Skip to main content

ORIGINAL RESEARCH article

Front. Public Health

Sec. Environmental Health and Exposome

Volume 13 - 2025 | doi: 10.3389/fpubh.2025.1523210

This article is part of the Research Topic Multi-scale Urban Built Environment and Human Health View all 10 articles

Evaluation of the Cold Island Effect of the Urban Parks in the Main Urban Area of Wuhan from the Perspective of Supply and Demand

Provisionally accepted
Jufang Song Jufang Song *Yongxuan Qiao Yongxuan Qiao Yihan Liu Yihan Liu
  • School of Urban Design, Faculty of Engineering, Wuhan University, Wuhan, China

The final, formatted version of the article will be published soon.

    Background: Rapid urbanization has led to a series of "urban diseases" that have garnered significant social attention. Among these, the urban heat island effect has emerged as one of the most pronounced environmental concerns, presenting formidable challenges for urban planning in terms of sustainable development and environmental livability. In this process, the construction of urban parks is particularly susceptible to discrepancies between supply and demand.Methods: In this study, urban parks with an area of more than 3hm² in the main urban area of Wuhan were selected as research objects. Utilizing remote sensing data and urban vector data, this study applied kernel density analysis and Thiessen polygons development to assess the supply capacity of parks' cold islands from a supply perspective, and the residents' cold island demand level index from a demand perspective.The findings revealed that ①The spatial distribution of cold island supply and demand exhibited significant heterogeneity. High-supply units were strongly correlated with water body distribution, while high-demand units aligned closely with population density and POI density centers, displaying a "scattered overall, locally concentrated" pattern. ②A significant supply-demand mismatch in cold island effects was observed, with 19 units (accounting for approximately 40%) exhibiting insufficient supply relative to demand. These units were predominantly concentrated in areas with complex building environments, high population density, low vegetation coverage, and poor landscape connectivity.Discussion and conclusions: Drawing on these results, the study established an interplay between supply and demand perspectives by applying the theory of locational entropy and proposed optimization strategy for urban parks in Wuhan, aiming to achieve "a match between supply and demand in cold islands" across varying equilibrium stages of the research units. Specific measures include: optimizing the scale and layout of existing parks, reserving green spaces for ecological restoration, strengthening the protection of blue-green ecological foundations, and establishing a blue-green cold island corridor network to enhance ecological connectivity. Our work extends the understanding of the cold island effect of urban parks, assisting urban planners in proposing more targeted and effective management strategy and measures to improve the urban thermal environment, thereby contributing to the creation of healthy, equitable, and sustainable cities.

    Keywords: supply and demand evaluation, Cold island effect, Urban parks, Planning strategy, urban heat and cold islands

    Received: 05 Nov 2024; Accepted: 28 Feb 2025.

    Copyright: © 2025 Song, Qiao and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Jufang Song, School of Urban Design, Faculty of Engineering, Wuhan University, Wuhan, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more