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Introduction: This paper introduces an intelligent question-answering system

designed to deliver personalized medical information to diabetic patients. By

integrating large language models with knowledge graphs, the system aims to

provide more accurate and contextually relevant medical guidance, addressing

the limitations of traditional healthcare systems in handling complex medical

queries.

Methods: The system combines a Neo4j-based knowledge graph with the

Baichuan2-13B and Qwen2.5-7B models. To enhance performance, Low-Rank

Adaptation (LoRA) and prompt-based learning techniques are applied. These

methods improve the system’s semantic understanding and ability to generate

high-quality responses. The system’s performance is evaluated using entity

recognition and intent classification tasks.

Results: The system achieves 85.91% precision in entity recognition and 88.55%

precision in intent classification. The integration of a structured knowledge graph

significantly improves the system’s accuracy and clinical relevance, enhancing its

ability to provide personalized medical responses for diabetes management.

Discussion: This study demonstrates the e�ectiveness of integrating large

language models with structured knowledge graphs to improve medical

question-answering systems. The proposed approach o�ers a promising

framework for advancing diabetes management and other healthcare

applications, providing a solid foundation for future personalized healthcare

interventions.

KEYWORDS

knowledge graph, Q&A system, large language models, prompt learning, personalized

health management

1 Introduction

Diabetes has become a significant global health challenge, with its prevalence rising

dramatically in recent years. According to the World Health Organization, the number

of individuals diagnosed with diabetes increased from 150 million in 2000 to 537 million

in 2021 (1). The associated complications of diabetes not only increase mortality rates,

but also amplify the overall burden of the disease, emphasizing the urgent need for

continuous monitoring of blood glucose and timely and effective treatment options.

Despite the availability of numerous medical data sources, patients often struggle to access

accurate and personalized information. Existing diabetes management platforms, such

as MySugr and BlueLoop, have made notable strides in glucose monitoring; however,

they face limitations in managing complex patient conditions (2–5). Consequently, their

effectiveness in dynamic healthcare environments is constrained.
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Recent advancements in artificial intelligence (AI) have fueled

the development of intelligent question-answering (QA) systems

that leverage large language models (LLMs) to improve access to

medical information. Despite these advances, substantial challenges

remain, particularly in achieving deep semantic understanding and

generating personalized responses in complex medical contexts

(6). Diabetes-related health information is inherently multifaceted,

encompassing areas such as pathogenesis, diagnostic metrics,

treatment protocols, and potential complications. As a result,

effective contextual comprehension and integration of diverse

knowledge sources present significant challenges for traditional QA

systems, limiting their adaptability to patients’ evolving needs (7).

Knowledge graphs offer a structured approach to managing

large volumes of medical information, enabling efficient

organization, representation, and retrieval of healthcare data.

Building a diabetes-specific knowledge graph facilitates rapid

retrieval of relevant entities and relationships, logical reasoning,

information integration, and the provision of personalized,

accurate responses. Integrating a Neo4j-based knowledge graph

with a large language model significantly enhances the system’s

ability to retrieve and synthesize information, thereby improving its

capacity to handle multifaceted inquiries and support sophisticated

clinical reasoning (8).

This study introduces an innovative diabetes-focused question-

answering system that integrates a knowledge graph with a large

language model to enhance personalized information retrieval

and address the limitations of traditional medical QA systems.

By combining structured medical knowledge from the knowledge

graph with the language processing power of a large language

model, the system enhances its understanding of complex

medical scenarios, thereby improving response accuracy and

depth. The following sections provide a comprehensive overview

of the technical background, system architecture, experimental

results, and future research directions, highlighting the potential

applications of intelligent QA systems in healthcare. The key

contributions of this study include the following:

1. Improved accuracy in recognizing essential entities and

identifying user intents within diabetes-related intelligent QA

systems.

2. Effective integration of intent detection and entity recognition

to enhance knowledge graph querying capabilities.

3. Optimization of knowledge graph and large language model

integration to provide personalized medical recommendations.

2 Related work

2.1 Named entity recognition

Named Entity Recognition (NER) is a foundational task in

natural language processing (NLP) that has evolved from rule-

based and statistical methods to more sophisticated approaches

involving deep learning and pre-trained models. Early NER

methods relied heavily on rule-based systems and statistical

models, such as Conditional Random Fields (CRF) and Hidden

Markov Models (HMM). Lafferty et al. demonstrated the

effectiveness of CRF for sequence labeling, although its reliance

on handcrafted features limited scalability across diverse and

complex domains (9). Similarly, Rabiner’s work on HMMs proved

useful for sequence data but suffered from significant limitations,

including a dependency on domain-specific knowledge, reducing

its general applicability.

The advent of deep learning marked a major shift in

NER research, moving toward more advanced neural network-

based approaches. Huang et al. were among the first to utilize

Bidirectional Long Short-Term Memory Networks (BiLSTM) for

NER, demonstrating their capacity to effectively capture long-

range dependencies (10). Subsequently, Ma and Hovy enhanced

sequence labeling performance by integrating Convolutional

Neural Networks (CNN) with LSTM, showcasing a hybrid

architecture that outperformed earlier NER models (11). Despite

these advancements, deep learning models often struggled with

capturing global semantic context, focusing primarily on local

contextual features, which limited their ability to fully interpret

complex sequences (12).

Transformer-based models have fundamentally transformed

NER. Devlin et al. introduced the Bidirectional Encoder

Representations from Transformers (BERT) model, which

significantly improved NER performance through large-scale pre-

training and transfer learning (13). Liu further expanded this work

with RoBERTa, enhancing contextual understanding by removing

the next-sentence prediction task and significantly increasing the

amount of training data and training duration (14). However,

even Transformer models face substantial challenges in specialized

domains, such as medicine and law, where pre-training data may

not adequately capture domain-specific terminology or complex

linguistic structures (15). For example, Lee et al. demonstrated

that general-purpose BERT models often underperform in

medical contexts compared to specialized models like BioBERT,

which was specifically fine-tuned using medical-domain data,

significantly outperforming general models on medical-related

tasks (16).

To address these challenges, recent innovations have emerged.

Thaminkaew et al. introduced Prompt-based Learning, which

employs carefully crafted prompts to direct the model’s attention to

specific tasks, thus reducing the need for extensive annotated

datasets, particularly in low-resource environments (17).

Additionally, Hu et al. proposed the Low-Rank Adaptation

(LoRA) technique, which fine-tunes model parameters using low-

rank matrix decomposition, effectively lowering computational

costs while improving NER performance (18).

Despite substantial progress, significant challenges remain

in NER. Traditional models rely heavily on domain expertise

and extensive feature engineering, limiting adaptability to varied

text scenarios. Although deep learning has significantly advanced

performance, these models often still struggle with global semantic

comprehension and domain-specific adaptation. Transformer-

based models, while excelling in general tasks, often fail to handle

specialized terminologies effectively, particularly in domains

like medicine and law. To address these issues, this study

proposes an NER approach that integrates Prompt-based Learning

with LoRA fine-tuning, aiming to improve adaptability and

accuracy in specialized domains, especially under low-resource

conditions. This strategy aims to enhance both the precision and

robustness of NER in such fields, minimizing dependence on large

annotated datasets.
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2.2 Knowledge graphs

Knowledge graphs provide a structured framework for

organizing and representing complex medical information, thereby

facilitating efficient retrieval and supporting advanced analytics.

In the healthcare domain, knowledge graphs have demonstrated

significant potential for integrating diverse medical information

sources. Ji et al. developed knowledge graph embedding models

that enable collective learning over multi-relational data, laying the

foundation for more effective knowledge representation (19). Yu

et al. introduced MedGraph, a comprehensive medical knowledge

graph that integrates diagnostic information, drug data, and patient

history, thereby enhancing diagnostic accuracy (20). Moreover,

Zhang and Lee employed Neo4j to connect patient descriptions

with existing medical knowledge, resulting in a symptom-based

disease query system that improved query precision and relevance.

Despite these advancements, healthcare knowledge graphs still

face significant challenges, such as integrating heterogeneous data

sources and ensuring real-time updates of medical knowledge. The

effectiveness of these systems largely depends on their ability to

represent intricate medical relationships in a manner that can be

effectively leveraged by downstream applications. Additionally, the

adaptability and scalability of existing knowledge graphs within

dynamic healthcare environments remain limited.

To address these challenges, recent studies have explored

integrating knowledge graphs with predictive analytics to enhance

clinical decision-making. For instance, Gupta et al. constructed

a predictive healthcare knowledge graph to anticipate patient

health trajectories by linking clinical records with biomedical

research data. Liu and Thompson suggested that future research

should focus on developing scalable and flexible automated data

integration solutions to improve adaptability in dynamic healthcare

settings (21).

2.3 Question-answering system

Recent advances in question-answering (QA) systems have

greatly benefited from the integration of large-language models

(LLMs), leading to substantial improvements in response precision

and coherence. Harnoune et al. proposed a hybrid model that

combines BERT with a knowledge graph, enhancing intent

recognition accuracy within medical QA systems (22). However,

LLMs often lack the domain-specific understanding required to

effectively address specialized healthcare queries. Chen et al.

highlighted that general pre-trained models frequently provide

incomplete or inaccurate responses to professional medical

inquiries, especially for personalized, patient-specific questions

(23). Bommasani et al. further emphasized that, while foundation

models present significant opportunities for QA systems, they carry

inherent risks related to domain-specific inadequacies and biases,

particularly concerning sensitive fields like healthcare (24).

Recent research has attempted to overcome these limitations

by integrating LLMs with knowledge graphs, thereby improving

domain-specific comprehension and enhancing QA coherence.

Santos et al. demonstrated that incorporating contextual

information from knowledge graphs into Transformer-based

models significantly improved their ability to handle complex

medical dialogues. Nevertheless, current systems still struggle

to maintain coherence in multi-turn dialogues and effectively

integrate structured knowledge graph data with the generative

capabilities of LLMs (25).

Another promising line of research involves prompt-based

learning approaches to improve QA system performance in

healthcare. By designing specific prompts to direct LLMs to

generate more precise and contextually relevant responses,

prompt-based methods significantly enhance the models’

ability to comprehend nuanced medical queries. Hu et al.

employed a prompt-based approach integrated with a

medical knowledge graph to effectively identify key entities

in patient questions, subsequently improving the precision

of follow-up recommendations (26). These methods are

particularly advantageous in addressing the domain-specific

gaps often exhibited by LLMs when dealing with specialized

healthcare content.

2.4 Limitations and proposed approach

Based on this analysis, several limitations remain in the

integration of knowledge graphs with intelligent question-

answering (QA) systems. First, a disconnect between intent

recognition and knowledge retrieval often undermines response

coherence and accuracy. Second, the accuracy of current models

requires further improvement to effectively manage complex

medical queries. Additionally, current systems need enhanced

capabilities to manage multi-turn dialogues and personalize the

processing of patient information.

To address these challenges, this study proposes a diabetes-

focused QA system that integrates knowledge graphs with

large language models (LLMs). The proposed system improves

interactions between intent recognition, entity recognition, and

knowledge retrieval to provide more precise and personalized

health advice. Initially, the system employs a pretrained language

model to perform semantic analysis of patient queries, identifying

intents and extracting key entities through a fine-tuned model.

During knowledge retrieval, the Neo4j database is queried for

relevant medical information, which is then used to generate

natural language responses through the LLM. This approach aims

to improve the precision and professionalism of responses while

improving the system’s ability to address personalized patient

needs, thus supporting diabetes patients in self-management and

treatment decision-making (27).

3 Method

3.1 Research framework

The aim of this study is to design and implement an

efficient intelligent question-answering (QA) system for diabetes,

addressing current limitations in medical entity recognition and

user intent comprehension. These limitations include challenges

such as low accuracy in entity extraction, limited scalability

across different medical scenarios, and the restricted availability
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FIGURE 1

The architecture of the diabetes intelligent question-answering (QA) system. The diagram shows the integration of entity recognition, intent

recognition, and knowledge graph querying components. These components work together to generate tailored responses for diabetes-related

inquiries, providing more precise and personalized answers.

of relevant data. The proposed system architecture, illustrated in

Figure 1, integrates the Baichuan2-13B large language model with

Low-Rank Adaptation (LoRA) fine-tuning techniques and prompt-

based learning. The architecture focuses on accurately identifying

key medical entities, such as disease categories, examination

indicators, and medication names, in order to enhance system

responsiveness and precision.

The Baichuan2-13B model is utilized for medical entity

identification within the input text. The use of LoRA reduces

resource requirements during model fine-tuning, which allows

efficient adaptation to new domains. Furthermore, prompt-based

learning is employed to guide the model in identifying specific

entities using explicit instructions, such as focusing on disease

types or particular examination indicators. To improve the

model’s generalizability across various contexts, data augmentation

techniques are also applied to enrich the training dataset.

In addition, the system integrates prompt learning with large

language models to recognize user intents, such as requests

for disease overviews, symptoms, causes, and related medical

information. After recognizing entities and intents, the system

formulates queries to extract relevant medical knowledge from

a diabetes-specific knowledge graph, which includes details such

as disease overviews, preventive measures, medications, and

examination indicators. Finally, a large language model is used to

generate context-specific responses, ensuring both personalization

and precision in the medical information provided. Overall,

the proposed framework demonstrates substantial potential for

improving the accuracy and efficiency of question-answering

systems in medical contexts.

3.2 Named entity recognition method

This study advances Named Entity Recognition (NER) for

diabetes-related texts by leveraging Low-Rank Adaptation (LoRA)

in conjunction with prompt-based learning techniques. These

combined approaches facilitate efficient model adaptation and

precise entity recognition, even in low-resource environments,

such as those with limited computational resources or small

datasets. Detailed information about the cue design and fine-tuning

process is shown later in the article.

3.2.1 Prompt template design
The proposed system integrates LoRA fine-tuning with

prompt-based learning by utilizing the Baichuan2-13B model

to enhance entity recognition. LoRA allows the model to

sustain high efficiency while significantly reducing hardware

requirements, thereby enabling flexible adaptation to new domain

data. Simultaneously, prompt-based learning provides explicit task

instructions, guiding the model to adopt a targeted approach
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TABLE 1 Description of fields used in named entity recognition task.

Field Element

Instruction The prompt that provides the task instructions required by the

model. It specifically includes extracting entities from

diabetes-related texts and returning the results in JSON format.

Schema Definition of entity categories, including “Medication Name”,

“Examination Indicator”, “Cause”, “Duration”, “Examination

Indicator Value”, “Pathogenesis”.

Input Input text, which needs entity recognition. For example: “Routine

monitoring of vitamin B12 levels is not recommended for patients

taking metformin.”

Output Model output, where entities are identified and extracted from the

input text and returned in JSON format as per the prompt

requirements.

toward specific goals and ensuring accurate identification of

critical entities.

The proposed system integrates prompt-based learning to

guide the large language model in identifying specific diabetes-

related entities. The prompt template is designed to instruct the

model to extract relevant medical terms based on a predefined

schema. An example of the prompt is: “You are an expert in

diabetes entity extraction. Extract entities such as ‘symptoms’,

‘treatment methods’, and ‘medications’ from the input and return

an empty list for any nonexistent entities. The result should be in

JSON format, with the following categories: ‘symptoms’, ‘treatment

methods’, ‘medications’, etc.” This explicit task definition enables

the model to focus on domain-specific categories, improving its

ability to recognize critical entities in medical texts. The schema

encompasses specific entity categories, such as “pathogenesis,”

“non-drug treatment,” “surgery,” “examination indicators,” “body

parts,” and “clinical manifestations,” among others. An example of

the prompt template is presented in Table 1.

To formalize the prompt-based learning approach, let P be the

prompt and X be the input text. The concatenated input to the

model can be expressed, as shown in Equation 1:

X′ = [P;X] (1)

where [P;X] represents the concatenation of the prompt P and

the input text X. This concatenation ensures that the model is

explicitly guided by the prompt, thereby focusing on extracting

relevant entities according to the schema definition.

The output of the model is a sequence of entity predictions

y = (y1, y2, . . . , yn), where each yi represents the prediction for a

particular token in the input sequence. The objective of prompt-

based learning is tomaximize the probability of correctly predicting

each entity, as shown in Equation 2:

ŷ = argmax
y

P(y|X′, θ) (2)

where θ represents the model parameters. The goal is to optimize

the conditional probability P(y|X′, θ) given the prompt-enhanced

input X′.

The prompt-based strategy effectively guides the Baichuan2-

13B model in sequentially assessing text content, ensuring

adherence to predefined entity categories and facilitating the

extraction of relevant information. When combined with Low-

Rank Adaptation (LoRA) fine-tuning, the model demonstrates

rapid adaptability while preserving high accuracy in recognizing

complex medical entities, even in resource-constrained or limited-

data scenarios. The strength of this approach lies in its capacity to

accurately identify key entities through explicit task instructions,

thereby reducing errors and omissions (18).

3.2.2 LoRA fine-tuning
Low-Rank Adaptation (LoRA) is an efficient parameter

fine-tuning technique that approximates the model’s weight

matrix using low-rank matrices, thereby significantly reducing

computational and memory requirements during the fine-tuning

process. The architecture of the LoRA Fine-Tuning process is

illustrated in Figure 2.

Specifically, LoRA approximates the model’s weight matrix W

as follows, as shown in Equation 3:

W′ = W + 1W, 1W = AB (3)

where A ∈ R
d×r and B ∈ R

r×k are low-rank matrices, with

r≪min(d, k). This low-rank decomposition effectively reduces the

number of trainable parameters, making the adaptation process

computationally efficient.

In this study, LoRA was used to fine-tune the Baichuan2 model

specifically for diabetes-related medical texts. Leveraging LoRA

allows the model to maintain high efficiency while substantially

reducing hardware resource demands. This optimization facilitates

flexible adaptation to new domain-specific data, thereby improving

entity recognition accuracy.

To optimize the model during fine-tuning, the cross-entropy

loss function is minimized, as shown in Equation 4:

L = −

N∑

i=1

ti log(yi) (4)

where ti represents the true label and yi is the predicted probability

for each entity class. By minimizing this loss function, the

model is trained to improve its performance in recognizing the

correct entities.

The integration of LoRA with prompt-based learning further

enhances the model’s adaptability to specific domains. Prompt-

based learning provides explicit task instructions, enabling the

model to focus on clearly defined objectives. In the context of

diabetes-related entity recognition, the combination of LoRA fine-

tuning with prompt-based learning enables the model to accurately

identify critical entities, even in resource-constrained scenarios.

This integration leverages the contextual guidance provided

by prompt-based learning, allowing LoRA’s low-rank matrix

decomposition to effectively capture domain-specific knowledge,

thereby significantly improving the model’s performance in

complex tasks.

3.3 Intent recognition method

The intent recognition module aims to determine the user’s

query intent and classify it into one of several predefined categories,
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FIGURE 2

The architecture of the Low-Rank Adaptation (LoRA) fine-tuning process, which e�ciently adapts transformer models by approximating their weight

matrices with low-rank representations. The model comprises twelve transformer layers, each integrating a self-attention mechanism and

feed-forward networks. LoRA targets the fine-tuning of the value weight matrix Wv by decomposing it into two low-rank matrices A and B, reducing

computational costs and memory requirements.

such as “query disease cause” or “query treatment methods.” Intent

recognition plays a crucial role in generating accurate and relevant

responses, which directly influences the quality and utility of the

system’s output. This study employs prompt-based learning using

the Qwen2.5 model for intent classification, thereby eliminating

the need for additional training phases. The Qwen2.5 model is

particularly well-suited for handling complex natural language

understanding tasks, especially in the medical domain, where it

effectively classifies intent through prompt-based methods (28).

To classify a user query x into one of the predefined categories

C, the Qwen2.5 model utilizes prompt-based learning to identify

the most probable intent. Instead of directly maximizing the

probability, an attention mechanism is introduced to evaluate the

relevance of different parts of the input. The attention score αi for

each token xi is computed as illustrated in Equation 5:

αi =
exp(ei)∑n
j=1 exp(ej)

(5)

where ei represents the energy score for token xi, and n is the total

number of tokens. The attention scores αi are used to compute a

context vector c that summarizes the input sequence, as shown in

Equation 6:

c =

n∑

i=1

αixi (6)

Using the context vector c, the model can then determine the

intent by computing the probability distribution over all possible

categories C, as shown in Equation 7:

P(c|x, θ) = softmax(Wcc+ bc) (7)

whereWc and bc are trainable parameters that helpmap the context

vector to the output category space.

During prompt-based classification, the model’s objective is to

minimize a margin-based ranking loss, which helps distinguish

the correct intent category from incorrect ones, as shown in

Equation 8:

L =

N∑

i=1

max(0, 1− f (x′, yi)+ f (x′, yneg)) (8)

where f (x′, yi) is the score for the true category, and f (x′, yneg) is

the score for a negative (incorrect) category. This loss encourages

the model to assign a higher score to the correct category than to

incorrect ones by a margin of at least 1.

The prompt-based approach utilized in this study enhances the

model’s adaptability by employing specific prompts to guide both

classification and answer generation. This strategy is particularly

advantageous for intent recognition within the medical domain.

By reducing reliance on extensive labeled datasets, it concurrently

improves the accuracy of query interpretation. Moreover, the

integration of prompt-based learning enables the model to

swiftly adapt to various tasks, thereby significantly enhancing its

performance in handling complex scenarios.

Table 2 presents the systematic approach employed for intent

classification through prompt engineering. This comprehensive

strategy ensures complete coverage of potential user intents,

ultimately resulting in more precise and contextually appropriate

responses. By following the process outlined in Table 2, the model

can accurately identify and classify user intents, thereby enabling

more robust and context-sensitive responses. This capability is

especially critical in the medical domain, where precision and
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TABLE 2 Systematic intent classification prompt strategy.

Step Description

Analyze user query Analyze the user’s question one by one to check if it fits

into the nine predefined query categories. Ensure all

potential intents are fully considered.

Category matching For each of the nine predefined categories, determine if

it matches the user’s question. If a match is found, add

the category to the output list.

Identify implicit intent Consider not only explicit intent but also identify the

implicit intent within the user’s question, ensuring no

important categories are overlooked.

Add to output list Add all matched categories to the output list to ensure

comprehensive coverage of the user’s intents, avoiding

any omissions.

Thinking process The prompt model uses a systematic process to identify

user intent, ensuring thoroughness and accuracy by

matching each category.

nuance are paramount and can significantly affect patient care and

treatment outcomes.

4 Empirical research

This chapter provides a comprehensive overview of the

dataset, experimental setup, model training procedures, evaluation

methodologies, and graph construction techniques. The study

focuses on two primary tasks—Named Entity Recognition (NER)

and Intent Recognition (IR)—which serve as foundational

components for constructing knowledge graphs and developing

subsequent question-answering systems, particularly within the

context of diabetes. Extensive experiments were conducted

to evaluate the model’s efficacy, demonstrating its potential

applicability and broad utility in diabetes-related applications.

4.1 Datasets

4.1.1 Named entity recognition dataset
The dataset utilized in this research originates from the DiaKG

diabetes literature dataset, which was part of the CCKS2021 task.

Provided by the Alibaba Cloud Tianchi Big Data Platform, this

dataset comprises 41 consensus documents on diabetes, covering

various aspects such as foundational research, clinical studies,

medication protocols, case studies, and diagnostic methods. These

documents represent the major research trends in diabetes over the

past seven years (29). The dataset includes annotations for 22,050

medical entities and 6,890 relationships, spanning 18 entity types

and 15 relationship categories.

During dataset construction, data cleaning and segmentation

were conducted to eliminate redundancy and ensure data

standardization. To enhance model generalizability and enrich the

training dataset, a data augmentation strategy was implemented,

expanding each original sample into three distinct samples

by categorizing the 18 entity types into three groups (30).

Specifically, a task-diversified data expansion approach was applied,

reconstructing the original data through varied combinations of

TABLE 3 Example of a table showing one piece of data expanded into

three pieces of data.

Importation Exports

Cellulitis fused to form a large abscess,

with increased purulent secretions

and necrotic tissue, dry gangrene of

the foot or few toes, but bone

destruction is not yet obvious.

Surgery:[], Location:[“Foot”, “Toe”],

Clinical Manifestations:[“Large

Abscess”, “Purulent Secretions and

Necrotic Tissue”, “Bone Destruction”],

Examination Indicators:[], Medication

Dosage:[], Examination Methods:[]

Cellulitis fused to form a large abscess,

with increased purulent secretions

and necrotic tissue, dry gangrene of

the foot or few toes, but bone

destruction is not yet obvious.

Medication Name:[], Disease Staging

and Classification:[], Adverse

Reactions:[], Medication Frequency:[],

Cause:[], Severity:[]

Cellulitis fused to form a large abscess,

with increased purulent secretions

and necrotic tissue, dry gangrene of

the foot or few toes, but bone

destruction is not yet obvious.

Non-Medication Treatment:[],

Pathogenesis:[], Examination Indicator

Values:[], Medication Methods:[],

Duration:[], Diseases:[“Cellulitis,” “Dry

Gangrene of Foot or Few Toes”]

entity categories and prompts. Each prompt was aligned with a

specific target entity schema, resulting in multiple training samples

with diverse structures (31). An example demonstrating how each

original data point was expanded into three distinct samples is

presented in Table 3. Finally, the dataset was partitioned for model

training and evaluation purposes. The training set consists of

9,033 samples, while the test set includes 1,491 samples. This

partition ensures sufficient data for training and provides an

effective basis for evaluating the model’s performance in entity

recognition tasks.

4.1.2 Intent recognition dataset
The intent recognition dataset systematically defines nine

diabetes-related query intents: querying disease overview,

causes, required medications, recommended foods, foods

to avoid, necessary tests, symptoms, treatment methods,

and concurrent diseases. These intents capture the primary

user needs for diabetes-related information, reflecting the

complexity of medical knowledge and the diversity of

user inquiries.

The data expansion process focused on ensuring the

diversity and validity of generated samples. The GPT-4

model was employed to generate numerous high-quality

query samples for each intent category, effectively mitigating

the patterning issues often associated with manually designed

datasets. This approach enriched the dataset’s diversity

and representativeness. Additionally, manual review and

optimization were conducted to ensure the semantic

accuracy and reliability of the medical information in

each sample.

The constructed dataset provided balanced training samples

for the nine intent categories, ensuring comprehensive learning of

each intent’s distinctive features. The finalized dataset contained

1,066 samples. To facilitate effective model training and testing, the

dataset was partitioned in an 80:20 ratio, resulting in 841 training

samples and 225 test samples. This partition ensured sufficient data

for training while maintaining an adequate number of samples for
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TABLE 4 Input questions along with their corresponding intent

categories.

Input question Intent category

Is sitagliptin used for treating

diabetes?

[“Query disease overview”, “Query

required medication”, “Query treatment

methods”]

What dietary precautions should

patients with chronic kidney

disease take?

[“Query disease overview”, “Query

recommended foods”, “Query restricted

foods”]

What is OSAHS? What

examinations should patients

undergo?

[“Query disease overview”, “Query

required examinations”]

What symptoms does spinal cord

disease cause? What examinations

are needed?

[“Query disease overview”, “Query

symptoms”, “Query required

examinations”]

What is non-alcoholic fatty liver

disease? Is it caused by eating too

much greasy food?

[“Query disease overview”, “Query

causes of disease”]

What are the symptoms of diabetic

mononeuropathy? What

medication is required for

treatment?

[“Query disease overview”, “Query

symptoms”, “Query required

medication”]

TABLE 5 Hyperparameter settings for entity recognition experiment.

Hyperparameter Value

Learning rate 3e-5

Training batch size 2

Gradient accumulation 4

Training epochs 3

Optimizer AdamW

Rank (LoRA) 16

α value (LoRA) 32

Dropout rate (LoRA) 0.1

The table lists the hyperparameters used in the experiment, along with their respective values.

effective evaluation of model performance in intent recognition

tasks. Selected data samples are presented in Table 4.

4.2 Named entity recognition experiment

4.2.1 Experimental environment and
hyperparameter settings

The experiments were conducted on an Ubuntu 20.04 system

equipped with an NVIDIA A10 GPU featuring 24 GB of memory.

The Baichuan2-13B-Chat model was used as the pre-trainedmodel.

The learning rate was set to 3e-5, with three training epochs,

a gradient accumulation step of four, and batch sizes of two

for training and six for evaluation. The AdamW optimizer was

employed, with a maximum input sequence length of 400, a

truncation length of 700, and amaximum output length of 300. The

Low-Rank Adaptation (LoRA) hyperparameters were configured

with a rank of 16, an alpha value of 32, and a dropout rate of 0.1. A

summary of the hyperparameter settings is presented in Table 5.

TABLE 6 Entity recognition experiment results.

Entity recognition experiment results

Model Precision (%) Recall (%) F1-score (%)

RoBERTa 66.84 76.32 71.27

BiLSTM-CRF 66.52 64.30 65.39

RoBERTa-BiLSTM 72.76 76.43 74.48

RoBERTa-CRF 73.30 81.16 77.03

BERT-BiLSTM-CRF 80.24 78.90 79.56

LoRA-Prompt-Baichuan2 85.91 80.59 83.17

The table presents the experimental results of various models on entity recognition tasks,

using precision, recall, and F1-score as the evaluation metrics.

4.2.2 Experimental results and analysis
The entity recognition experiment compared the performance

of several models, including RoBERTa, BiLSTM-CRF, RoBERTa-

BiLSTM, RoBERTa-CRF, BERT-BiLSTM-CRF, and LoRA-Prompt-

Baichuan2, as detailed in Table 6. Precision, recall, and F1-score

were used as the primary evaluation metrics to comprehensively

assess model performance.

The baseline model, RoBERTa, achieved an F1-score of 71.27%,

whereas the BiLSTM-CRF model obtained a lower F1-score

of 65.39%, highlighting the limitations of basic deep learning

models in entity recognition. Incorporating CRF or BiLSTM

structures into RoBERTa significantly enhanced performance, with

RoBERTa-CRF achieving an F1-score of 77.03% and RoBERTa-

BiLSTM reaching 74.48%. This suggests that adding sequence

dependency mechanisms improves the model’s ability to recognize

entity boundaries.

The BERT-BiLSTM-CRF model, which integrated BERT’s

pre-trained features with BiLSTM and CRF, achieved an F1-

score of 79.56%, demonstrating strong capabilities in capturing

complex semantics and handling long-span entities. These results

underscore the effectiveness of combining pre-trained models with

sequence-aware structures like CRF and BiLSTM, significantly

enhancing the capture of semantic relationships and improving

entity recognition performance.

The LoRA-Prompt-Baichuan2 model outperformed all others,

achieving a precision of 85.91%, recall of 80.59%, and an F1-score of

83.17%. This model combined Baichuan2’s pre-training capabilities

with prompt-based learning and LoRA fine-tuning, resulting in

significant improvements in entity recognition. Flexible prompt

design allowed the model to adapt effectively to specific tasks, while

LoRA fine-tuning improved generalization capabilities without

significantly increasing the number of parameters. Compared

to traditional fine-tuning methods, LoRA-Prompt-Baichuan2

demonstrated clear advantages in handling complex relationships,

recognizing long-span entities, and improving overall accuracy.

Overall, the LoRA-Prompt-Baichuan2 model excelled

across precision, recall, and F1-score metrics, showcasing

substantial potential and efficiency in managing complex entities

and diverse tasks. Future research could focus on optimizing

prompt design and validating the model’s generalization across

domain-specific tasks, thereby expanding its applicability and

enhancing performance.
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4.3 Intent recognition experiment

4.3.1 Experimental environment
The experimental setup was meticulously configured to ensure

compatibility and efficiency throughout themodel training process.

ModelScope version 1.14.0 and PyTorch version 2.1.2 were

employed to maximize GPU acceleration, utilizing Python 3.10

and CUDA version 12.1. The experiments were conducted on an

Ubuntu 22.04 system, chosen for its proven stability and capability

to manage computationally intensive tasks effectively.

The Qwen2.5-7B-Instruct model, comprising 7 billion

parameters, was selected due to its demonstrated efficacy in

handling complex natural language processing (NLP) tasks,

particularly intent classification in specialized healthcare domains.

The computational infrastructure was optimized to facilitate

efficient training and ensure the reproducibility of experimental

results, thereby enhancing the reliability and validity of the

study’s conclusions.

4.3.2 Experimental results and analysis
The experiment evaluated the performance of several models

for intent recognition, specifically BiLSTM-attention, BERT,

BERT-TextCNN, and Prompt+Qwen2.5, as presented in Table 7.

Precision, recall, and F1-score were used as the primary evaluation

metrics to comprehensively assess each model.

The BiLSTM-attention model demonstrated moderate

performance, achieving a precision of 64.73%, recall of 62.87%, and

an F1-score of 52.81%. Despite employing an attention mechanism

to emphasize significant sequence information, the model

struggled with longer texts and complex semantic relationships due

to BiLSTM’s inherent limitations. For complex intent recognition

tasks, the BiLSTM-attention model underperformed compared to

pre-trained language models.

In contrast, the BERT and BERT-TextCNN models

demonstrated significantly better performance. BERT, utilizing

its deep self-attention mechanisms, exhibited strong semantic

understanding, achieving a precision of 74.7%, recall of 71.12%,

and an F1-score of 72.82%. The BERT-TextCNN model further

enhanced performance by integrating a convolutional neural

network (CNN) to effectively extract local features, particularly

for phrases or keywords, resulting in a precision of 75.67%,

recall of 72.28%, and an F1-score of 73.88%. These results

indicate that pre-trained language models, when integrated

with downstream architectures, can significantly enhance intent

recognition performance.

The Prompt-Qwen2.5 model achieved the highest

performance, with a precision of 88.55%, recall of 84.65%, and an

F1-score of 86.48%. This model significantly outperformed other

models, highlighting the advantages of generative large language

models in intent recognition. Notably, the Prompt-Qwen2.5

model bypassed traditional training by using crafted prompts to

directly operate on the test set, achieving excellent results. This

finding suggests that pre-trained large language models can rapidly

adapt to specific tasks through prompt engineering, thereby

eliminating the need for additional training and conserving time

and computational resources.

TABLE 7 Intent recognition experiment results.

Intent recognition experiment results

Model Precision (%) Recall (%) F1-score (%)

BiLSTM-attention 64.73 62.87 52.81

BERT 74.70 71.12 72.82

BERT-TextCNN 75.67 72.28 73.88

Prompt-Qwen2.5 88.55 84.65 86.48

The table shows precision, recall, and F1-score for different models.

Overall, the Prompt-Qwen2.5 model not only surpassed

other models in performance but also demonstrated exceptional

practicality and flexibility. Its ability to be directly applied

to data-driven tasks without further training underscores its

efficiency. Future research should focus on optimizing prompt

design, investigating its impact on performance, and validating its

generalization across diverse tasks to advance intent recognition.

4.4 Construction of the diabetes
knowledge graph

4.4.1 Knowledge graph conceptual design
A knowledge graph is a directed, labeled graph consisting

of nodes and edges. Nodes represent entities (such as

diseases and drugs), concepts, or attribute values, while edges

denote relationships or attributes between entities (19). The

fundamental data structure of a knowledge graph is a triple:

(entity1, relationship, entity2), effectively capturing relational

information (32).

The construction of the diabetes knowledge graph leverages

Neo4j, an efficient graph database specifically designed for storing

and querying complex graph data. Neo4j represents information

using nodes, relationships, and properties, thereby providing an

intuitive depiction of entities and their interconnections, making

it particularly well-suited for knowledge graph construction.

Furthermore, Cipher, Neo4j’s dedicated query language, facilitates

efficient graph data manipulation, enabling the formulation of

complex queries and the exploration of intricate relationships.

Neo4j’s capabilities extend to handling large-scale graph data,

supporting parallel processing and distributed architectures, and

providing a library of graph algorithms for analyzing complex

network relationships (33).

4.4.2 Entity and relationship import
The development of the diabetes knowledge graph involves

integrating various heterogeneous data sources to form a

comprehensive network of diseases, symptoms, medications, and

related entities (34). Key attributes such as causes, treatments,

and overviews are added to disease nodes to provide detailed

information. Neo4j is utilized to store this information efficiently

and facilitate the dynamic retrieval of relevant medical data,

which can then be incorporated into contextual prompts for

natural language models. Neo4j’s advanced storage and querying
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FIGURE 3

The diabetes knowledge graph o�ers a comprehensive visualization of relationships among diseases, symptoms, medications, and associated

medical entities. Key nodes in the figure represent essential medical concepts, such as “Diabetes,” “Type 2 Diabetes,” “Blood Glucose,” and specific

medications like “Metformin” and “Gliclazide.” Relationships between nodes indicate significant medical associations, including the relationship

between ”Type 2 Diabetes“ and various drugs used for its treatment, as well as the link between “Diabetes” and its symptoms, such as “Atrophy” and

“Muscle Weakness.” The knowledge graph was constructed by integrating heterogeneous data sources, thereby providing a holistic view of diabetes

management. It incorporates attributes such as causes, treatments, and diagnostic indicators, which facilitate better understanding and e�ective

medical data retrieval.

capabilities allow researchers to directly analyze entities and their

relationships, significantly enhancing the efficiency of both clinical

diagnostics and scientific research (35).

Additionally, Neo4j’s visualization capabilities significantly

improve the usability and interpretability of the knowledge graph,

allowing stakeholders to better understand and utilize the complex

relational network. Figure 3 provides a visual representation of

nodes and relationships within the knowledge graph, illustrating

the intricate associations among diseases, symptoms, treatments,

and related factors. Such visualization tools are crucial for

interpreting interactions within the knowledge graph, thereby

facilitating effective utilization of data by researchers and medical

professionals (32).

5 Intelligent question-answering
system development and application

5.1 System architecture

The architecture of the diabetes intelligent question-

answering system consists of six primary modules, ensuring

comprehensive functionality and optimal performance (see

Figure 4). The first module, the frontend user interaction layer,

is implemented using the Streamlit framework, which manages

user login, question submission, and answer display through

an intuitive interface. Users can submit questions in multiple

dialogue windows and receive personalized responses. This

frontend layer communicates with both the backend model

processing layer and the knowledge graph layer to provide

real-time responses.

The model management and loading layer

is responsible for loading and managing pre-

trained language models. This module uses caching

mechanisms to optimize model loading, thereby

reducing redundancy and improving responsiveness to

user queries.

The intent and entity recognition layer processes

user questions to identify their intent and extract key

entities. This module utilizes fine-tuned language models

to analyze user input, determine the query type (e.g.,

“disease overview” or “treatment methods”), and identify

related entities such as symptoms and medications. The

extracted information is then used to generate appropriate
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FIGURE 4

The architecture of the diabetes question-answering (QA) system comprises six primary modules: user interaction, model management, intent

recognition, knowledge retrieval, inference, and data management. The arrows represent the flow of information between these modules, e�ectively

illustrating the system’s overall workflow.

knowledge graph queries, thereby ensuring the provision of

accurate answers.

The knowledge graph query layer employs Neo4j to store

and manage diabetes-related knowledge. This module uses

Cipher queries to retrieve relevant information, which is

subsequently formatted as prompts for the reasoning model to

generate responses.

The inference and answer generation layer employs

language models (e.g., Qwen2) to generate precise responses.

These models create accurate answers based on prompts

obtained from the knowledge graph query layer, with a

streaming feature for real-time response viewing. The output

is regulated to prevent freeform generation, ensuring consistency

and reliability.

The data storage and management layer handles user

login information, query history, and knowledge graph

updates. This module stores user data in a MySQL

database, allowing users to review their query history and

receive personalized recommendations. It also manages

administrative permissions for maintaining and updating the

knowledge graph.

5.2 Intelligent question-answering system
design

5.2.1 Intelligent question-answering system
workflow

The diabetes intelligent question-answering system is a

significant application of artificial intelligence in managing

diabetes-related knowledge, designed specifically to address health

inquiries posed by patients using natural language. This system

aims to enhance patient access to diabetes-related information,

thereby promoting the dissemination of health knowledge. One

major challenge is accurately interpreting patient questions,

retrieving relevant information, and generating precise responses.

Recent advancements in natural language processing (NLP)

have significantly improved the system’s performance, particularly

in intent recognition and named entity recognition (NER).

These capabilities allow the system to better understand patient

needs, enabling the provision of personalized medical advice and

facilitating self-management for diabetes patients. The workflow of

the intelligent question-answering system, illustrated in Figure 5,

consists of five primary steps:
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FIGURE 5

Workflow diagram of the intelligent question-answering (QA) system for diabetes. The diagram outlines the sequential steps from user input to

response generation, illustrating key processes such as intent recognition, entity extraction, and the use of a knowledge graph and language models.

1. Question input: the user submits a diabetes-related question in

textual form.

2. Intent recognition: the system utilizes a large language model

to determine the user’s query intent, which may involve

understanding diabetes causes, treatment options, medication

usage, or complications.

3. Entity recognition: the system employs a fine-tuned Baichuan2

model to extract key diabetes-related entities, such as disease and

medication names.

4. Knowledge graph query: based on the recognized entities

and identified intent, the system queries the relevant medical

knowledge stored in the Neo4j knowledge graph.

5. Return result: the system synthesizes the retrieved information

using a large language model to generate a comprehensive

response, presented in natural language.

5.2.2 Knowledge graph query
In the intelligent question-answering system, querying the

diabetes knowledge graph relies on the combined functionalities

of entity and intent recognition. First, the system determines the

user’s query intent, such as inquiries about symptoms, preventive

measures, or treatment options. Subsequently, the system extracts

key entities, such as “diabetes,” medications, or symptoms, from the

user’s input.

The identified entities are then embedded into Cipher queries

to search for relevant nodes and relationships within the knowledge

graph, thereby enabling the retrieval of precise information. For

example, if a user asks, “How can diabetes complications be

prevented?”, the system identifies the user’s intent as seeking

preventive measures for diabetes complications and extracts

“diabetes complications” as the core entity. Using this information,

the system generates a Cipher query to retrieve data from the

knowledge graph. The results may include recommendations

such as “control blood sugar levels,” “regular check-ups,” and

“maintain a healthy diet.” The system then synthesizes these

recommendations into a concise response, such as: “To prevent

diabetes complications, it is recommended to control blood sugar

levels, conduct regular foot check-ups, and follow a physician-

guided medication plan.”

This approach ensures that the system provides accurate

answers while leveraging the knowledge graph to deliver

comprehensive health advice, ultimately assisting users in

managing diabetes effectively.

5.2.3 Prompt generation and response
With the increasing adoption of generative pre-trained

language models, prompt generation has emerged as a crucial

technique for enhancing model performance. Prompt generation

involves designing structured input prompts to help the model

understand task objectives and contextualize the output, thereby

producing high-quality responses. Depending on the generation

method, prompt generation can be classified into template-

based, automated, and hybrid approaches. Core techniques

include natural language parsing, context integration, and

dynamic optimization to ensure that prompts effectively convey

relevant information in complex tasks. Primary methods for

evaluating and optimizing prompt generation include manual

evaluation, automated evaluation, and iterative refinement. Prompt

generation has demonstrated significant potential in tasks such as

question answering and text generation, with ongoing research

focusing on improving the flexibility, stability, and accuracy of

generated prompts.

In the diabetes intelligent question-answering system,

prompt generation plays a pivotal role in guiding the generative

language model (e.g., Qwen2 or Chatglm3) to produce accurate

medical responses. The prompt generation process involves

parsing user input via intent recognition to determine the user’s

query intent. Based on the recognized intent and named entity

recognition (NER) results, the system retrieves relevant medical

information from the Neo4j knowledge graph, dynamically
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incorporating this information into the prompt to provide

essential background context. During prompt generation,

the system explicitly sets task instructions (e.g., “You are a

diabetes question-answering assistant”) and imposes strict

response constraints (e.g., “Do not provide speculative answers”)

to ensure that the model’s output is well-grounded in the

knowledge base.

The finalized prompt is then submitted to the generative

language model, which generates precise medical responses.

This hybrid strategy, combining template-based and dynamic

prompt generation, enhances the system’s performance in medical

question-answering tasks by ensuring that the generated responses

are professional, accurate, and consistent.

5.3 Application interface

The intelligent question-answering interface, depicted

in Figure 6, serves as the primary platform for user

interaction with the system. Users input diabetes-related

questions, which are subsequently processed by the system

using natural language processing (NLP) techniques

such as named entity recognition (NER) and intent

recognition. NER extracts key entities, including disease

names and symptoms, from the user’s input, while intent

recognition discerns the user’s specific needs to provide

accurate responses.

(a) On the left side of Figure 6, the functional area offers a range

of operational options, including the creation and management

of chat windows, the selection of language models, and the

activation of features such as entity recognition, intent recognition,

knowledge base display, and knowledge graph editing. These tools

facilitate efficient interaction with the system, ensuring that it can

accommodate various user needs. (b) On the right side of Figure 6

is the user interaction interface, which displays diabetes-related

queries and system-generated responses, illustrating the system’s

advanced natural language processing capabilities. The interface

incorporates entity recognition, intent recognition, and knowledge-

base-driven response generation, enabling users to obtain accurate

and relevant information, while the input box at the bottom

allows users to submit queries, such as “What are the common

symptoms of diabetes?” or “How can blood sugar be managed?” for

suggestions on symptoms and treatments. The interface prioritizes

user experience through a clear layout and soft color scheme,

facilitating seamless interaction and aiding users in managing their

health information effectively.

The QA display is central to user interaction. The system

processes user inputs and employs NLP techniques to generate

accurate, real-time responses. For instance, if a user asks, “What

causes diabetes?”, the system preprocesses the question, extracting

key content such as “diabetes” via NER, and determines the intent,

such as “disease overview and causes.” After interpreting the user’s

needs, the system generates a query to retrieve relevant information

from the knowledge graph. The system then synthesizes the

retrieved knowledge with outputs from NLP models (e.g., Qwen2)

to generate precise, natural responses, delivering authoritative and

comprehensible information to enhance the user experience.

6 Discussion

6.1 Research objectives and contributions

The primary objective of this research was to develop an

intelligent question-answering system specifically designed for

diabetes management, incorporating Named Entity Recognition

(NER), Intent Recognition (IR), and an extensive knowledge

graph (KG). This methodology addresses the inherent limitations

of traditional medical question-answering systems, such as

inadequate personalization and limited semantic comprehension in

medical contexts. Existing systems, such as MySugr or BlueLoop,

focus primarily on glucose monitoring but fail to account for the

diverse and complex needs of patients or to dynamically update

their knowledge base.

In contrast, this research adopts a hybrid architecture

combining large language models (LLMs) with a Neo4j-based

knowledge graph to enhance the precision and relevance of

responses (36). By integrating real-time data from the knowledge

graph, the proposed system can deliver both explicit and implicit

responses, significantly improving user experience and increasing

applicability in clinical environments. This approach allows for

dynamic updates to the knowledge base, offeringmore personalized

and context-aware answers to complex medical queries.

6.2 Innovation in prompt-based learning
and Low-Rank Adaptation (LoRA)

A key innovation of this study is the application of prompt-

based learning alongside Low-Rank Adaptation (LoRA) to enhance

both entity and intent recognition. Traditional models, such

as BiLSTM, BERT, and RoBERTa, generally require extensive

fine-tuning for domain adaptation, necessitating substantial

computational resources and large amounts of labeled data. In

contrast, integrating prompt-based learning with LoRA provides a

lightweight and flexible approach capable of effective adaptation,

even in low-resource settings (37).

The LoRA fine-tuning mechanism significantly reduces the

number of trainable parameters while preserving high accuracy in

identifying long-span entities’an area that has traditionally posed

challenges for conventional methods due to complex linguistic

structures. Additionally, using Qwen2.5 for intent classification

enables direct prompt-based categorization without the need for

additional fine-tuning, offering a novel solution compared to

traditional models. These innovations are particularly beneficial

in low-resource environments, demonstrating promising results in

diabetic patient data processing (38).

6.3 Knowledge graph construction and
integration

Constructing the knowledge graph and integrating it with

the intelligent question-answering system represents a significant

contribution of this study. Unlike traditional healthcare knowledge

graphs, which primarily depict static relationships between entities,
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FIGURE 6

The figure details the interface and functionality of the Diabetes Question and Answer (QA) system. The left section (A) shows the functional area with

configurable options, while the right section (B) presents the user interface, displaying diabetes-related queries and system-generated responses.

this study employs a dynamic Neo4j-based graph that facilitates

real-time retrieval and supports complex queries. This dynamic

approach allows for the continuous adaptation and maintenance

of healthcare data, greatly enhancing the system’s practical utility

(39). By integrating large language models such as Baichuan2 and

Qwen2.5, the system is able to handle complex medical inquiries

and provide contextually enriched responses (40).

While the knowledge graph enhances the system’s ability

to deliver accurate and relevant answers, challenges remain in

maintaining the real-time relevance of the medical data it contains

(41). Future work should focus on automating the updating process

for healthcare data, ensuring that the graph reflects the latest

research, treatment protocols, and medical knowledge (42).

6.4 Prompt generation strategy

The prompt generation strategy employed in this study

integrates both template-based and dynamic generation

techniques, ensuring that responses are grounded in precise

and comprehensive medical knowledge. This methodology departs

from traditional systems that rely exclusively on pre-designed

templates, thus overcoming the limitations associated with rigid,

non-adaptive responses (43). The proposed system’s ability to

dynamically generate relevant prompts allows it to address diverse

medical queries, making it more versatile than existing systems.

Although the system has shown promising results in entity

recognition and intent classification, its usability in real-world

healthcare environments has not been extensively tested. The

system has primarily been evaluated in controlled, experimental

setups. However, to validate its true potential, future work should

focus on conducting usability testing with healthcare professionals

and patients in real-world clinical settings (44). This will involve

assessing the system’s ease of use, its ability to integrate seamlessly

with existing clinical workflows, and its capacity to meet the diverse

needs of users in a healthcare context.

Feedback from healthcare providers and diabetic patients will

be essential to refine and improve the system. Formal feedback

collection from patients regarding their experience with the system

is still pending, which limits our understanding of how effectively

the system addresses their needs. Future work should prioritize

the collection of patient feedback to further tailor the system and

enhance its relevance to the patient community. Engaging diabetic

patients through usability studies or pilot programs will provide

valuable insights into system optimization, ensuring that it delivers

actionable and relevant health information that meets their specific

requirements (45).

6.5 Ethical and privacy considerations

This study’s handling of sensitive medical data required

meticulous attention to ethical and privacy concerns, particularly

given the inherently personal nature of diabetes-related

information. For the Named Entity Recognition (NER) task,

we employed the publicly available and anonymized CCKS2021

diabetes dataset, which adheres to stringent ethical guidelines,

ensuring that no personally identifiable information is involved.

Access to the dataset was obtained by the terms of use stipulated by

its creators, and it complies with international privacy standards,

including the General Data Protection Regulation (GDPR).
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For the Intent Recognition (IR) task, a custom dataset was

synthetically generated using OpenAI’s GPT-4 model, which avoids

using real patient data and significantly mitigates privacy risks. The

synthetic dataset underwent rigorous review to ensure its clinical

relevance and ethical integrity, reinforcing our commitment to

patient privacy while facilitating effective model training.

While anonymized datasets effectively preserve privacy, they

may limit the ability to provide highly personalized responses in

real-world applications. To address this limitation, future research

will investigate advanced privacy-preserving techniques, such as

differential privacy and federated learning, to enhance data security

without compromising system performance. Ethical oversight was

integral throughout this study, with all research activities approved

by the relevant institutional ethics committee. As the system

advances toward real-world testing and deployment, collaboration

with healthcare institutions will prioritize adherence to ethical and

legal standards, ensuring the responsible application of artificial

intelligence in diabetes management.

6.6 Future research directions

The proposed system demonstrates significant advancements

in personalized healthcare, yet several key challenges remain that

require further attention in future research.

A major challenge is adapting the system to address complex

patient scenarios, such as multi-morbidity, where patients suffer

from multiple co-existing conditions. While the current model

has been optimized for diabetes-related queries, it has not yet

been tested in multi-morbidity contexts. Future research will focus

on extending the system’s capabilities to process and integrate

data from multiple diseases simultaneously. This will involve

developing models capable of understanding and managing the

interactions between co-existing conditions, thereby enabling the

system to provide more relevant and personalized care to patients

with diverse health profiles. Additionally, ensuring the system’s

continued relevance as new research, treatment protocols, and

patient-specific data emerge is crucial. Future work will focus on

automating the real-time updating process of the knowledge graph

to maintain its accuracy and timeliness, incorporating advanced

text mining and data extraction techniques to reduce manual

effort and ensure consistent, evidence-based recommendations.

Addressing both multi-morbidity and knowledge graph updates

is essential for improving the system’s clinical applicability and

adaptability to evolving medical knowledge (46, 47).

Although the system has demonstrated effectiveness in

controlled environments, its deployment in real-world clinical

settings presents several challenges. Future research will prioritize

usability testing in collaboration with healthcare professionals and

patients, evaluating its integration with Clinical Decision Support

Systems (CDSS) and Electronic Health Records (EHRs), as well

as its ability to handle large volumes of real-time patient queries.

Real-world testing will assess scalability, usability, and accuracy in

clinical conditions. Collaborations with healthcare institutions will

be essential to refine the system and ensure its seamless integration

into existing clinical workflows (48).

7 Conclusions

This paper addresses the complexities of information

retrieval in diabetes management through the development

of an intelligent question-answering system that integrates

large language models with knowledge graphs. The study

demonstrates that integrating the Baichuan2 model with

Low-Rank Adaptation (LoRA) technology and prompt-based

learning significantly enhances the accuracy of named entity

recognition (NER) and intent recognition, thereby augmenting

the system’s capacity to provide personalized responses and

support medical reasoning (26). Experimental results indicate that

the system achieved high precision in both diabetes entity and

intent recognition tasks, validating the potential of integrating

large language models with knowledge graphs for medical

applications (49).

Despite these advancements, several limitations remain.

The model’s performance is highly dependent on the quality

of input data, and additional fine-tuning may be necessary

for deployment in other medical domains. Additionally,

the reliance on predefined prompts limits the system’s

adaptability to complex patient scenarios, such as those

involving multi-morbidity. The challenge of maintaining

an up-to-date knowledge graph remains, limiting real-time

accuracy as new medical knowledge and treatment protocols

emerge (50).

Future research will address these challenges by

extending the system’s domain applicability to handle

multi-morbidity, automating the process of knowledge

graph updates, and conducting real-world testing to

evaluate integration with Clinical Decision Support Systems

(CDSS) and Electronic Health Records (EHRs). These

directions are expected to enhance the system’s clinical

applicability, ultimately positioning it as a valuable tool for

personalized healthcare management across diverse medical

domains (51, 52).
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