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Introduction:Optimizing school physical education (PE) schedules is crucial for

enhancing public health outcomes, particularly among school-aged children.

Methods: Therefore, in this study, a weighted fitness function is developed to

evaluate health fitness scores. This function integrates multiple health metrics

such as BMI reduction, fitness improvement, calories burned, and heart rate

reduction. Six optimization algorithms such as Genetic Algorithm (GA), Particle

SwarmOptimization (PSO), Ant ColonyOptimization (ACO), Simulated Annealing

(SA), Di�erential Evolution (DE), and Artificial Bee Colony (ABC) optimization

algorithms are utilized to optimize PE schedules based on the designedweighted

fitness function. Using a dataset of 1,360 student entries, the study incorporates

health metrics such as BMI reduction, fitness score improvement, caloric

expenditure, and heart rate reduction into a weighted fitness function for

optimization.

Results: The results show that ACO achieved the highest allocation of PE time

(9.91 h/week), the most significant caloric expenditure (370 kcal/session), and

the greatest reduction in heart rate (8.5 bpm). GA excelled in the reduction of

BMI, achieving a decrease of 10.63 units.

Discussion: These analyses reveal the transformative potential of optimized

PE schedules in reducing the burden of lifestyle-related diseases, promoting

equitable health outcomes, and supporting cognitive and mental well-being.

Finally, recommendations are provided for policymakers and stakeholders

to implement data-driven PE programs that maximize long-term public

health benefits.

KEYWORDS

long-term public health outcomes, digital health, optimization, physical education

schedules, fitness improvement

1 Introduction

1.1 Background and rationale

Physical education (PE) plays a crucial role in promoting physical, mental, and

social wellbeing, particularly among school-age children. However, with the increasing

prevalence of sedentary lifestyles and associated health risks, the optimization of PE

programs has become an urgent need to improve public health outcomes. Schools,

as foundational educational institutions, are uniquely positioned to provide structured

opportunities for physical activity and health education (1).

The effectiveness of PE programs depends significantly on their design and

implementation. Research emphasizes that PE programs need to be data-driven, equitable,

and adaptive to meet the diverse needs of students (2, 3). Traditional approaches
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to scheduling PE often rely on arbitrary time allocations and

outdated teaching methodologies, which do not maximize the

health benefits of these sessions (4, 5). Studies suggest that

incorporating optimization techniques into PE scheduling can

improve resource allocation and time to align with global

public health goals, such as the World Health Organization

recommendation of at least 60 minutes of moderate to vigorous

physical activity daily (6).

1.2 Related work

Recent advances in technology and computational methods

have introduced optimization algorithms into the field of

education, enabling more effective scheduling and resource

utilization. Algorithms such as Genetic Algorithm (GA), Particle

Swarm Optimization (PSO), and Ant Colony Optimization (ACO)

have been successfully applied to improve the efficiency of PE

programs and ensure alignment with health outcomes (7, 8).

These approaches integrate factors like activity intensity, session

frequency, and individual health metrics to deliver personalized

and impactful PE schedules (9).

Moreover, the incorporation of technology in PE programs,

including wearable devices and big data analytics, has further

enhanced the ability to monitor, assess, and optimize physical

activity levels (10, 11). These innovations not only improve

the accuracy of health assessments but also facilitate the

implementation of targeted interventions, particularly for students

with varying fitness levels or health conditions (12). Various studies

have emphasized the importance of structured and optimized

PE schedules in promoting critical health outcomes such as

BMI reduction, fitness improvement, caloric expenditure, and

cardiovascular health (13, 14).

1.3 PE schedules for public health impact

Despite the growing recognition of PE’s role in public health,

traditional scheduling approaches fail to leverage the advancements

in optimization techniques and data analytics. These conventional

methods often rely on arbitrary time allocations and generic

strategies, resulting in suboptimal use of resources and limited

impact on student health (15, 16). Furthermore, the diversity

in student demographics and health needs necessitates adaptive,

personalized schedules to maximize the health benefits of PE

programs (15, 16). Recent advances in computational methods,

such as Genetic Algorithms (GA), Particle Swarm Optimization

(PSO), and Ant Colony Optimization (ACO), provide powerful

tools to address these challenges by enabling the design of schedules

that are efficient, equitable, and outcome-focused (4, 6).

1.4 Research motivation

Motivated by the need for more effective PE programs and

the potential of optimization algorithms to improve scheduling,

this study aims to develop and evaluate methodologies that

can maximize health outcomes. By integrating health metrics

with scheduling features, this study seeks to provide insights

for educators, policymakers, and public health professionals. The

primary objective of this study is to design and evaluate optimized

PE schedules using optimization techniques to enhance long-term

public health outcomes.

Additionally, optimized PE schedules have the potential to

improve both mental health and academic performance among

students. Regular physical activity has been shown to reduce stress,

anxiety, and symptoms of depression. These benefits contribute

to enhancing overall mental wellbeing. Furthermore, improved

physical fitness is closely linked to better cognitive function,

memory, and attention. These cognitive benefits are critical for

achieving academic success. By promoting structured and effective

PE programs, this study aims to create an environment that

supports physical health while fostering mental and academic

development.

1.5 Contributions

The key contributions of this paper are as follows:

1. A weighted fitness function is developed to evaluate health

fitness scores. This function integrates multiple health metrics

such as BMI reduction, fitness improvement, calories burned,

and heart rate reduction.

2. The Six selected optimization algorithms such as Genetic

Algorithm (GA), Particle Swarm Optimization (PSO), Ant

Colony Optimization (ACO), Simulated Annealing (SA),

Differential Evolution (DE) and Artificial Bee Colony (ABC)

optimization algorithms are utilized to optimize PE schedules

based on the designed weighted fitness function.

3. Finally, this study highlights various public health implications

of optimized PE schedules and also provides recommendations

to policy makers and stakeholders to implement PE programs

in schools to address health disparities and improve resource

utilization.

2 Background on PE programs and
health metrics

In schools, PE programs are designed to improve students’

physical, mental, and social wellbeing. These programs incorporate

various structured activities that promote physical fitness, develop

motor skills, and encourage teamwork and social interaction (17,

18).

2.1 Typical PE program contents

PE programs typically include aerobic exercises, strength

training, team sports, flexibility training, and recreational activities.

Each component serves a specific purpose, from improving

cardiovascular endurance to fostering team-building skills (19).

Table 1 outlines these components along with their descriptions

and examples.
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TABLE 1 Typical PE program contents.

Component Description Examples

Aerobic exercises Activities to improve

cardiovascular endurance.

Running, cycling,

jumping

Strength training Exercises focused on

building muscle strength

and endurance.

Push-ups, squats,

resistance band training

Team sports Group activities to develop

teamwork and

coordination.

Basketball, soccer,

volleyball

Flexibility training Exercises to enhance range

of motion and prevent

injuries.

Yoga, stretching routines

Recreational activities Fun and engaging activities

to encourage participation

and enjoyment.

Obstacle courses, group

challenges

TABLE 2 Alignment of PE activities with age groups and guidelines.

Age group Focus areas Activities

6–10 years Fun, motor skill

development

Games, running, simple

obstacle courses

11–13 years Structured aerobic and

strength training

Jogging, resistance training

14–18 years Fitness improvement,

sports-specific skills

Team sports, endurance

exercises

2.2 Alignment with institutional guidelines

PE programs must align with guidelines from institutions like

the World Health Organization (WHO) and local educational

authorities to ensure they are effective and feasible (20). These

guidelines emphasize the importance of structured physical activity

tailored to students’ age groups.

For younger children (ages 6–10), activities should focus on

fun and motor skill development (21). Pre-adolescents (ages 11–

13) benefit from structured aerobic and strength training. The

adolescents (ages 14–18) require fitness improvement and sports-

specific skills. Table 2 summarizes the alignment of PE activities

with age groups and institutional recommendations.

2.3 Suitability of health metrics

To evaluate the effectiveness of PE programs, several health

metrics are used. These metrics assess physical, physiological, and

fitness outcomes, providing a comprehensive understanding of

student health (22). Table 3 lists these metrics along with their

definitions, significance, and appropriate use cases (see Section 3.4

for mathematical definitions).

2.4 Significance in assessing PE programs

These health metrics have been widely used to evaluate the

effectiveness of PE programs (23, 24). Metrics such as BMI is

essential for monitoring and managing childhood obesity. It offers

valuable insights into students’ weight status and overall health

(25). Fitness scores assess physical capabilities like endurance

and strength. These scores help identify areas for improvement

and guide targeted interventions to enhance fitness levels (26).

Additionally, tracking calories burned during activities measures

the intensity and effectiveness of exercises. This ensures that

students achieve energy balance and meet their physical activity

goals (27). Reductions in resting heart rate serve as a key indicator

of cardiovascular health. They highlight the long-term benefits

of consistent physical activity (28). By aligning these metrics

with institutional guidelines, schools can design PE programs that

address students’ diverse needs. Such alignment ensures immediate

physical andmental health improvements. It also promotes lifelong

wellness and the development of healthy habits (29).

3 Methodology

This section outlines the approach adopted in the study,

detailing the methods used for data collection, the implementation

of optimization algorithms, and the evaluation of health metrics.

Figure 1 shows the diagrammatic flow of the optimization process

for enhancing public health outcomes.

3.1 Data collection

The dataset for this study was compiled from publicly available

educational and health repositories, as well as anonymized student

records collected from multiple schools. To ensure the dataset

was suitable for applying optimization algorithms, we focused

on collecting comprehensive and diverse data that captures both

individual health metrics and PE program parameters. The final

dataset consists of 1,360 entries, representing a diverse sample of

students from various demographic and geographic backgrounds.

3.1.1 Open data sources
The data used in this study were sourced from the following

repositories, chosen for their detailed and structured records

relevant to health and physical activity:

1. Gym-exercise-data-analysis repository: provides granular data

on physical activity patterns, including types of activities,

durations, and associated health metrics (30).

2. CDC data: nutrition, physical activity, and obesity: offers

extensive data on nutrition, activity levels, and obesity-related

metrics across various demographics in the United States (31).

3. New Jersey State health assessment data: focuses on physical

activity behaviors and health outcomes of school-age children,

including BMI, activity levels, and cardiovascular health (32).

3.1.2 Dataset features
To build an adequate dataset for applying optimization

algorithms, we included features that represent both individual

health parameters and the operational details of PE programs.
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TABLE 3 Health metrics for evaluating PE programs.

Health metric Definition Significance Use case

BMI A measure of weight status based on height and weight. Tracks obesity and weight management. Useful for all age groups.

Fitness score A composite score of physical fitness, including

endurance and strength.

Tracks progress in physical capabilities. Suitable for structured fitness goals

Calories burned Energy expenditure during physical activities. Indicates activity intensity and effectiveness. Relevant for aerobic exercises.

Heart rate reduction Change in resting heart rate due to regular physical

activity.

Reflects cardiovascular health improvement. Best for adolescents.

FIGURE 1

Flowchart of the optimization process to enhance public health outcomes.

These features are essential for optimizing schedules to

improve specific health outcomes. They are grouped into

two categories:

A. Health-Related Features: These metrics capture the

baseline health status and outcomes of individual students:

• Age and Gender: Demographic data to analyze health

outcomes across diverse groups.

• BMI: Baseline Body Mass Index to assess weight status and its

changes.

• Fitness Score: Initial scores from standardized fitness tests to

evaluate endurance and strength.

• Resting Heart Rate (RHR): A measure of cardiovascular

health.

• Caloric Expenditure: Calories burned during PE sessions,

calculated using activity intensity and duration.
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B. PE Schedule-Related Features: These variables describe the

structure and intensity of PE programs:

• Weekly PE Time: Hours allocated for PE activities in

schedules.

• Activity Distribution: Time spent on aerobic exercises,

strength training, team sports, etc.

• Activity Intensity Levels: Categorized as low, moderate, or

vigorous based on MET values.

• Session Frequency: Number of PE sessions per week.

• Instructor-to-Student Ratio: A measure of instructional

quality.

• Facility Utilization Rate: Percentage of PE facilities used

during sessions.

3.1.3 Rationale for dataset features
The features selected for this dataset are specifically designed

to support the optimization process. Health-related metrics, such

as BMI and fitness score, serve as key indicators of program

outcomes. PE schedule-related features provide the necessary

inputs for optimization algorithms to design effective schedules.

This combination ensures that the dataset aligns with the goals of

improving health outcomes and maximizing resource utilization.

3.2 Data refinements

To ensure the dataset’s reliability and suitability for algorithmic

analysis, a series of data preprocessing steps were undertaken.

Each approach was carefully selected based on best practices and

supported by relevant literature.

3.2.1 Handling missing data
Missing data can compromise the integrity of analysis and

introduce bias. To address this, continuous variables, such as age

and BMI, were imputed with mean values, ensuring that the central

tendency of the data was preserved (33). Categorical variables, like

activity levels or gender, were completed using mode imputation,

whichmaintains the most frequent category’s representation. These

methods are widely used due to their simplicity and ability to

minimize distortions in the dataset (34).

3.2.2 Outlier detection
Outliers, which can skew analysis and lead to erroneous

conclusions, were identified and managed using the interquartile

range (IQR) method. Values outside 1.5 times the IQR from the

first and third quartiles were flagged as outliers and subsequently

removed (35). This approach is particularly effective in datasets

with a non-Gaussian distribution and ensures that the remaining

data points are representative of typical observations (36).

3.2.3 Normalization
Continuous variables, such as BMI and fitness scores, were

normalized using min-max scaling to bring all values into a

TABLE 4 Summary of Features in the Dataset.

Feature Description Type

Age Age of the student (6–18

years)

Continuous

Gender Gender of the student

(male/female)

Categorical

BMI Baseline Body Mass Index Continuous

Fitness score Initial fitness score (scale

0–100)

Continuous

PE time Weekly PE hours allocated Continuous

Activity distribution Time proportion for

different PE activities

Continuous

Activity intensity level Categorized as low,

moderate, or vigorous

Categorical

Resting heart rate (RHR) Baseline average heart rate

(bpm)

Continuous

Caloric expenditure Estimated calorie burn

during PE sessions

Continuous

Session frequency Number of PE sessions per

week

Continuous

Instructor-to-student ratio Students supervised by one

instructor

Continuous

Facility utilization rate Percentage of available PE

facilities utilized

Continuous

common range. Normalization ensures that variables with larger

ranges do not dominate the learning process in algorithms sensitive

to magnitude differences (37). The min-max scaling can be

computed using Equation 1:

xnormalized =
x− xmin

xmax − xmin
(1)

This technique is particularly advantageous for algorithms such

as gradient descent, where scale invariance is crucial (38).

3.2.4 Encoding categorical features
To prepare categorical variables like gender or activity types

for algorithmic processing, one-hot encoding was applied. This

technique transforms categorical data into binary vectors, ensuring

compatibility with machine learning models that require numerical

inputs (39). For example, a gender variable with categories “Male”

and “Female” would be represented as [1, 0] and [0, 1], respectively.

One-hot encoding prevents algorithms from assuming ordinal

relationships between categories (40).

3.3 Final dataset

The final refined dataset includes 1,360 entries, with a balanced

representation across age groups and genders, ensuring diversity

and applicability of results. Table 4 provides a summary of the

features included in the dataset.

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1548056
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tao et al. 10.3389/fpubh.2025.1548056

3.4 Health metrics

The effectiveness of each optimization algorithm was evaluated

based on the following key health metrics. These metrics were

chosen to assess the impact of optimized PE schedules on public

health outcomes, including physical fitness, weight management,

and cardiovascular health. Namely, these metrics are BMI

reduction (Equation 2), fitness improvement (Equation 3), calories

burned (Equation 4), basal metabolic rate (BMR) (Equation 5) and

heart rate reduction (Equation 6). The weighted fitness function is

represented by Equation 7.

3.4.1 BMI reduction
BodyMass Index (BMI) (41) is a widely usedmeasure to classify

weight status and assess weight-related health risks. BMI reduction

was calculated as:

1BMI = BMIinitial − BMIfinal, (2)

where BMIinitial and BMIfinal are the BMI values before and

after implementing the optimized PE schedule. A higher 1BMI

indicates a more significant improvement in weight management.

3.4.2 Fitness improvement
Fitness improvement reflects enhancements in cardiovascular

and muscular endurance. It was quantified using a standardized

fitness score derived from physical fitness tests, including

endurance runs and strength exercises:

1F = Ffinal − Finitial, (3)

where Ffinal and Finitial are the fitness scores after and before the

implementation of the optimized schedules. A higher 1F indicates

better improvements in physical fitness.

3.4.3 Calories burned
Calories burned during PE sessions is a measure of energy

expenditure, which contributes to weight loss and overall fitness. To

enhance accuracy and account for individual metabolic differences,

the caloric expenditure formula was updated to include a factor for

Basal Metabolic Rate (BMR), as well as individualized metabolic

variations based on age, gender, and fitness level. The enhanced

formula is as follows (42):

Calories Burned = MET ·W · t ·

(

1+
BMR

1000

)

, (4)

In this formula, MET represents the metabolic equivalent of

task for a given activity, such as running or strength training. W

denotes the student’s weight in kilograms, while t indicates the

duration activity in hours. BMR is the Basal Metabolic Rate, which

accounts for individual metabolic variations and is calculated as:

BMR = 10 ·W + 6.25 ·H − 5 · A+ S, (5)

where H is the height of the individual in centimeters, A is the

age in years, and S is a gender-specific constant (+5 for males and

−161 for females).

BMR adjusts the caloric expenditure formula to better reflect

individual differences in metabolism. It improves the precision of

energy expenditure calculations and makes them more suitable for

diverse student populations.

3.4.4 Heart rate reduction
Resting heart rate (RHR) is a strong indicator of cardiovascular

health. A reduction in RHR signifies improved heart function and

endurance. The change in heart rate is calculated as:

1HR = HRinitial −HRfinal, (6)

where HRinitial and HRfinal are the resting heart rates before

and after the optimized PE schedules. A greater 1HR suggests a

significant improvement in cardiovascular fitness.

3.4.5 Weighted fitness function
To provide a comprehensive measure of overall health

improvement, we developed a weighted fitness function. This

function combines multiple health metrics, including BMI

reduction, fitness improvement, calories burned, and heart rate

reduction. The approach reflects the multidimensional nature of

health outcomes associated with PE programs. By aggregating

these metrics, the fitness function ensures the optimization

process captures both immediate and long-term health benefits. It

systematically addresses diverse health priorities.

PE time plays a critical role in influencing these metrics.

Extended PE sessions offer more opportunities for structured

physical activities. This leads to higher caloric expenditure and

improved cardiovascular fitness. Conversely, shorter PE times

may limit the effectiveness of these outcomes. Each optimization

algorithm incorporates PE time as a decision variable. The

algorithms adjust activity durations and frequencies to maximize

health benefits within school scheduling constraints.

The rationale for assigning weights to these metrics is

based on their relative importance in public health contexts.

BMI reduction was given the highest weight (40%) because it

addresses childhood obesity, a major risk factor for chronic

diseases. Fitness improvement (30%) was prioritized for its

contributions to cardiovascular health, muscular endurance,

and overall fitness. Calories burned (20%) and heart rate

reduction (10%) were included to reflect energy expenditure and

cardiovascular improvements. These metrics were integrated into

the following weighted fitness function:

f (x) = w1 ·1BMI+w2 ·1F+w3 ·Calories Burned+w4 ·1HR, (7)
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Here, w1,w2,w3, and w4 are weights that represent the

relative importance of each metric. The weighting strategy aligns

with the broader goal of maximizing health outcomes. It also

provides flexibility to adapt to the needs of specific populations.

By incorporating PE time as a decision variable, the algorithms

dynamically optimize its allocation. This enhances the overall

impact of PE schedules on public health goals.

3.4.6 Optimal PE time
Optimal PE time is a key decision variable that represents the

total hours allocated to physical education sessions each week (43–

45). This metric ensures sufficient time is dedicated to structured

physical activities while maintaining a balance with academic

priorities. The optimization algorithms use PE time explicitly to

calculate its impact on the weighted fitness function. This ensures

that schedules align with global public health recommendations,

such as the WHO’s guideline for at least 60 minutes of moderate-

to-vigorous physical activity (MVPA) daily for children and

adolescents.

The weekly optimal PE time (Toptimal) is calculated using

Equation 8:

Toptimal =
n · tsession

week
, (8)

where n is the number of PE sessions per week, tsession is

the duration of each session in hours, and week denotes the total

number of days (typically 5-7) in the schedule.

PE time directly influences other health outcomes. Longer

PE times correlate with higher caloric expenditure and increased

activity intensity. This supports energy balance and weight

management. Sufficient PE time enables structured activities that

improve muscular and cardiovascular endurance. Regular and

prolonged sessions amplify the benefits of sustained physical

activity, including reductions in resting heart rate.

Optimal PE time is central to the optimization algorithms.

It allows activity durations and frequencies to be allocated

effectively. This integration ensures schedules meet targeted health

goals while remaining feasible for schools. By leveraging PE

time, the algorithms balance health benefits with operational

constraints. This enhances the overall effectiveness of PE programs

in promoting public health.

3.5 Optimization algorithms

To optimize the PE schedules for enhancing public health

outcomes, six widely recognized optimization algorithms were

implemented: Genetic Algorithm (GA) (46), Particle Swarm

Optimization (PSO) (47), Ant Colony Optimization (ACO) (48),

Simulated Annealing (SA) (49), Differential Evolution (DE) (50),

and Artificial Bee Colony (ABC) (51). Each algorithm was designed

to maximize the health metrics, including BMI reduction, fitness

improvement, caloric expenditure, and cardiovascular health.

Table 5 shows the strengths of the selected optimization algorithms

and their alignment with the optimization of PE schedules. Each

algorithm targets specific aspects of PE program design and health

TABLE 5 Benefits of selected optimization algorithms in PE program

optimization.

Algo. Strengths Alignment with PE and
health metrics

GA Evolutionary approach for

iterative refinement and

global search capabilities.

Effective for BMI reduction by

fine-tuning schedules for weight

management.

PSO Efficient optimization of

interconnected variables

through swarm intelligence.

Suitable for balancing activity

intensity and session frequency to

maximize caloric expenditure and

fitness improvement.

ACO Excels in solving allocation

problems and finding optimal

paths.

Ideal for determining time

distribution across PE activities to

improve fitness scores and energy

balance.

SA Escapes local optima by

probabilistic acceptance of

suboptimal solutions.

Useful for exploring diverse

schedule options to enhance

cardiovascular health (heart rate

reduction).

DE Handles multidimensional

decision variables efficiently.

Effective for optimizing multiple

health metrics (e.g., BMI, fitness

score, and caloric expenditure)

simultaneously.

ABC Mimics natural foraging

behavior for global

optimization.

Useful for fine-tuning activity

intensity levels to improve

cardiovascular efficiency and

energy expenditure.

metric optimization, thereby offering a comprehensive approach

to enhancing public health outcomes. Additionally, Table 6 shows

feature-wise comparison of optimization algorithms. It shows that

ACO and DE are better optimization approaches over others.

3.5.1 Genetic Algorithm
The GA operates based on the principles of natural selection.

It begins with an initial population of randomly generated

solutions and iteratively evolves them over generations to

improve their fitness. The main steps of GA are presented in

Algorithm 1. By applying the GA to optimize school physical

education (PE) schedules, it becomes possible to systematically

allocate time and activities to maximize health benefits. The

algorithm leverages the weighted customized fitness function

in Equation 7, ensuring a focus on critical health metrics

such as BMI reduction, caloric expenditure, and cardiovascular

health. This targeted approach not only enhances individual

health outcomes but also contributes to the long-term goal of

improving public health through structured and evidence-based

PE programs.

3.5.2 Particle Swarm Optimization
PSO mimics the social behavior of particles (solutions) in a

swarm, collectively searching for the optimal solution. Algorithm 2

outlines the steps required to optimize the PE schedules using

PSO. By employing the weighted customized fitness function

in Equation 7, PSO evaluates and adjusts particle positions to

maximize health outcomes such as fitness improvement, caloric

expenditure, and heart rate reduction. The algorithm’s iterative

updates ensure convergence toward schedules that align with public
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TABLE 6 Feature-wise comparison of optimization algorithms.

Algo. Convergence
speed

Local optima
avoidance

Exploration vs.
exploitation

Scalability Computational
complexity

Global
search

Convergence
stability

GA X X X X × X X

PSO X × X X X X X

ACO X X X × X X X

SA × X X × X × ×

DE X X X X X X X

ABC X × X X × X ×

Input: Population size N, Crossover rate pc, Mutation

rate pm, Max generations G

Output: Optimized solution x∗

1: Initialize population P0 = {x1,x2, . . .,xN} randomly

2: for g = 1 to G do

3: Evaluate fitness f(xi) for each xi ∈ Pg using

Equation 7

4: Select parents Pselected using roulette-wheel

selection

5: Perform crossover with probability pc to create

offspring

6: Perform mutation with probability pm on

offspring

7: Replace Pg+1 with offspring

8: end for

9: Return best individual x∗ in PG

Algorithm 1. Genetic Algorithm.

health goals, promoting equitable and effective physical activity

strategies in schools. This dynamic optimization process highlights

PSO’s capability to balance diverse health metrics while enhancing

overall schedule efficiency.

3.5.3 Ant Colony Optimization
Similarly, ACO is inspired by the foraging behavior of ants,

where pheromone trails guide the search for optimal solutions.

Ants probabilistically choose paths based on pheromone intensity

(τij) and heuristic desirability (ηij), ensuring a balance between

exploration and exploitation. Algorithm 3 presents the steps

involved in optimizing PE schedules using ACO. By leveraging

the weighted customized fitness function in Equation 7, ACO

iteratively refines its solutions to improve metrics such as BMI

reduction, fitness score improvement, and heart rate reduction.

This approach demonstrates the algorithm’s effectiveness in

addressing complex scheduling challenges, aligning PE schedules

with public health objectives.

3.5.4 Simulated Annealing
Simulated Annealing (SA) explores the solution space by

allowing occasional acceptance of worse solutions to escape local

optima, mimicking the annealing process in metallurgy. This

Input: Number of particles N, Max iterations T,

Inertia weight ω, Cognitive constant c1, Social

constant c2

Output: Optimized solution x∗

1: Initialize particles’ positions xi and velocities

vi randomly

2: Initialize personal best pi and global best g

3: for t = 1 to T do

4: for each particle i do

5: Update velocity: vi ← ωvi + c1r1(pi − xi) +

c2r2(g− xi)

6: Update position: xi ← xi + vi

7: Evaluate fitness f(xi) using Equation 7

8: if f(xi) > f(pi) then

9: pi ← xi

10: end if

11: end for

12: Update global best g if necessary

13: end for

14: Return g

Algorithm 2. Particle Swarm Optimization.

probabilistic acceptance helps the algorithm avoid premature

convergence and thoroughly search the solution space for optimal

results. Algorithm 4 outlines the steps involved in applying SA

to optimize PE schedules. By leveraging the weighted customized

fitness function in Equation 7, SA evaluates solutions based on key

health metrics such as BMI reduction and caloric expenditure. The

temperature parameter gradually decreases. This ensures a focused

search for optimal schedules that align with long-term public health

goals. The probability of accepting a worse solution is given in

Equation 9:

P = exp

(

−
1E

T

)

, (9)

where1E is the change in fitness, and T is the temperature. The

temperature decreases over iterations in Equation 10:

T(t+1) = γ · T(t), (10)

where γ is the cooling rate.
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Input: Number of ants m, Pheromone evaporation rate

ρ, Number of iterations T

Output: Optimized path

1: Initialize pheromone levels τij for all edges

(i,j)

2: for t = 1 to T do

3: for each ant k do

4: Construct solution based on transition

probabilities:

Pij =
τα
ijη

β

ij
∑

(i,j)∈allowed τα
ijη

β

ij

5: end for

6: Evaluate fitness of constructed solutions using

Equation 7

7: Update pheromones:

τij ← (1− ρ)τij +

m
∑

k=1

1τkij

8: end for

9: Return best path

Algorithm 3. Ant Colony Optimization.

Input: Initial solution x0, Initial temperature T0,

Cooling rate α, Max iterations T

Output: Optimized solution x∗

1: Set x← x0, T← T0

2: for t = 1 to T do

3: Generate a neighbor solution x′ randomly

4: Compute 1E = f(x′)− f(x) using Equation 7

5: if 1E < 0 or exp(−1E/T) > rand() then

6: x← x′

7: end if

8: T← αT

9: end for

10: Return x

Algorithm 4. Simulated Annealing.

Algorithm 4 outlines the detailed steps involved in the SA

process.

3.5.5 Di�erential Evolution
Differential Evolution (DE) generates new solutions by

combining existing ones using vector differences, ensuring a

balance between exploration and exploitation of the solution

space. This approach enables DE to effectively navigate complex

optimization problems. In the context of optimizing PE schedules,

DE applies its mutation and crossover mechanisms to iteratively

refine solutions, guided by the weighted customized fitness function

in Equation 7. Algorithm 5 details the steps required for DE to

maximize health outcomes, such as BMI reduction, fitness score

improvement, and caloric expenditure, ensuring schedules align

with public health objectives. The algorithm’s ability to adaptively

Input: Population size N, Scaling factor F, Crossover

rate CR, Max generations G

Output: Optimized solution x∗

1: Initialize population P = {x1,x2, . . .,xN} randomly

2: for g = 1 to G do

3: for each target vector xi ∈ P do

4: Select xr1,xr2,xr3 randomly from P

5: Mutate: v = xr1+ F · (xr2− xr3)

6: Crossover:

uj =







vj if rand() < CR,

xi,j otherwise

7: Evaluate f(u) using Equation 7

8: if f(u) > f(xi) then

9: Replace xi with u

10: end if

11: end for

12: end for

13: Return best individual x∗ in P

Algorithm 5. Di�erential Evolution.

Input: Number of food sources N, Max cycles C, Limit

for abandonment L

Output: Optimized solution

1: Initialize food sources S = {x1,x2, . . .,xN} randomly

2: for c = 1 to C do

3: for each employed bee do

4: Generate new solution v by modifying xi

v = xi + φ(xi − xk)

5: Evaluate f(v) using Equation 7

6: if f(v) > f(xi) then

7: xi ← v

8: end if

9: end for

10: Select food sources based on fitness

11: Scout bees search for new solutions if

abandonment limit L is reached

12: end for

13: Return best solution in S

Algorithm 6. Artificial Bee Colony.

explore solutions makes it a robust choice for enhancing PE

program efficiency. A trial solution of DE can be created using

Equations 11 and 12:

vi = xr1+ F · (xr2− xr3), (11)

ui =

{

vij if r < CR,

xij otherwise,
(12)

where xr1, xr2, xr3 are random solutions, F is the scaling factor,

and CR is the crossover probability.
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3.5.6 Artificial Bee Colony
Artificial Bee Colony (ABC) models the foraging behavior of

honeybees, effectivelymimicking their exploration and exploitation

strategies to identify optimal solutions. In the context of optimizing

PE schedules, ABC employs a collaborative approach among three

types of bees: employed bees, onlooker bees, and scout bees.

Each type plays a distinct role, contributing to the exploration

of the solution space and refinement of potential solutions. The

employed bees exploit known food sources (solutions), while

onlooker bees evaluate the fitness of those solutions to make

informed selections. Scout bees, on the other hand, introduce

new solutions by abandoning poorly performing ones. Algorithm 6

illustrates the detailed step-by-step process of ABC, emphasizing

its capability to utilize the weighted customized fitness function in

Equation 7 for achieving enhanced public health outcomes through

optimized PE schedules.

4 Results and discussion

This section presents a comprehensive evaluation of six popular

optimization algorithms such as GA, PSO, ACO, SA, DE, and

ABC in optimizing school PE schedules to improve long-term

public health outcomes. These parameters were determined based

on an extensive literature review to align with best practices

in optimization studies and further refined using a trial-and-

error approach. This iterative process ensured that the selected

parameters achieved optimal balance between convergence speed,

stability, and solution quality. The comparison focuses on five

critical health metrics such as optimal PE time, reduction in BMI,

improvement of fitness score, calories burned, and reduction of

heart rate. Each algorithm was run for 200 iterations with a

population size of 30 solutions. The fitness function was used

to evaluate the effectiveness of the solutions, prioritizing health

outcomes.

4.1 Experimental analysis

4.1.1 Sensitivity analysis of fitness-function
weights

Table 7 presents the results of the ACO-based sensitivity

analysis that examines how small changes in fitness-function

weights affect key health metrics. Increasing the weight assigned

to BMI reduction by 5% enhances the BMI priority index by

15%. This prioritizes schedules with higher caloric expenditure and

activity intensity. Conversely, reducing the weight by 5% results in

a 15% decrease in BMI priority. This change indicates a shift away

from BMI-focused interventions. These adjustments highlight the

significant influence of weight modifications on the optimization

outputs.

Changes in weight allocation also affect caloric expenditure

outcomes. A 5% increase in BMI weight leads to a 10% rise in

caloric expenditure, reaching 385 kcal/session. On the other hand,

reducing the weight by 5% lowers caloric expenditure to 315

kcal/session, which is a 10% decline. This demonstrates a direct

relationship between weight adjustments and energy expenditure

outcomes in the schedules. The fitness score and heart rate

reduction metrics reflect a different trend. Increasing BMI weights

by 5% results in a 5% reduction in the fitness score and a slight

decline of about 3% in heart rate reduction. These findings suggest

that prioritizing BMI reduction may slightly reduce the emphasis

on cardiovascular improvements.

4.1.2 Convergence analysis
Figure 2 illustrates the convergence behavior of six

optimization algorithms such as GA, PSO, ACO, SA, DE,

and ABC–toward the optimal fitness value. Each curve represents

the fitness improvement over 200 iterations. ACO demonstrates

the fastest and most consistent convergence, achieving the highest

fitness value at around 9.91 hours of optimal PE time allocation

and associated health metrics. DE and PSO follow closely, with

steady improvement and robust performance across iterations.

GA achieves competitive results but exhibits slower convergence

compared to ACO. SA and ABC, while effective, converge more

slowly and reach slightly lower fitness values. Therefore, ACO

can be used an ideal choice for achieving optimal public health

outcomes.

4.1.3 Optimal PE time allocation
PE time is a fundamental factor in promoting physical activity

among students. Figure 3 indicates that ACO allocated the highest

PE time of 9.91 hours / week, aligning with the strategy tomaximize

physical activity for health benefits. PSO and DE followed closely,

with values of 9.67 and 9.71 hours, respectively. However, SA

achieved the lowest PE time of 9.45 hours, likely due to its tendency

to converge faster, but sometimes at suboptimal points.

4.1.4 BMI reduction
BMI reduction is a key indicator of effective weight

management and physical activity. In Figure 4, it is found

that GA achieved the most significant reduction in BMI, with an

average of 10.63 units. This highlights its efficiency in optimizing

schedules to combat obesity. The PSO and DE algorithms also

performed well, achieving BMI reductions of <10.50 units and

<10.45 units, respectively. Although ACO excelled in PE time, its

performance in reducing BMI was slightly lower at 10.14 units.

This result suggests that although longer PE time improves overall

fitness, targeted strategies may be needed to achieve a greater

reduction in BMI.

4.1.5 Fitness score improvement
The improvement in fitness reflects the improvement in

cardiovascular and muscular endurance due to physical activity.

In Figure 5, ACO demonstrated the highest improvement in the

fitness score, achieving an average of 109.5 points. This finding

indicates that ACO effectively balances PE time and activity

intensity, leading to significant improvements in fitness levels.

PSO and DE followed closely, with improvements of 108.3 points

and 108.8 points, respectively. GA performed well but fell slightly

behind, achieving a fitness score of 107.9 points.
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TABLE 7 ACO-based sensitivity analysis of fitness-function weight variations.

Weight change (%) BMI priority
(index)

Caloric expenditure
(kcal/session)

Fitness score (index) Heart rate reduction
(bpm)

-5 85.0 315.0 105.0 8.24

0 100.0 350.0 100.0 8.00

+5 115.0 385.0 95.0 7.76

FIGURE 2

Convergence comparison of GA, PSO, ACO, SA, DE, and ABC algorithms.

FIGURE 3

Optimal PE time across GA, PSO, ACO, SA, DE, and ABC algorithms.

4.1.6 Calories burned
The calories burned metric measures energy expenditure,

which directly impacts weight management and overall health.

In Figure 6, the ACO again emerged as the top performer, with

370 kcal burned per session. PSO and DE were closely followed

with values of 360 kcal and 355 kcal, respectively. Meanwhile, SA

achieved the lowest calorie burn of 340 kcal, consistent with its

lower PE time allocation. The superior performance of ACO in this

FIGURE 4

BMI reduction across GA, PSO, ACO, SA, DE, and ABC algorithms.

metric highlights its ability to maximize the intensity and duration

of physical activity.

4.1.7 Heart rate reduction
The reduction in heart rate is an indicator of improved

cardiovascular fitness. Figure 7 shows that ACO achieved the

highest heart rate reduction of 8.5 bpm, followed by ABC with
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FIGURE 5

Fitness score improvement across GA, PSO, ACO, SA, DE, and ABC

algorithms.

8.3 bpm and GA with 8.2 bpm. SA demonstrated the lowest

reduction at 7.8 bpm, aligning with its overall lower performance

in PE time and calorie burn. These results confirm that optimizing

exercise program can significantly improve cardiovascular health,

with ACO delivering the most balanced results.

4.1.8 Summary of results
Table 8 summarizes the performance of GA, PSO, ACO,

SA, DE, and ABC algorithms in five health metrics such as

PE time (h), BMI reduction, fitness score, calories burned, and

heart rate reduction. ACO emerged as the most balanced and

effective algorithm, achieving the highest scores in PT time, fitness

score, calories burned, and reduction of heart rate. GA excelled

in reducing BMI, reflecting its efficiency in addressing weight-

specific goals, particularly for obesity-focused interventions. PSO

and DE offered robust and consistent performance in all metrics,

positioning them as reliable alternatives for PE optimization.

Meanwhile, SA recorded the lowest values in most metrics,

indicating its limitations in maximizing activity duration and

intensity. ABC showed moderate results, but performed better in

heart rate reduction than SA and was comparable to PSO and DE

in overall performance.

4.2 Public health implications of optimized
PE schedules

The integration of optimization algorithms into school PE

schedules presents transformative opportunities to improve public

health outcomes. The impact of these interventions can be

categorized as follows.

FIGURE 6

Calories burned across GA, PSO, ACO, SA, DE, and ABC algorithms.

4.2.1 Promotion of lifelong physical activity
habits

Optimized PE schedules promote structured regular physical

activity in children. This involvement helps cultivate lifelong

habits. Active children are more likely to maintain an active

lifestyle as adults. This reduces the risk of chronic diseases such

as obesity, diabetes, and cardiovascular disorders. Implementing

algorithms like ACO supports increased activity levels. Schools can

thus meet the WHO’s 60-minute daily exercise recommendation.

These schedules also maximize participation in PE while balancing

academics. This makes physical activity essential in the school

curriculum.

4.2.2 Reduction of chronic disease burden
Childhood is a critical period for preventing non-

communicable diseases (NCDs). Optimized PE schedules

contribute directly to weight management, improved

cardiovascular health, and enhanced metabolic function. For

instance, the results of this study demonstrate how ACO and GA

effectively reduce BMI and improve heart rate. These are two key

predictors of long-term health outcomes. By addressing these risk

factors early, schools act as public health hubs. They reduce the

burden on healthcare systems and mitigate the financial and social

impacts of chronic diseases.

4.2.3 Mental health and emotional wellbeing
Physical activity has well-documented benefits for mental

health. These benefits include reductions in anxiety, stress,

and depression. Optimized PE schedules ensure that students

consistently access these benefits. These schedules include

structured and engaging activities. Improved fitness levels and

caloric expenditure are associated with higher self-esteem and

emotional resilience in children. Algorithms such as ACO and

PSO help achieve these fitness levels. Schools with optimized PE

programs create supportive environments. These environments
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TABLE 8 Summary of results across all metrics with confidence intervals.

Algo. PE time (hrs) BMI reduction
(units)

Fitness score
(points)

Calories burned
(kcal/session)

Heart rate
reduction (bpm)

GA 9.58± 0.12 10.63± 0.20 107.9± 1.5 350± 10 8.2± 0.2

PSO 9.67± 0.15 10.50± 0.18 108.3± 1.3 360± 12 8.0± 0.2

ACO 9.91± 0.10 10.14± 0.22 109.5± 1.0 370± 8 8.5± 0.1

SA 9.45± 0.18 10.25± 0.25 107.2± 1.8 340± 15 7.8± 0.3

DE 9.71± 0.14 10.45± 0.21 108.8± 1.2 355± 10 8.1± 0.2

ABC 9.62± 0.16 10.38± 0.19 108.1± 1.4 348± 11 8.3± 0.2

FIGURE 7

Heart rate reduction across GA, PSO, ACO, SA, DE, and ABC

algorithms.

foster social interaction, teamwork, and a sense of belonging. All of

these factors contribute to better mental health in students.

4.2.4 Equitable health outcomes in underserved
communities

Optimized PE schedules have significant public health benefits

by addressing health disparities. In underserved communities,

schools serve as critical points for promoting physical activity due

to limited access to recreational facilities and organized sports.

Customizing PE schedules to meet the needs of these communities

ensures that children at risk of lifestyle-related diseases receive

equitable health benefits. For example, extending PE times and

using algorithms like ACO to incorporate high-impact activities

can help resource-limited students achieve health outcomes similar

to those in better-resourced settings.

4.2.5 Cognitive and academic enhancements
Physical activity is closely related to improved cognitive

function and academic performance. Optimized PE schedules

maximize fitness and energy expenditure. This contributes to better

memory, attention, and problem-solving abilities among students.

Studies suggest that students who engage in regular physical activity

perform better academically. This supports the argument that

PE is not a distraction, but a catalyst for academic success. By

integrating optimization algorithms into the PE scheduling, schools

can balance physical and academic goals. This creates programs

that improve learning outcomes and public health.

4.3 Implications for policymakers and
stakeholders

The results of this study offer valuable information to

policymakers, school administrators, and public health officials

in designing evidence-based PE programs that maximize health

benefits for students. Algorithms such as ACO and GA provide

a robust framework for efficient allocation of time and resources,

ensuring that students receive adequate physical activity despite

competing academic demands.

4.3.1 Evidence-based decision-making for
schools

By leveraging optimization algorithms, schools can adopt data-

driven approaches to improve PE scheduling. This ensures that

resources are utilized effectively to achieve measurable health

outcomes, such as reduced BMI, improved cardiovascular health,

and improved fitness levels. Evidence-based interventions not

only benefit students, but also empower schools to demonstrate

accountability and efficacy in meeting public health goals.

4.3.2 Alignment with public health goals
Optimized PE schedules align directly with broader public

health objectives, including those established by the WHO and

national health agencies. By prioritizing physical activity and

improving fitness, schools help reduce the prevalence of non-

communicable diseases (NCDs) and promote healthier lifestyles

among future generations.

4.3.3 Cost-e�ective health interventions
The adoption of algorithms such as ACO and GA enables

schools to achieve significant health improvements without

incurring substantial additional costs. Reduced obesity rates and
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improved fitness levels lead to a decrease in long-term healthcare

expenses, alleviating the economic burden on families and

healthcare systems. This cost-effectiveness is particularly valuable

for resource-limited schools and communities.

4.3.4 Addressing health disparities
Schools in underserved communities often face the challenge of

providing equitable access to physical activity programs. Optimized

PE schedules can be tailored to address these disparities, ensuring

that all students, regardless of socioeconomic status, benefit from

improved health outcomes. By promoting equitable access to

quality PE programs, schools can contribute to closing the health

gap and fostering social equity.

4.3.5 Enhanced quality of life for students
Physical activity not only improves physical health, but also

improves mental wellbeing and cognitive performance. Optimized

PE schedules, guided by algorithms like ACO and GA, ensure

that students develop essential life skills, including teamwork,

discipline, and resilience. These benefits contribute to an improved

quality of life, both during the school years and beyond.

4.4 Discussion

The comparative analysis highlights that ACO is the most

effective algorithm for optimizing school PE schedules, achieving

the highest results in PE time allocation, fitness improvement,

calories burned, and heart rate reduction. Its ability to balance

multiple health metrics makes it ideal for enhancing public

health outcomes. In contrast, GA showed better performance for

BMI reduction, making it particularly effective for weight-focused

interventions aimed at reducing childhood obesity.

The differences in results across algorithms are highly relevant

as they provide insights into the suitability of each algorithm for

specific objectives. ACO’s superior performance in optimizing PE

time (9.91 hours/week) and associated metrics, such as calories

burned (370 kcal/session) and heart rate reduction (8.5 bpm),

underscores its role in holistic health improvements. This makes

ACO an ideal choice for schools prioritizing cardiovascular

health and overall energy expenditure. On the other hand, GA’s

exceptional performance in BMI reduction (10.63 units) highlights

its effectiveness in tackling obesity, which is a critical public

health challenge. These results suggest that GA is better suited for

programs targeting weight-specific outcomes, such as interventions

for overweight or obese students.

The consistent performance of PSO and DE across multiple

metrics demonstrates their versatility. Both algorithms achieved

competitive results in caloric expenditure and fitness improvement

scores, indicating their potential for balanced public health

improvements. Their reliability makes them suitable alternatives

for schools seeking a comprehensive yet resource-efficient

optimization approach. For instance, schools with limited

resources can leverage PSO or DE to achieve satisfactory outcomes

across multiple health metrics without compromising specific

priorities.

In contrast, SA and ABC demonstrated slightly lower

performance, particularly in metrics like PE time allocation

and caloric expenditure. However, their exploratory nature and

adaptability still make them valuable for scenarios requiring

broader solution space exploration. For example, SA could be

utilized in pilot studies or scenarios where constraints are less

defined, allowing for flexible adjustments to PE schedules.

The differences among algorithms also reflect their underlying

mechanisms and optimization strategies. ACO’s ability to explore

and exploit solutions simultaneously makes it highly effective

for maximizing PE time allocation and activity intensity. GA’s

iterative refinement process aligns well with objectives requiring

gradual improvements, such as weight reduction. PSO and

DE excel in handling multidimensional variables, making

them ideal for balancing various health metrics in complex

schedules.

Optimized PE schedules directly contribute to improved public

health outcomes by fostering an environment that prioritizes

physical activity in schools. This is particularly significant given

the rising rates of childhood obesity, cardiovascular disease,

and metabolic disorders worldwide. The ability of algorithms

such as ACO and GA to improve key health metrics provides

schools with evidence-based tools to address these pressing health

challenges.

Therefore, the differences in algorithm performance highlight

the importance of selecting the right optimization strategy based

on specific health goals. ACO and GA are ideal for schools

with defined priorities in cardiovascular fitness and obesity

reduction, respectively. Meanwhile, PSO and DE offer balanced

solutions suitable for diverse health objectives. By understanding

these differences, policymakers and educators can make informed

decisions to maximize the impact of PE programs on student health

and wellbeing.

4.5 Recommendations for health
optimization

Table 9 presents a comprehensive overview of

recommendations for health optimization derived from

the performance of various optimization algorithms. Each

recommendation area is linked to specific algorithms that excel

in particular health metrics. It provides a distinction between the

rationale behind each recommendation and practical examples

of how they can be implemented in PE programs. Therefore, it

highlights the practical utility of the applied analytic framework

in designing evidence-based interventions for improving student

health outcomes.

4.6 Potential limitations

While the proposed optimization models have demonstrated

effectiveness in improving PE schedule design, there are several

potential limitations that warrant further investigation.

1. Scalability to larger datasets: The current models were tested

on datasets of moderate size (1,360 entries). Scaling these
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TABLE 9 Recommendations for health optimization based on algorithm performance.

Recommendation Algo. Description Example

Enhanced PE time allocation ACO Allocate PE time similar to ACO’s optimal value (9.91

hours/week), aligning with WHO’s 60-minute MVPA

guideline.

Incorporate diverse activities like aerobic exercises,

strength training, and team sports to improve

cardiovascular fitness and reduce sedentary behavior.

Targeted obesity interventions GA Leverage GA’s performance for BMI reduction (10.63

units) to design calorie-intensive and strength-building PE

activities.

Include HIIT and resistance-based exercises tailored for

overweight and obese students.

Balanced activity schedules PSO & DE Use PSO and DE to balance activity types and durations,

improving fitness scores and caloric expenditure.

Alternate between moderate aerobic activities (e.g.,

jogging) and vigorous team sports (e.g., basketball) for

diverse physical benefits.

Cardiovascular health focus ACO & ABC Integrate sustained aerobic activities to achieve significant

heart rate reduction (e.g., 8.5 bpm from ACO).

Include running or cycling in PE schedules and

regularly monitor progress through heart rate

assessments.

Resource-efficient scheduling SA & ABC Use SA and ABC to optimize schedules for schools with

limited resources or facilities.

Design rotating activity groups to maximize facility

utilization while maintaining program effectiveness.

Equitable health outcomes All Customize PE programs for underserved communities

using high-impact activities with minimal equipment.

Include accessible exercises like bodyweight training or

group aerobic routines to maximize engagement.

algorithms to handle significantly larger datasets may pose

challenges related to computational efficiency and memory

requirements. As datasets grow in size and complexity, the

time required for convergence and the risk of overfitting

may increase. Future research should explore optimization

techniques that ensure scalability without compromising

performance.

2. Adaptability to demographic diversity: The optimization

models assume a generalized framework that may not fully

account for the nuanced needs of diverse demographic groups.

Factors such as age, gender, and socioeconomic background

can influence the effectiveness of PE programs. Developing

demographic-specific parameter tuning or incorporating

adaptive learning algorithms could enhance the models’

applicability across varied populations.

3. Geographic and cultural contexts: The models have yet to be

validated in geographically or culturally diverse settings. PE

program effectiveness can vary based on local infrastructure,

climate, and cultural attitudes toward physical activity. Future

studies should test the adaptability of the optimization

algorithms in different geographic and cultural contexts to

ensure universal applicability.

4. Computational complexity: Some of the proposed algorithms,

such as ACO and GA, involve intensive computational

processes, especially when optimizing multiple health metrics

simultaneously. This complexity may limit their feasibility

for real-time or resource-constrained applications. Simplified

or hybrid models that balance computational demands and

optimization performance could address this limitation.

5. Resource constraints: Teacher availability, facility capacity,

and budget limitations are critical factors that could affect

the practical implementation of optimized PE schedules. These

constraints may limit the scalability and adaptability of the

proposedmodel. Future work should incorporate these variables

into the optimization process, allowing the model to adapt

schedules to the available resources while maintaining health

outcomes.

5 Conclusion and future directions

5.1 Conclusion

Optimizing school physical education (PE) schedules is crucial

for enhancing public health outcomes, particularly among school-

aged children. Therefore, in this study, a weighted fitness function

is developed to evaluate health fitness scores. This function

integrates multiple health metrics such as BMI reduction, fitness

improvement, calories burned, and heart rate reduction. Six

optimization algorithms such as Genetic Algorithm (GA), Particle

Swarm Optimization (PSO), Ant Colony Optimization (ACO),

Simulated Annealing (SA), Differential Evolution (DE), and

Artificial Bee Colony (ABC) optimization algorithms are utilized

to optimize PE schedules based on the designed weighted fitness

function. Using a dataset of 1,360 student entries, the study

incorporates health metrics such as BMI reduction, fitness score

improvement, caloric expenditure, and heart rate reduction into a

weighted fitness function for optimization. The results show that

ACO achieved the highest allocation of PE time (9.91 hours /

week), the most significant caloric expenditure (370 kcal / session)

and the greatest reduction in heart rate (8.5 bpm). GA excelled in

the reduction of BMI, achieving a decrease of 10.63 units. These

analysis reveals that the transformative potential of optimized

PE schedules in reducing the burden of lifestyle-related diseases,

promoting equitable health outcomes, and supporting cognitive

and mental wellbeing. Finally, recommendations are provided

for policy makers and stakeholders to implement data-driven PE

programs that maximize long-term public health benefits.

5.2 Future directions

This section outlines potential areas for further improvement

and practical implementation challenges. These directions aim to

build on the current work, enhancing its scalability, applicability,

and real-world impact.
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1. Scalability to larger datasets: Future work can explore

the scalability of the proposed optimization algorithms to

handle larger datasets. This includes evaluating computational

efficiency and performance when applied to datasets with

diverse demographic, geographic, and health characteristics.

2. Hybrid optimization models and machine learning models:

Hybrid optimization models, combining multiple algorithms

or integrating advanced machine learning techniques, could

further improve the efficiency and accuracy of PE schedule

optimization. For instance, combining the exploration

capabilities of ACO with the local refinement strength of GA

may yield better results.

3. Demographic-specific challenges:Addressing the unique needs

of different demographic groups, including age, gender,

socioeconomic status, and geographic location, remains a

critical area. Customized optimization strategies can be

developed to ensure equitable access and effectiveness of PE

programs across diverse populations.

4. Real-world implementation and validation: Practical

implementation of the proposed methods in real-world school

settings would provide valuable insights into their feasibility

and effectiveness. Collaborating with educational institutions

to pilot these optimized schedules and monitor their long-

term health impacts could bridge the gap between research

and practice.
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