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Objective: Early assessment and intervention of Acquired Immune Deficiency 
Syndrome (AIDS) patients at high risk of mortality is critical. This study aims 
to develop an optimally performing mortality risk prediction model for AIDS 
patients with comorbid AIDS-related diseases or symptoms to facilitate early 
intervention.

Methods: The study included 478 first-time hospital-admitted AIDS patients 
with related diseases or symptoms. Eight predictors were screened using lasso 
regression, followed by building eight models and using SHAP values (Shapley’s 
additive explanatory values) to identify key features in the best models. The 
accuracy and discriminatory power of model predictions were assessed using 
variable importance plots, receiver operating characteristic curves, calibration 
curves, and confusion matrices. Clinical benefits were evaluated through 
decision-curve analyses, and validation was performed with an external set of 
48 patients.

Results: Lasso regression identified eight predictors, including hemoglobin, 
infection pathway, Sulfamethoxazole-Trimethoprim, expectoration, headache, 
persistent diarrhea, Pneumocystis jirovecii pneumonia, and bacterial pneumonia. 
The optimal model, XGBoost, yielded an Area Under Curve (AUC) of 0.832, a 
sensitivity of 0.703, and a specificity of 0.799 in the training set. In the test set, 
the AUC was 0.729, the sensitivity was 0.717, and the specificity was 0.636. In 
the external validation set, the AUC was 0.873, the sensitivity was 0.852, and the 
specificity was 0.762. Furthermore, the calibration curves showed a high degree 
of fit, and the DCA curves demonstrated the overall high clinical utility of the 
model.

Conclusion: In this study, an XGBoost-based mortality risk prediction model is 
proposed, which can effectively predict the mortality risk of patients with co-
morbid AIDS-related diseases or symptomatic AIDS, providing a new reference 
for clinical decision-making.
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Introduction

The risk of death from AIDS has been a significant global concern 
for decades. Among these, AIDS-related diseases and symptoms are 
important factors that affect the prognosis of patients. The National 
Institutes of Health (NIH) invested nearly $69 billion in AIDS research 
between 1982 and 2018 to understand, treat, and prevent HIV 
infection (1, 2). Studies have demonstrated that HIV infection 
progressively compromises the patient’s immune system, with a 
gradual depletion of CD4+ T-lymphocytes (3–5). This ultimately leads 
to various opportunistic infections (OIs) and tumors. Since 1980, OIs 
have accounted for a large proportion of deaths among HIV-infected 
patients, particularly in Asia and sub-Saharan Africa and West 
Africa (6–9).

OIs encompass a variety of bacteria, viruses, fungi, and parasites, 
some of which are exceedingly rare in immunocompetent populations 
(10). OIs pose a significant health risk to patients with AIDS, 
particularly when the CD4+ T-cell count is below 200 cells/μL. The 
presence of various OIs significantly increases mortality rates 
in patients.

Tumors in people with AIDS include both AIDS-defining and 
non-AIDS-defining tumors, with generally low survival rates for these 
patients. AIDS-defining tumors mainly include Kaposi’s sarcoma and 
non-Hodgkin’s lymphoma. Non-AIDS-defining tumors include lung 
cancer, hepatocellular carcinoma, and perianal tumors, among others. 
AIDS-defining tumors account for 15–19% of deaths in HIV-infected 
patients, with most having an early onset and a more aggressive course 
than non-AIDS-defining tumors (11). Confirmation of AIDS-
associated cancers primarily relies on histopathological biopsy (12).

With the widespread use of Combination Antiretroviral Treatment 
(cART), AIDS is gradually becoming a chronic disease with a limited 
impact on life expectancy, but this increased survival has also led to a 
surge in comorbidities (13–16). Early cART effectively prevents OIs 
and tumors, reducing the risk of developing these conditions. 
Consequently, the proportion of OIs and tumors in treated patients 
has greatly reduced, although it remains high (17–20). OIs and tumors 
remain the leading cause of death among people living with HIV, with 
significantly higher mortality rates, particularly in low- and middle-
income countries (21).

Although some studies have explored factors affecting the 
prognosis of patients with AIDS, including hemoglobin, viral load, and 
CD4+ T-cell counts, they have been Cox regression and Logistic 
regression, which are traditional regression methods that, while 
providing a basic predictive framework, are usually unable to deal 
effectively with high-dimensional data or complex variable interactions, 
and especially exhibit significant limitations when nonlinear effects are 
involved, may not be  able to effectively capture the complex 
relationships between variables, resulting in inadequate predictive 
performance (22–27). In addition, machine learning techniques have 
been gradually introduced into the medical field in recent years, and 
their advantages in large-scale data analysis and complex model 
construction have been widely recognized. Recently, machine learning 
algorithms have become increasingly popular in healthcare, with 
clinically based machine learning models being used for prognostic 
predictions in various diseases, such as diabetes mellitus and rectal 
cancer (28–36). The application of death prediction in infectious 
diseases is also becoming a growing trend, particularly for predicting 
patient mortality risk, as evidenced by the COVID-19 outbreak (36, 

37). However, predictive studies of the risk of death for first-time HIV 
admissions are scarce, and no studies have used machine learning 
methods to predict the risk of death for first-time admissions with 
co-morbid HIV-related illnesses or symptoms. To fill this research gap, 
this study develops a machine learning-based optimal mortality risk 
prediction model based on a comprehensive dataset covering 
demographic information, clinical manifestations, and laboratory 
metrics, and combines it with the SHAP tool for model interpretability 
analysis to help clinicians identify high-risk patients and adjust their 
treatment plans. In addition, we validate the performance of the model 
with an external dataset to demonstrate its stability and generalization 
ability in real-world applications. XGBoost performs better in dealing 
with complex data structures and nonlinear relationships than other 
machine learning methods by integrating multiple decision trees, has 
higher prediction accuracy, more efficient big data processing capability, 
supports parallelized training, faster training speed, less resource 
consumption, and has strong generalization ability, therefore, this study 
considers constructing a prediction model based on XGBoost.

In summary, the main goal of this study is to construct a set of 
scientifically valid mortality risk prediction models to support 
clinicians in early diagnosis and individualized interventions for first-
time HIV admissions to improve patient prognosis.

Methods

Research design

The data used to construct and test the model in this study were 
obtained from 478 patients with AIDS who attended the Infectious 
Diseases-Hepatology Center of the First Affiliated Hospital of Xinjiang 
Medical University between October 2000 and January 2021, 
presenting AIDS-related diseases or symptoms at the beginning of 
their admission to the hospital. We collected demographic data (e.g., 
sex and age), AIDS-related disease information (e.g., thrush and 
cryptococcosis), clinical manifestations (e.g., persistent fever and 
persistent diarrhea), and laboratory test data (e.g., hemoglobin and 
albumin) from patients at the beginning of the admission period, for 
a total of 55 variables. Patients were followed up regularly according 
to their condition after receiving cART until March 7, 2024, with 
death as the outcome indicator, resulted in a total of 248 survivors and 
230 deaths. Inclusion criteria were as follows: (1) patients had a 
positive HIV antibody confirmatory test; (2) patients’ diagnoses of 
relevant opportunistic infections and tumors were based on clinical 
manifestations, ancillary investigations, and medical records, 
confirmed by discharge diagnosis; (3) patients had completed relevant 
investigations before receiving cART; and (4) patients had good 
adherence to the study and received timely follow-up visits. Patient 
treatment adherence was measured by patients’ medication use 
records and regular follow-up data, which were conducted every 
3 months. Exclusion criteria were as follows: (1) seriously missing case 
information; (2) patients with poor adherence.

Statistical methods

Continuous variables in this study were expressed as 
mean ± SD or median (interquartile range), and categorical 
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variables as frequency (percentage). These variables were then 
compared between survivors and deceased using Student’s t-tests, 
Mann–Whitney U-tests, chi-square tests, and Fisher’s exact tests. 
All analyses other than comparisons between multiple models 
were conducted in R 4.3.1, with the CBCgrps package (version 
2.8.2) used for the analysis of differences (38, 39). Comparisons 
between multiple models were performed in Extreme Smart 
Analysis. All tests were two-sided with a significance level of 
α = 0.05.

Data preprocessing

Excluded variables with more than 20% of the original data 
missing. The remaining data were filled using the Random Forest 
method. Then, the training and test sets were split in a ratio of 6:4. The 
Random Forest approach can effectively handle missing values 
through multiple interpolation and can maintain the structural 
integrity of the dataset. In the process of constructing each tree, 
Random Forest considers different feature subsets to reduce the 
impact of outliers, while missing values can be  handled by the 
combined results of multiple trees.

Selection of predictors

Using whether death was the dependent variable, first, Receiver 
Operating Characteristic (ROC) curves and Area Under Curve (AUC) 
values for all covariates in the complete dataset were generated to gain 
preliminary insights into the variables. Then, predictors were 
identified from the variables in the training set using Lasso regression 
and a min-max normalization was applied to the quantitative data. 
According to the 10 Events Per Variable (10EPV) rule, the sample size 
of deceased patients in the training set was ensured to meet the 
criterion of 10 times the number of predictors.

Modeling

In this study, seven machine learning algorithms (XGBoost, 
LightGBM, AdaBoost, MLP, SVM, GNB, and KNN) and one 
traditional regression algorithm (Logistic Regression) were used to 
initially construct patient mortality risk prediction models. The 
optimal model was selected through 10-fold Cross-Validation (CV), 
and then the optimal model was subjected to hyperparameter 
optimization (including max_depth, eta, gamma, colsample_bytree, 
min_child_weight, and subsample parameters) to construct the final 
model. The model was interpreted using the SHAP tool. Finally, a 
variable importance plot, ranking graph, and variable dependency 
plot were generated to show the relative importance of each feature in 
the model.

Evaluation of the model

The AUC is calculated from the ROC curve. The ROC curve is 
frequently used to assess the discriminative capacity of a predictive 
model, i.e., its ability to discriminate between different categories.

In this study, calibration curves were used to assess model fit, in 
which the Brier score was used as an evaluation metric; the lower the 
Brier score, the better the model fit.

The accuracy and discriminative power of model predictions were 
evaluated using a confusion matrix. Specific indicators include 
accuracy, sensitivity, specificity, positive predictive value, negative 
predictive value, and F1 score.

The study used Decision Curve Analysis (DCA) to evaluate the 
clinical utility of the model. The DCA curve plots the threshold 
probability on the horizontal axis and the net benefit on the vertical 
axis. The closer the curve is to the upper right corner, the greater the 
utility of the predictive model.

External validation

Forty-eight AIDS patients presenting with AIDS-related diseases 
or symptoms upon their first admission to the Shayibak District 
Branch of Urumqi Friendship Hospital (21 survivors and 27 deceased) 
were included in the external validation cohort. The external 
validation cohort came from different hospitals in the same area and 
had similar disease characteristics as the training set. We incorporated 
the data from the external validation set into the model constructed 
from the training set, and assessed the performance, goodness of fit, 
and clinical benefit of the model by plotting ROC curves, calibration 
curves, and DCA curves; a higher AUC value and a high degree of fit, 
and a wide interval of the DCA curves illustrated a high degree of 
generalizability of the model.

Ethics statement

The study protocol was approved by the Ethical Review 
Committee of the First Affiliated Hospital of Xinjiang Medical 
University (Ethical approval number: K202409-31). All experiments 
were conducted in accordance with relevant designated guidelines and 
regulations. Due to the retrospective nature of the study, the ethical 
review committee of the First Affiliated Hospital of Xinjiang Medical 
University waived the need of obtaining informed consent.

Results

Research flowchart

The flowchart of the study is presented in Figure 1. The flowchart 
is divided into four sections: research steps, methods, research 
content, and research design.

Patient characteristics

A total of 478 AIDS patients (248 survivors and 230 deceased) 
were included in this study up to 7 March 2024, who presented with 
AIDS-related diseases or symptoms at the beginning of their 
admission to the hospital between October 2000 and January 2021 at 
the Infectious Diseases-Hepatology Center of the First Affiliated 
Hospital of Xinjiang Medical University. The results of the analysis of 
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FIGURE 1

Flowchart of the mortality risk prediction model development.
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variance between the two groups of raw data (Table 1) indicate that 
the variables of patients’ marital status, infection pathway, treatment 
time group, OHL, esophageal candidiasis, PJP, CMV, bacterial 

pneumonia, persistent diarrhea, nausea, headache, WHO stage, 
SMZ-TMP, and treatment plan exhibited a differential distribution 
between the two groups. Furthermore, deceased patients exhibited 

TABLE 1 Baseline characterization of raw data and analysis of differences.

Variables Total (n = 478) Survival (n = 248) Deceased (n = 230) p

Marital status, n (%) 0.021

Single 58 (12.2) 35 (14.1) 23 (10.1)

Married or cohabiting 338 (71.0) 182 (73.4) 156 (68.4)

Divorced or widowed 80 (16.8) 31 (12.5) 49 (21.5)

Treatment time group, n (%) 0.032

0–30 days 238 (49.8) 115 (46.4) 123 (53.5)

31–90 days 108 (22.6) 68 (27.4) 40 (17.4)

91–365 days 69 (14.4) 30 (12.1) 39 (17.0)

>365 days 63 (13.2) 35 (14.1) 28 (12.2)

Infection pathway, n (%) <0.001

Blood-borne (transfusion + apheresis) 22 (4.6) 8 (3.2) 14 (6.1)

Intravenous drug addiction 149 (31.2) 51 (20.6) 98 (42.6)

homosexual transmission 11 (2.3) 8 (3.2) 3 (1.3)

Heterosexual transmission 264 (55.2) 173 (69.8) 91 (39.6)

Other (mother-to-child 

transmission + unknown route)

32 (6.7) 8 (3.2) 24 (10.4)

OHL, n (%) 0.035

No 465 (97.3) 237 (95.6) 228 (99.1)

Yes 13 (2.7) 11 (4.4) 2 (0.9)

PJP, n (%) <0.001

No 430 (90.0) 206 (83.1) 224 (97.4)

Yes 48 (10.0) 42 (16.9) 6 (2.6)

CMV, n (%) 0.031

No 472 (98.7) 242 (97.6) 230 (100.0)

Yes 6 (1.3) 6 (2.4) 0 (0)

Bacterial pneumonia, n (%) <0.001

No 440 (92.1) 244 (98.4) 196 (85.2)

Yes 38 (7.9) 4 (1.6) 34 (14.8)

Persistent diarrhea, n (%) 0.017

No 418 (87.4) 226 (91.1) 192 (83.5)

Yes 60 (12.6) 22 (8.9) 38 (16.5)

Nausea, n (%) 0.048

No 432 (90.4) 231 (93.1) 201 (87.4)

Yes 46 (9.6) 17 (6.9) 29 (12.6)

Projectile vomiting, n (%) 0.053

No 474 (99.2) 248 (100) 226 (98.3)

Yes 4 (0.8) 0 (0) 4 (1.7)

Headache, n (%) 0.035

No 440 (92.1) 235 (94.8) 205 (89.1)

Yes 38 (7.9) 13 (5.2) 25 (10.9)

(Continued)
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lower levels of HDL and higher levels of AST, ALT, and GGT 
compared to surviving patients. Subgroup analyses (Figure 2) were 
performed to explore variations in mortality risk across different 
patient characteristics. Multivariate logistic regression models were 
applied to estimate odds ratios (ORs) and 95% confidence intervals 
(CIs) for each subgroup. Variables included marital status (single, 
married or cohabiting, divorced or widowed), Treatment time group 
(0–30 days, 31–90 days, 91–365 days, >365 days), and infection 
pathways (blood-borne, intravenous drug addiction, homosexual 
transmission, heterosexual transmission, other).

The study excluded covariates with more than 20% missing data 
and filled in data with less than 20% missing using the random forest 
approach. The analysis of differences in the data before and after filling 
(Supplementary Material Table 1) showed no statistically significant 
differences in any variable. Subsequently, the filled patient data were 
randomly divided into a training set and a test set in a ratio of 6:4. An 
analysis of differences was performed between the two datasets 
(Supplementary Material Table 2). The differences in each variable 
were not statistically significant, and the data were balanced 
and comparable.

Predictor selection

First, an exploratory analysis of the data was conducted to plot 
ROC curves for all independent variables in the filled dataset 
(Figure  3a) to initially determine the relationships between all 
independent variables and the outcome variable. Then, the 
contributions of all independent variables were ranked (Figure 3b).

Finally, lasso regression was performed on the training set to 
obtain the Lambda chart (Figure 4a) and the cross-validation diagram 
(Figure 4b). Predictors were screened from 59 independent variables, 
and non-zero coefficient positive and negative bar plots are shown in 
Figure 4c. Under the λ-1se dashed line, the model fit was good, and 
the number of predictors was appropriate. Ultimately, eight predictors 
were identified, including one continuous variable (HB) and seven 
categorical variables (bacterial pneumonia, persistent diarrhea, 
headache, expectoration, infection pathway, SMZ-TMP, PJP), and a 
min-max standardized transformation was performed for the 
continuous variable HB. Four variables were positively related to 
mortality (high-risk variables: bacterial pneumonia, persistent 
diarrhea, headache, expectoration), and four variables were negatively 

TABLE 1 (Continued)

Variables Total (n = 478) Survival (n = 248) Deceased (n = 230) p

WHO, n (%) <0.001

Stage 1 22 (4.6) 9 (3.6) 13 (5.7)

Stage 2 399 (83.8) 222 (89.5) 177 (77.6)

Stage 3 31 (6.5) 5 (2.0) 26 (11.4)

Stage 4 24 (5.0) 12 (4.8) 12 (5.3)

SMZ-TMP, n (%) <0.001

No 170 (35.8) 60 (24.2) 110 (48.5)

Yes 305 (64.2) 188 (75.8) 117 (51.5)

Plan, n (%) 0.006

AZT + 3TC + DDI 1 (0.2) 0 (0) 1 (0.4)

AZT + 3TC + EFV 126 (26.4) 77 (31.0) 49 (21.3)

AZT + 3TC + LVP 3 (0.6) 0 (0) 3 (1.3)

AZT + 3TC + NVP 168 (35.1) 73 (29.4) 95 (41.3)

D4T + 3TC + EFV 41 (8.6) 22 (8.9) 19 (8.3)

D4T + 3TC + NVP 30 (6.3) 14 (5.6) 16 (7.0)

TDF + 3TC + EFV 89 (18.6) 55 (22.2) 34 (14.8)

TDF + 3TC + LVP 12 (2.5) 5 (2.0) 7 (3.0)

TDF + 3TC + NVP 3 (0.6) 1 (0.4) 2 (0.9)

3TC + DTG 1 (0.2) 0 (0) 1 (0.4)

BIC/FTC/TAF 1 (0.2) 1 (0.4) 0 (0)

EVG/c/FTC/TAF 3 (0.6) 0 (0) 3 (1.3)

HDL, mmol/L 0.8 ± 0.3 0.9 ± 0.3 0.7 ± 0.3 0.032

AST, U/L 30.2 (22.0, 46.8) 29.0 (21.0, 40.0) 33.6 (23.0, 52.0) 0.007

ALT, U/L 27.0 (19.0, 44.1) 24.1 (17.4, 40.8) 29.0 (21.6, 49.4) 0.002

GGT, U/L 45.3 (26.0, 87.0) 41.0 (24.0, 81.0) 58.7 (41.8, 98.4) 0.011

Treatment time group, Time from discovery of HIV positivity to initiation of treatment; OHL, Oral Hairy Leukoplakia; PJP, Pneumocystis Jirovecii Pneumonia; CMV, Cytomegalovirus; SMZ-
TMP, Sulfamethoxazole-Trimethoprim; HDL, High Density Lipoprotein; AST, Aspartate Aminotransferase; ALT, Alanine Aminotransferase; GGT, γ-Glutamyl transpeptidase.
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related to mortality (low-risk variables: infection pathway, SMZ-TMP, 
HB, PJP).

Model building and evaluation

This study selected seven machine learning algorithms (XGBoost, 
LightGBM, AdaBoost, MLP, SVM, GNB, KNN) and one traditional 
regression method (Logistic Regression) to build a patient mortality 
risk prediction model. The ROC curve, calibration curve, and DCA 
curve of the training set and ten-fold cross-validation were drawn 
(Figures 5a–d). According to Figure 5 and the cross-validation model 
parameter results (Table 2), it was found that among the eight models, 
the XGBoost model had the highest AUC, the lowest Brier score, the 
best-combined model parameter results, and the highest clinical 
benefit, so XGBoost was chosen for modeling. In order to optimize 
the performance of the XGBoost model, this study uses a grid search 
method for hyper-parameter tuning, with a nrounds of 200, max_
depth of 3, eta of 0.01, gamma of 0.1, colsample_bytree of 0.7, min_
child_weight of 3, and subsample of 0.7.

Subsequently, the ROC curves and AUC values (Figures 6a,b), 
calibration curves and Brier scores (Figures 6c,d), and DCA curves 
(Figures 6e,f) of the training and test sets were plotted. Figures 6a,b 
shows that the training set AUC = 0.832, the test set AUC = 0.729, and 
the performance of the model is good; Figures 6c,d shows that the 
training set Brier = 0.187 and the test set Brier = 0.214 have low values 
and good fit; In Figures  6e,f, the blue lines indicate the clinical 
intervention benefits, and most of the blue lines are above the two 
thresholds, showing that the clinical benefits are relatively high. The 
accuracy and discriminant power of the model predictions were 
visualized using the confusion matrix plots (Figures 7a,b), and the 
performance of the prediction model was calculated (Table  3), 
including accuracy, sensitivity, specificity, positive predictive value, 
negative predictive value, and F1 score.

The model was interpreted using the SHAP tool. For each 
sample, the model generated a predicted value. The SHAP value 
reflects the impact of each feature, indicating positive or negative 
effects. We plotted a SHAP beeswarm plot (Figure 8a) to visualize 
variable importance. The horizontal axis is the SHAP value, which 
indicates the magnitude and direction of each feature’s contribution 
to the prediction results; the color indicates the magnitude of the 
feature’s value (red for high values and blue for low values), with 
red dots concentrating in the positive direction and blue dots 
concentrating in the negative direction, which indicates that the 
higher the value of the feature, the higher the positive contribution 
it will make to the deaths. The SHAP summary plot (Figure 8b) was 
plotted to rank the importance of the variables, with importance 
decreasing from top to bottom, and the longer the horizontal axis, 
the longer the feature, indicating that it has a greater overall impact 
on the model’s predictions. A SHAP dependence plot (Figure 9a) 
was drawn to show the interaction between the variables, where 
the horizontal axis is the original value of a feature, the vertical axis 
is the corresponding SHAP value, and the color of the dots 
indicates the magnitude of the value of the other interacting 
feature. It can be seen from Figure 8b that infection pathway, HB, 
SMZ-TMP, and PJP are the top four important characteristics in 
terms of contribution, and they are negatively correlated with 
death. A higher value is associated with a lower risk of mortality; 
conversely, characteristics such as bacterial pneumonia, persistent 
diarrhea, headache, and expectoration were positively related to 
death, with higher values indicating a higher risk of death. Finally, 
we selected representative patients #10 and #45 to draw SHAP plots 
(Figure  9b). The prediction of death risk for patient #10 can 
be  described by these characteristics: no PJP (SHAP value 
+0.0844), indicating a positive impact on the prediction of death. 
Expectoration symptoms (SHAP value +0.204) increased the 
likelihood of death. Headache symptoms (SHAP value +0.265) also 
increased the possibility of death. An HB level of 72 (SHAP value 
+0.386) was the most influential feature, significantly increasing 

FIGURE 2

Subgroup analysis forest map. Subgroup analyses showed a significantly higher risk of death in patients who were divorced or widowed (p < 0.05); in 
patients with a time from detection of HIV positivity to initiation of treatment of 31–90 days (p < 0.05); and in patients whose infection pathway was 
intravenous drug addiction or heterosexual transmission (p < 0.05).
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FIGURE 3

Initially determine the relationship between all independent variables and the ending variable and rank the contribution of the independent variables. 
(a) ROC curve for all independent variables. (b) AUC ranking of all independent variables. TB, Tuberculosis; OHL, Oral Hairy Leukoplakia; NTM, 
Nontuberculous Mycobacteria; PJP, Pneumocystis Jirovecii Pneumonia; CMV, Cytomegalovirus; HSV, Herpes Simplex Virus; HZ, Herpes Zoster; TE, 
Toxoplasmic Encephalitis; KS, Kaposi’s Sarcoma; NHL, Non-Hodgkin lymphoma; OIs, Opportunistic Infections; SMZ-TMP, Sulfamethoxazole-
Trimethoprim; WBC, White Blood Cell; PLT, Platelet; HB, Hemoglobin; HCT, Hematocrit; AST, Aspartate Aminotransferase; ALT, Alanine 
Aminotransferase; TBIL, Total Bilirubin; ALB, Albumin.
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the possibility of death. Heterosexual transmission (SHAP value 
−0.19) as the infection pathway reduced the possibility of death. 
Using SMZ-TMP (SHAP value −0.129) also reduced the likelihood 
of death. The absence of persistent diarrhea symptoms and 
bacterial pneumonia reduced the probability of death, but due to 
their small contribution, specific SHAP values were not shown in 
the figure. The final prediction score f(x) was 0.494, while the 
model’s baseline prediction or expectation E[f(x)] was −0.0751. 
This indicates that the combination of these characteristics resulted 
in a prediction leaning toward death compared to the baseline 
prediction. Red bars indicated features that increased the 
probability of predicted death, while blue bars indicated features 
that decreased it. The predictive description of the risk of death for 

patient #45 was similar to that described above, and the predictive 
results tended to be survival.

External validation

In this study, we developed and internally validated a mortality 
risk prediction model based on the XGBoost algorithm. To further 
verify the generalization capability and practical application value 
of the model, we  used the dataset of an external hospital for 
external validation. Forty-eight AIDS patients presenting with 
AIDS-related diseases or symptoms upon their first admission to 
the Shayibak District Branch of Urumqi Friendship Hospital (21 

FIGURE 4

Screening of independent variables to obtain predictors. (a) Lambda plot. (b) Cross-validation plot. (c) Bar plots of positive and negative non-zero 
coefficients. ALB, Albumin; ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; CMV, Cytomegalovirus; HB, Hemoglobin; HCT, 
Hematocrit; HSV, Herpes Simplex Virus; HZ, Herpes Zoster; KS, Kaposi’s Sarcoma; NTM, Nontuberculous Mycobacteria; OHL, Oral Hairy Leukoplakia; 
OIs, Opportunistic Infections; NHL, Non-Hodgkin lymphoma; PJP, Pneumocystis Jirovecii Pneumonia; PLT, Platelet; SMZ-TMP, Sulfamethoxazole-
Trimethoprim; TB, Tuberculosis; TBIL, Total Bilirubin; TE, Toxoplasmic Encephalitis; WBC, White Blood Cell. Variable selection is based on the LASSO 
regression method using 10-fold cross-validation to determine the optimal penalty parameter λ. Variables screened are those with non-zero 
coefficients in the model. The horizontal axis is the penalty parameter λ, the vertical axis is the coefficients of the variables, and the vertical dashed line 
indicates the optimal value of λ selected through cross-validation.
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FIGURE 5

Performance evaluation of all models. (a) Training set ROC curve. (b) Ten-fold cross-validation ROC curve. (c) Ten-fold cross-validation calibration 
curve. (d) Ten-fold cross-validation DCA curve. Model XGBoost has the highest area under the ROC curve AUC and the most superior performance of 
the model. XGBoost has the lowest Brier score, which indicates that the closer the prediction probability is to the true outcome, the more accurate the 
model is. Model XGBoost has the highest clinical benefit for the DCA curve, with an interval of 20–90%.

TABLE 2 Ten-fold cross-validation model performance parameters.

Model AUC (SD) Accuracy (SD) Sensitivity (SD) Specificity (SD) F1 Score (SD)

XGBoost 0.747 (0.042) 0.680 (0.049) 0.674 (0.102) 0.734 (0.091) 0.685 (0.067)

Logistic 0.702 (0.066) 0.636 (0.071) 0.574 (0.152) 0.786 (0.130) 0.599 (0.119)

LightGBM 0.650 (0.109) 0.610 (0.106) 0.648 (0.201) 0.656 (0.286) 0.621 (0.080)

AdaBoost 0.745 (0.047) 0.665 (0.056) 0.670 (0.107) 0.734 (0.091) 0.704 (0.071)

MLP 0.608 (0.116) 0.594 (0.069) 0.470 (0.269) 0.807 (0.233) 0.494 (0.200)

SVM 0.657 (0.119) 0.636 (0.081) 0.735 (0.141) 0.604 (0.242) 0.659 (0.063)

GNB 0.734 (0.041) 0.663 (0.047) 0.635 (0.144) 0.770 (0.129) 0.639 (0.098)

KNN 0.681 (0.040) 0.590 (0.072) 0.535 (0.218) 0.768 (0.229) NaN (NaN)

The XGBoost model has the best overall performance.

https://doi.org/10.3389/fpubh.2025.1544351
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Chen et al. 10.3389/fpubh.2025.1544351

Frontiers in Public Health 11 frontiersin.org

survivors and 27 deceased) were included in the external 
validation cohort. In external validation, the model also 
demonstrated superior predictive performance compared to 
traditional prediction methods. Specifically, it included a 
confusion matrix plot (Figure 10a), an ROC curve (Figure 10b), a 

calibration curve (Figure 10c), and a DCA curve (Figure 10d). 
Among them, important indicators such as accuracy, sensitivity, 
specificity, positive predictive value, negative predictive value, and 
F1 score were used to evaluate the performance of the model 
(Table 4).

FIGURE 6

Performance evaluation of the XGBoost model. (a) XGBoost training set ROC curve. (b) XGBoost test set ROC curve. (c) XGBoost training set 
calibration curve. (d) XGBoost test set calibration curve. (e) XGBoost training set DCA curve. (f) XGBoost test set DCA curve.
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Discussion

In this study, the XGBoost algorithm demonstrated better 
discrimination (AUC = 0.751) compared to the other seven 
models (Logistic Regression, LightGBM, AdaBoost, etc.). After 
adjusting the parameters, the overall efficacy of the XGBoost 
model in predicting mortality risk was relatively high, reflected in 
the model’s ability to identify high-risk individuals. Specific 
indicators include prediction accuracy (Accuracy = 0.753), 
sensitivity (Sensitivity = 0.703), specificity (Specificity = 0.799), 
positive predictive value (Pos Pred Value = 0.744), negative 
predictive value (Neg Pred Value = 0.764), and F1 Score (F1 
Score = 0.690). The AUC metric is used to measure the overall 
performance of the classification model, and the closer the value 
is to 1, the better the discriminative ability of the model. 
Meanwhile, since the goal of the study is to minimize the leakage 
of high-risk patients, Sensitivity and Negative Predictive Value are 
key indicators, and higher values indicate higher predictive 
reliability of the model. In addition, F1 Score serves as a balance 

between Positive Predictive Value/Precision and Sensitivity/
Recall, with higher values representing a better measure of the 
model’s classification ability.

In subsequent external validation, we found that the performance 
on the external dataset was also relatively good, indicating that the 
model has good generalizability. The results of this study, although 
based on a region-specific sample, are considered to have some 
generalizability, especially among other groups of AIDS patients in 
similar regions. Additionally, the DCA curve of the model indicates 
that, compared to the intervention of all patients and the 
non-intervention of patients, the predictive model of the internally 
verified test set has higher clinical intervention benefits in predicting 
the risk of death for patients within the range of 25–85%. The 
predictive model of the external validation set has higher clinical 
intervention benefits in predicting the risk of death for patients within 
the range of 15–100%.

During the modeling process, it was observed that a reduction in 
HB increases the risk of death in patients. The potential reasons for 
this are as follows: HIV itself has myelosuppressive manifestations that 
lead to a decrease in HB, so a decrease in HB is one of the common 
clinical manifestations of HIV infection (40). In HIV patients, anemia 
is a factor in accelerated disease progression and reduced quality of 
life, and prolonged anemia also increases the risk of death (22, 41–43). 
Some studies have indicated that intravenous drug users are at a 
higher risk of death due to the route of infection, and bacterial 
pneumonia is the third most common cause of AIDS-related death, 
which is consistent with our findings (19, 44, 45). The present study 
found that expectoration, headache, and persistent diarrhea were 
associated with an increased risk of death. It is postulated that this 
may be due to the presence of expectoration symptoms suggestive of 
lung diseases, such as pneumonia and PJP; headache symptoms 
indicative of central nervous system disease; and persistent diarrhea 
symptoms commonly observed in patients with advanced AIDS. A 
study found that a decrease in HB may lead to a worse prognosis in 
patients with comorbid PJP, and anemia should be  managed 
aggressively in AIDS patients with comorbid PJP if their HB is less 
than 90 g/L (46). The present study found that the prophylactic use of 
SMZ-TMP reduces the risk of death in patients with AIDS. This is 
because SMZ-TMP is effective in reducing the incidence of PJP, which 
is an important mortality factor for AIDS patients (47–49). 
Additionally, PJP was found to be  a unique predictor showing a 
negative correlation in mortality risk prediction. The presumed reason 
is that PJP is a serious opportunistic infection and patients usually 
receive standardized treatment immediately upon diagnosis. This 
early diagnosis and intervention may significantly improve patient 
prognosis (50).

Some limitations of our study need to be acknowledged. First, the 
sample size of the study is relatively small, particularly for external 
validation. Although the patient data originate from two large 
hospitals, the sample size and number of outcome events may still 
limit the accuracy of extrapolating the results to other regions and 
may not be fully representative of all patient groups (e.g., different 
ages, genders, regions, etc.). Moreover, the validation cohort is derived 
from data from hospitals in a specific region, which may be subject to 
regional bias, disease distribution, and treatment differences. Patient 
characteristics (e.g., disease spectrum, treatments, lifestyle habits, etc.) 
in different regions may affect the predictive effectiveness of the 
model. Therefore, more external test sets from different hospitals or 

FIGURE 7

Accuracy and discriminative power of XGBoost model predictions. 
(a) Training set confusion matrix. (b) Test set confusion matrix. 
Confusion matrix plots show 70% and 72% sensitivity, reflecting the 
proportion of all individuals who were actually dead that the model 
model correctly predicted as dead. 80% and 64% specificity, referring 
to the proportion of all individuals who were actually alive that the 
model correctly predicted as alive.
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regions are needed to enhance the model’s robustness. As this study 
utilized retrospective data from hospital records, selection bias may 
have been introduced. Patients included in this study might represent 

those with more severe conditions or better treatment adherence, 
potentially limiting the generalizability of the findings to a broader 
population of AIDS patients. Second, the duration of follow-up from 

TABLE 3 Confusion matrix values.

Accuracy Sensitivity Specificity Pos pred 
value

Neg pred 
value

F1 score

Training set 0.753 0.703 0.799 0.744 0.764 0.732

Test set 0.675 0.717 0.636 0.708 0.647 0.680

FIGURE 8

Importance and degree of contribution of model features. (a) SHAP beeswarm plot. (b) SHAP summary plot. HB, Hemoglobin; SMZ-TMP, 
Sulfamethoxazole-Trimethoprim; PJP, Pneumocystis Jirovecii Pneumonia. The horizontal axis of the SHAP beeswarm plot is the SHAP value, indicating 
the size and direction of the contribution of each feature to the prediction results, the color indicates the size of the feature value, the red dot feature 
value is large, the direction of its concentration, indicating the direction of the contribution to the prediction of the deaths. SHAP summary plot is to 
rank the importance of the variables, the importance of which decreases from the top to the bottom, and the longer the horizontal axis is, the longer 
the features are, indicating that they have a greater impact on the overall prediction of the model. The longer the horizontal axis and the longer the 
feature, indicating the greater its impact on the model's overall prediction.
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FIGURE 9

Interaction effects between features and model interpretation. (a) SHAP dependence plots. (b) SHAP force plot for Patient #10 & Patient #45. HB, 
Hemoglobin; SMZ-TMP, Sulfamethoxazole-Trimethoprim; PJP, Pneumocystis Jirovecii Pneumonia. The SHAP dependence plots show the interactions 
between variables, where the horizontal axis is the original value of a feature, the vertical axis is the corresponding SHAP value, and the color of the dot 
indicates the magnitude of the value of the other feature that is interacting. Red bars of the SHAP force plot indicate features that increase the 

(Continued)
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admission to the study cut-off point varied for each patient, which 
cannot be completely avoided in clinical practice, and which may have 
influenced the study results, particularly among patients with shorter 
follow-up times who may not have reached the study endpoints. 
Fortunately, external validation demonstrated excellent performance, 

suggesting the model is suitable for predicting the risk of death in the 
study’s patients, and related studies have confirmed that the 
performance of machine learning prediction models is not affected by 
the duration of follow-up (51). However, the predictive performance 
of the model still does not fully meet the expected level, which may 

predicted probability of death, and blue bars indicate features that decrease the predicted probability of death. The final SHAP values for each predictor 
are summed to score f(x), which is compared to the model's baseline prediction or expectation, E[f(x)]. f(x) greater than E[f(x)] indicates that the 
combination of these predictors results in a prediction that favors death when compared to the baseline prediction, and conversely the prediction 
favors survival.

FIGURE 9 (Continued)

FIGURE 10

External validation shows excellent performance in models. (a) Validation set confusion matrix. (b) XGBoost validation set ROC curve. (c) XGBoost 
validation set calibration curve. (d) XGBoost validation set DCA curve.

TABLE 4 Validation confusion matrix values.

Accuracy Sensitivity Specificity Pos pred 
value

Neg pred 
value

F1 score

Validation set 0.813 0.852 0.762 0.800 0.821 0.836
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be  due to the limited sample size. Finally, different patients may 
require different treatment regimens, which may be adjusted during 
follow-up depending on the patient’s specific situation. Due to ethical 
considerations and the observational nature of the study, we could not 
ensure the impact of patient treatment regimens on outcomes.

The availability of high-quality, consistent patient data remains a 
major barrier to implementing predictive models in resource-limited 
settings. Missing data and reliance on historical datasets may result in 
information bias, selection bias, and temporal bias. Missing data may 
result in incomplete or inaccurate information about the variables on 
which the model relies, thus affecting the veracity and reliability of the 
analyzed results. Removal of missing values may tend to retain patient 
populations with complete data, leading to an underestimation or 
overestimation of the broad applicability of study results. The time 
span of historical data may introduce changes in medical technology, 
standards of care, and patient characteristics, affecting the 
comparability of studies and the applicability of results. The lack of 
computational infrastructure may also hinder the integration of 
machine learning models into routine clinical practice. Most 
importantly, ethical issues, such as the potential for predictive models 
to exacerbate health inequalities, need to be carefully considered. The 
application of predictive modeling in clinical decision-making may 
involve issues of patient privacy and autonomy and needs to 
be implemented with due consideration of ethical implications.

In future research, we will first continue to increase the sample 
size based on the existing results, conduct joint studies with several 
hospitals to enhance the robustness and accuracy of the model, and 
continue to optimize the model. Second, the follow-up duration will 
be controlled to ensure that patients are followed for a consistent 
length of time. Third, we will integrate more data types, such as patient 
imaging data and genetic data, to improve model performance. 
Additionally, we will explore advanced techniques such as feature 
engineering and ensemble methods to further improve the prediction 
performance. Feature engineering includes constructing interactive 
features to combine variables to improve data representation, e.g., 
BMI = weight/height2. Ensemble methods include combining 
XGBoost, LGBM, or neural networks to enhance model generalization. 
Fourth, we will explore the potential of applying the model to other 
related fields, such as predicting the risk of death in patients with other 
chronic diseases or using it in different epidemiological studies.

Conclusion

In conclusion, the following variables were identified as important 
predictors of the risk of death in patients: infection pathway, HB, 
SMZ-TMP, PJP, expectoration, persistent diarrhea, headache, and 
bacterial pneumonia. The findings assist clinicians in assessing disease 
severity in various ways. This study may serve as a reference for future 
clinical studies and potential applications.
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