

monitoring and personalized interventions. The model’s ability to

adapt to changes in the neonate’s condition over time could lead

to improved survival outcomes by allowing clinicians to initiate

treatment earlier in the disease course when signs of deterioration

first become apparent (6).

4.2 Model performance and unexpected
findings

One of the most surprising and intriguing findings of this study

was the model’s superior performance in the external validation

cohort. At all three time points, the area under the curve (AUC)

values were significantly higher than those in the development

cohort. In the test cohort, the AUC values were 0.95 at 0 h, 0.95 at

6 h, and 0.97 at 12 h, demonstrating the model’s exceptional ability

to distinguish between survivors and non-survivors.

Upon further analysis, we identified a significant difference

in the clinical characteristics between the development and

test cohorts—specifically, the prevalence of maternal COVID-

19 infection. In the test cohort, 89% of mothers had a

documented COVID-19 infection during pregnancy, while only 1%

of mothers in the development cohort had the same. To evaluate

whether maternal COVID-19 infection influenced the predictive

performance of our model, we included it as a binary variable

(infected vs. non-infected) in multivariable logistic regression

models at three distinct time points: 0 h, 6 h, and 12 h post-

sepsis onset. The adjusted odds ratios (ORs) and corresponding

95% confidence intervals (CIs) were as follows: (1) 0 h model:

OR = 1.20, p = 0.696 (95% CI: 0.485, 2.956); (2) 6 h model:

OR = 1.90, p = 0.228 (95% CI: 0.659, 5.727); (3) 12 h model:

OR = 2.55, p = 0.08 (95% CI: 0.894, 7.273). The lack of

statistical significance for maternal COVID-19 infection in our

models may be attributable to the presence of stronger predictors

of neonatal sepsis mortality. Previous studies have highlighted

gestational age, birth weight, inflammatory biomarkers, and organ

dysfunction as more robust determinants of neonatal outcomes

compared to maternal infection alone. Given the multifactorial

nature of neonatal sepsis, maternal COVID-19 infection may

exert indirect effects that are attenuated when adjusting for these

stronger predictors (19). Emerging research suggests that maternal

COVID-19 infection can induce persistent alterations in later

fetal immune programming, potentially increasing susceptibility

to more severe infections such as sepsis in life (20, 21). The

heightened systemic inflammation and immune dysregulation

seen in infants born to mothers with COVID-19 could explain

why the model performed better, particularly at the 12-h

time point, where inflammatory markers played a key role in

predicting mortality.

This stark contrast likely played a crucial role in the model’s

superior discrimination in the test cohort. This finding not

only highlights the adaptive nature of the model but also

underscores the importance of considering maternal factors—

such as viral infections—in future predictive models. As the

COVID-19 pandemic continues to affect neonatal outcomes, the

necessity for predictive models that consider maternal-infant

interactions is becoming evident (22). Future studies should

explore whether maternal COVID-19 infection severity, viral load,

and timing of infection during pregnancy (early, mid, or late

trimester) differentially impact neonatal sepsis risk and other

neonatal outcomes.

4.3 Future directions and implications

The implications of these findings are 2fold. First, the study

highlights the importance of dynamic modeling for predicting

sepsis. It suggests that future models should include time-

dependent variables to accurately represent the progressive nature

of sepsis in critically ill neonates. Second, these findings raise

important questions about how maternal infections, especially

COVID-19, influence neonatal outcomes (20). Further research

is needed to explore the connections between maternal viral

infections and the susceptibility of neonates to sepsis, particularly

how these infections might change the neonatal immune response

during critical periods, such as late-onset sepsis (23).

Additionally, the model’s performence in the test cohort, which

had a high rate of maternal COVID-19 infections, suggests that

future predictive models should take maternal health factors into

account as potential influences on neonatal outcomes. This finding

could have significant clinical implications, not only for managing

sepsis in VLBW infants but also for our approach to perinatal care

regarding maternal infections.

4.4 Limitations

This study has several limitations that need to be recognized.

Firstly, being a retrospective analysis, it is susceptible to inherent

biases like selection bias and information bias, which could

compromise the accuracy and generalizability of the results.

Secondly, since data were gathered from a single center, this may

restrict the external validity and complicate the ability to apply

the findings to various healthcare settings. Thirdly, although we

considered major confounders, there may still be unmeasured

variables, such as genetic factors or differences in clinical practices,

that could have impacted the outcomes. Finally, while the effects

of maternal COVID-19 infection on neonatal outcomes are

significant, further investigation through prospective studies is

necessary to confirm its role and influence on late-onset sepsis

and overall neonatal health outcomes. Future research, particularly

involving larger, multicenter cohorts with longitudinal follow-up,

will be essential to address these limitations and validate the

strength of our findings.

5 Conclusion

This study presents a novel, time-sensitive predictive model

for mortality in VLBW infants with late-onset sepsis, validated
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in both internal and external cohorts. Moreover, the temporal

delineation of the cohorts—where the training cohort largely

represents pre-pandemic cases and the testing cohort reflects

the pandemic era—further underscores this novel discovery. The

unique pathophysiological landscape created by maternal COVID-

19 during the pandemic may have heightened the clarity of risk

stratification in neonates, allowing for more precise identification

of those at higher risk for sepsis-related death. This temporal

and epidemiological distinction highlights the broader impact

of maternal health on neonatal outcomes and emphasizes the

need for adjusted predictive models in the context of emerging

infectious diseases.
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