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Background: High temperatures pose significant health risks and societal

challenges in China, with spatial variations in heat health risks. Furthermore, due

to the constraint imposed by heat health risk assessment on the construction of

the public health security framework, it is necessary to explore the heat health

risk pattern of spatial distribution and the trend of future risk development in

eastern China.

Methods: Based on the Intergovernmental Panel on Climate Change (IPCC) and

Risk Triangle framework which is combined with natural and socio-economic

factors, the heat health risk assessment index system of eastern China is

established in this paper. This paper enhances the accuracy of risk maps with

the aid of high-resolution imagery. It also focuses specifically on the exposure of

construction workers in urban areas and agricultural workers in rural areas. This

paper also evaluates the heat health risk of eastern China from 2010 to 2019 by

using ArcGIS and the CA-Markov model.

Results: The heat health risk in most areas of eastern China is predominantly

highest risk, with the proportion of highest and medium risk areas increasing

steadily from 2010 to 2019. The spatial distribution pattern reveals that high-

risk areas are concentrated in the central urban areas, while low-risk areas are

primarily in the mountainous regions, suburbs, rural areas, and water source

areas. The conversion of heat health risk areas mainly occurs between adjacent

levels, with no mutation process. From 2010 to 2025, the heat health risk of

eastern China has been improving, and the overall distribution pattern of risk

levels remains consistent.

Conclusion: The research findings provide a basis for us to gain a deeper

understanding of the vulnerability of di�erent groups. This study not only

presents spatial distribution maps of health risks, but o�ers a new perspective

for us to comprehend the complexity and diversity of these risks. The research

findings also establish a foundation for optimizing monitoring and warning

systems. Furthermore, this study provides scientific evidence for policymakers

to develop comprehensive heatwave mitigation plans. Nevertheless, we must

acknowledge the limitations of the research and recognize that there is room

for improvement in the future.
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1 Background

Since 1980s, the global area affected by heatwaves has tripled

compared to that in previous periods (1). A nationwide analysis

in the United States has shown that during heat waves, mortality

increases by 3.74%, with this effect being even more pronounced in

specific regions such as the Northeast andMidwest (2). Greenhouse

gas emissions have intensified heatwaves in Europe and North

America, and these events are projected to worsen in the future

(3). Moreover, the characteristics of heat waves—including their

intensity, duration, and timing within the season—significantly

influence their impact on health. For example, a 1◦F increase in

heat wave intensity has been linked to a 2.49% increase in mortality

risk, while each additional day of a heat wave contributes to a

0.38% increase in risk (4). In one study, considering the impact

of a single heat wave, it was estimated that during three heat

waves in 2013, a total of 679 extra heat-related illnesses occurred,

relative to the average values for the corresponding periods in

previous years (5). However, the challenges posed by heat waves

are not static. Over the past few decades, many regions, particularly

in China, have experienced longer, stronger, and more frequent

heat waves. Northern China has witnessed dramatic increases in

intensity, while southern regions have seen significant lengthening

in duration (6). These trends are alarming and point to a future

where heat waves may become even more devastating to human

health. Additionally, urban areas experience heatwave worsening

due to the urban heat island (UHI) effect. The UHI effect not

only raises temperatures but also exacerbates the health impacts

of extreme heat conditions, leading to higher mortality rates in

urban areas (7). The heat island effect during a heatwave not

only raises ambient temperatures but also amplifies the disparity

between urban and rural temperatures (8), with UHI being more

pronounced at night (9). Urban centers with high population

densities exposed to the UHI effect face substantial health risks (10).

In response to the increasingly frequent extreme heat events,

heat health risk assessment has emerged as a research hotspot.

Current research has developed a comprehensive assessment

framework (11–14) that encompasses heat hazards, social

vulnerability, and population exposure (15–17). In past research,

detailed heat health risk assessments at the city level in the

Philippines were conducted. By integrating remote sensing

data with socio-ecological indicators, the aim was to provide

information to policymakers and urban planners about the most

vulnerable cities and to guide them in prioritizing adaptation

measures (18). Hu et al. (19) overcame the limitations of traditional

heat health risk assessments by using fine spatial scale data

to improve the accuracy and spatial resolution of risk maps.

Researchers have carried out a comprehensive spatial evaluation

of heat health risks in Hong Kong, utilizing Principal Component

Analysis (PCA) to categorize various indicators into meaningful

groups. Through this process, they have developed a highly

refined Heat-Related Health Risk Index (HHRI) (20). Other

researchers have conducted a systematic review and meta-analysis

of epidemiological evidence, focusing specifically on the impact

of increases and decreases in ambient temperature on mortality

and morbidity rates among individuals aged 65 and above. Their

objective was to quantify the risks associated with temperature

changes across various health outcomes (21). Although studies

have begun to focus on vulnerable groups (22–25), research

that comprehensively considers all exposed populations and

develops mitigation measures based on their unique vulnerabilities

is still inadequate (26, 27). This has led to past research being

often constrained by region- and population-specific factors

when providing detailed recommendations. The accuracy of

population data is crucial for the effectiveness of assessments

(28), but current research is often limited by census data (29, 30)

and issues of uneven population distribution (31). Additionally,

existing research primarily focuses on current and past risks

(32–34), lacking spatial prediction methods for identifying future

heat risk areas. These methods are crucial for adaptive planning

and risk management at the spatial grid level, but they have not

yet been fully developed (18, 35). The Sixth Assessment Report

(AR6) of the Intergovernmental Panel on Climate Change (IPCC)

provides a comprehensive update on climate change science (36),

while the Risk Triangle framework sheds light on various factors

contributing to risky behaviors, such as hazards, vulnerability,

and exposure (37). These factors can be more broadly applied

to understand and address risks associated with climate change.

Therefore, incorporating spatial prediction methods into heat

health risk assessments is expected to improve the effectiveness

and practicality of the assessments.

2 Study aim

To address the aforementioned research gaps, our objective

is to systematically assess the heat health risks in eastern

China and make predictions about future heat health risks. This

study covers a wide range of data from 2010, 2015, and 2019,

encompassing socio-economic, remote sensing, health resources,

vulnerable groups, and natural resources. In terms of methodology,

this study employed PCA to determine the weight of each

indicator. Additionally, the CA-Markov model was utilized for

simulating and predicting heat health risks. Exploring health

risk zoning will provide a basis for policy-making and promote

sustainable development.

3 Material and methods

3.1 Study area

Eastern China (Figure 1), covering Jiangsu, Shanghai,

and Zhejiang, is located at longitudes 116◦18′-123◦10′E and

latitudes 27◦02′-35◦20′N. It has a total area of ∼219,000 km2

and resident population of ∼170 million. Eastern China is

characterized by several factors that collectively increased

heat health risk. Firstly, it has a highly developed economy

with rapid development. Secondly, it has an extremely high

population density, accompanied by a concentrated population

distribution. Thirdly, it shows a high level of urbanization,

which leads to a significant urban heat island effect. Lastly,

its coastal location makes it susceptible to the influence of the

marine climate.
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FIGURE 1

Geographical location of the eastern China.

3.2 Data source

In order to explore the heat health risk pattern of eastern China

in recent years, considering the availability of data and referring

to previous related studies, this paper selected 2010–2019 as the

research period, and 2010, 2015 and 2019 were selected as the

time nodes to collect and analyze the data of these three periods

and reflect the heat health risk pattern of eastern China in the

last years. The data used in this study (Table 1) cover the socio-

economic, remote sensing, health resources, vulnerable groups and

natural resources data in 2010, 2015 and 2019. The normalized

difference vegetation index (NDVI), land surface temperature

(LST), gross national product (GDP) and population density data

are derived from the Resource and Environmental Science Data

Center of the Chinese Academy of Sciences. The elevation data is

from the geospatial data cloud (GSclould) and is 90m resolution

digital elevation product data. The disposable income, physicians,

hospital beds, older adults and female populations, water resources,

unemployment rate and agricultural and construction practitioner

data are obtained from the statistical yearbook of eastern China and

in ArcGIS10.7, with a resolution of 1 km.

The original data are projected into the same coordinate system

(WGS_1984) through ArcGIS10.7 and are unified into the same

spatial boundary that equals the boundary of the research area by

cutting. The above process of data preprocessing was carried out

in ArcGIS 10.7. Finally, the data are resampled to the same spatial

resolution of 1 km× 1 km by means of nearest neighbor.

3.3 Assessment framework

In this study, based on the IPCC AR6 and the risk triangle

framework, 13 indicators of different types were selected for hazard,

vulnerability and exposure (Table 1). At the hazard level of this

study, nighttime LST was selected to reflect the heat hazard (38).

In terms of vulnerability, this study selects physicians, hospital

beds, older adults and female populations, and unemployment

rate, which can represent vulnerable groups. GDP and disposable

income accurately reflect level of socio-economic development.

Besides, physicians and hospital beds were also considered to

reflect the accessibility of health resources. At the exposure level,

population density, agricultural and construction practitioners are

selected to reflect the heat exposure intensity of human. NDVI and

water resources can reflect the resistance level to exposure. Figure 2

illustrates the entire process of the study framework.

3.4 Statistical analyses and indicators

PCA integrates multiple indicators into a few principal

components through dimensionality reduction, and determines the

weight of each indicator based on the variance contribution rate of

each principal component (20). In this study, the weights of each

indicator are calculated based on the variance contribution rate and

loading of each principal component. Finally, the weight values of

each indicator are obtained through normalization processing. On
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TABLE 1 Heat health risk assessment indicators.

Factor category Indicator Unit Source Attribute Spatial resolution

Heat hazard LST ◦C http://www.resdc.cn/ + 1KM

Social vulnerability GDP (SV1) Yuan http://www.resdc.cn/ – 1KM

Disposable income (SV2) Yuan Zhejiang Statistical Yearbook

Jiangsu Statistical Yearbook

Shanghai Statistical Yearbook

(SV2–7)

– 1KM

Physicians (SV3) Man – 1KM

Hospital beds (SV4) Individual – 1KM

Older adults (SV5) % + 1KM

Female (SV6) % + 1KM

Unemployment (SV7) % + 1KM

Human exposure NDVI (EX1) / http://www.resdc.cn/

(EX1–2)

– 1KM

Population density (EX2) Man/m2
+ 1KM

Water resources (EX3) m3 Zhejiang Statistical Yearbook

Jiangsu Statistical Yearbook

Shanghai Statistical Yearbook

(EX3–5)

– 1KM

Agricultural practitioners (EX4) % + 1KM

Construction practitioners (EX5) % + 1KM

“+” means positive action; “–” means reverse action.

FIGURE 2

Study framework.
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this basis, the weight is calculated as follows:

bij =
aij

√

Xj

Wi =
bi1PC1 + bi2PC2 + bi3PC3 · · · +bijPCj

PC1 + PC2 + PC3 · · · +PCj

Where Wi is the weight of i-th indicator; PCj is the variance

contribution rate of j-th principal component; aij is the loading

of the i-th indicator and the j-th principal component; Xj is the

eigenvalue of the j-th principal component.

Accordingly, the risk of heat hazard is obtained by multiplying

(39, 40) the three indicators of heat hazard, social vulnerability and

exposure (41) as follows:

HHR = H × S× E

where HHR is a composite score of the risk to human health from

H, and S and E are the results of the assessments of heat hazard,

social vulnerability and exposure, respectively.

All the assessment indicators all require standardization, which

is carried out using the following formula:

Xp =
X −MIN

MAX −MIN
+ 0.01

Xn =
MAX − X

MAX −MIN
+ 0.01

where Xp is the normalized value of the positive indicator, Xn is

the normalized value of the negative indicator in the range [0.01,

1.01], X is the original value, andMIN andMAX are the minimum

and maximum values of the original value, respectively. The HHR

is normalized to [0, 1].

3.5 HHR classification

In this study, the natural breakage classification (NBC) is

used to classify HHR to distinguish different levels of health risk.

NBC divides data into multiple categories in such a way that the

variation within each category is minimized while the variation

between categories is maximized. This method seeks the optimal

grouping scheme for data by minimizing the within-class variance

and maximizing the between-class variance. Based on the natural

distribution characteristics of the data, it can reveal the inherent

structure of the data, facilitating visualization and analysis. In

this study, the HHR in 2010 is classified by natural breakage

classification. As the classification standard (Table 2) of HHR in this

paper, HHR is divided into five categories: lowest-risk area, low-risk

area, medium-risk area, high-risk area and highest-risk area. After

classification, ArcGIS is used to visualize the spatial distribution

of HHR.

3.6 Model prediction

In this study, the CA-Markov model is used for the simulation,

prediction and analysis of heat health risk. CA-Markov model

is a process theoretical model based on the Markov random

TABLE 2 Classification of the heat health risk.

HHR Lowest Low Medium High Highest

Grading standard <0.2 0.2–0.4 0.4–0.5 0.5–0.58 >0.58

process system so as to achieve the purpose of prediction and

random control. CA consists of discrete cells of time, space and

state that simulate spatiotemporal evolution through a certain

transformation rule (42). The evolution of the CA simulation is

as follows:

St+1
ij = fca

(

Stij

)

where Stij is the state of the ij-th cellular at moment t, fca is the

cellular transformation function, and St+1
ij is the state of the ijth

cellular at moment t + 1.

The rationale of the Markov model is to use the probability of

transfer between the initial and intermediate states to predict the

trend at time t (43). The Markov forecasting process is as follows:

St+1
= St × P

P =









P11 · · · P1j
...

. . .
...

Pi1 · · · Pij









where St is its state at moment t, P is the probability transfer matrix,

and St+1 is its state at moment t.

The CA-Markov model can take advantage of both the CA

model’s ability to simulate changes in spatial systems and the

Markov model’s ability to make long-term predictions; that is,

the simulation of health risk prediction is realized by adding the

spatial distribution elements with continuous properties to the

analysis process of the Markov chain There are three steps in

conducting the prediction: (1) The transfer probability matrix and

distribution conditional probability images were obtained from

the two-period health risk data analysis. (2) The CA filter is

constructed to create weighting factors based on the central cell

and surrounding neighboring cells, thereby determining the rule of

variation for the central cell state. (3) The prediction base period

is selected, and prediction based on the health risk probability

transfer matrix in step (1) is conducted. This study uses the CA-

Markov module in IDRISI and ArcGIS to complete the process of

CA-Markov prediction.

4 Results

4.1 Principal component analysis

As shown in Table 3, we conducted tests to determine whether

the data were suitable for factor analysis. According to the results,

the KMO value is >0.7 and P < 0.05, indicating a significant test

result. This suggests that the data are suitable for factor analysis and

that PCA can proceed.

The PCA results are shown in Table 4. After conducting

the PCA with targeted rotation in each year, four meaningful
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TABLE 3 KMO and Bartlett’s test.

KMO measure of sampling adequacy 0.702

Bartlett’s test of sphericity

Approx Chi-square 728.619

Df 66

Sig. 0.000

TABLE 4 Results of the PCA of social vulnerability and exposure.

PC Eigenvalues Contribution
ratio of
variance

Cumulative
contribution of

variance

1 5.126 42.714% 42.714%

2 1.849 15.405% 58.119%

3 1.691 14.094% 72.212%

4 1.163 9.692% 81.905%

TABLE 5 Weights of the PCA of social vulnerability and exposure.

Factor category Indicator Weight

Social vulnerability

GDP (SV1) 0.14

Disposable income (SV2) 0.17

Physicians (SV3) 0.20

Hospital beds (SV4) 0.16

Older adults (SV5) 0.13

Female (SV6) 0.11

Unemployment (SV7) 0.09

Human exposure

NDVI (EX1) 0.12

Population density (EX2) 0.32

Water resource (EX3) 0.30

Agricultural practitioners (EX4) 0.01

Construction practitioners (EX5) 0.25

components were derived, explaining over 80% of the total variance

of selected indicators.

After calculating the variance contribution rates and loadings

of each principal component, normalization processing was finally

conducted to obtain the weight values for each indicator. The

results are shown in Table 5.

4.2 Heat health risk

The results of this study show that the heat health risk in

most areas of eastern China is mainly highest risk (Figure 3).

In 2010, 2015 and 2019, the proportion (Table 6) of highest risk

areas and medium risk areas reached 50.16%, 53.11% and 67.48%,

respectively, with a stable upward trend. The area proportion lowest

risk areas has decreased by 0.95% in the decade 2010–2019, the

area of high risk areas has increased by 2.67% in the 9 years, and

the area of low risk areas has changed most significantly, reducing

by 19.06%.

According to the spatial distribution pattern of the heat

health risk, the area with highest risk in eastern China accounts

for a relatively large proportion (Figure 3). In terms of overall

hierarchical distribution, the areas with high risk are mainly

distributed in the southeast and southwest of Zhejiang, the north

of Jiangsu and the central urban area of the city. The areas with

low risk are concentrated in the southern mountainous area, the

suburbs and rural areas and the water source area, which generally

shows that the risk in the north and southeast are high and the

risk in the east and central-west are low. From the perspective of

time scale, the risk level of the whole north of Jiangsu Province

was high risk from 2010 to 2019, and the area of high-risk areas

shows increasing trend. The risk level of large and medium-sized

urban areas has been high over the 9 years due to the significant

impact of urbanization. The areas with low risk in the northwest

of Zhejiang have maintained a relatively low level of risk over the

past 9 years, and the area of overall lowest and low risk areas has

decreasing trend over time.

By calculating the area transfer between 2010, 2015 and 2019,

it can be found that the area conversion of different heat health

risk areas mainly occurs between adjacent levels (Figure 4). For

example, the low-risk areas in 2015 mainly come from the low-

risk areas, lowest risk areas and medium risk areas in 2010; most

of the lowest-risk areas in 2019 come from the original lowest-

risk areas and low-risk areas. It also shows that there is usually

no mutation process in the transformation of risk. The types of

scale transformation mainly include the transformation of low and

medium risk areas, the transformation of medium and high-risk

areas, and the transformation between high and highest risk areas.

Furthermore, the map in Figure 5 illustrates the distribution

of highest-risk and high-risk areas based on the leading indicators

among hazard, social vulnerability, and exposure. It emphasizes

that the areas dominated by social vulnerability are the largest,

mainly located in western Jiangsu Province and the southeastern

coastal areas of Zhejiang Province. The hazard-dominated areas

are mainly distributed around Taihu Lake, extending northeast

to southwest of Zhejiang, as well as along a coastal stretch in

southeast Zhejiang. In contrast, the exposure-dominated areas

are concentrated mainly in the central regions of Shanghai and

Nanjing. Table 7 shows hazard-dominated areas increased by

15.98%, social vulnerability-dominated areas decreased by 16.00%,

and exposure-dominated areas stayed stable around 0.10%. This

confirms that HHR is primarily influenced by the distribution of

hazards and social vulnerability.

4.3 Risk prediction

Using the CA-Markov module in IDRISI, based on the heat

health risk results in 2010, 2015 and 2019, taking 2010 as the

starting year, we calculated the heat health risk level area transfer

matrix from 2010 to 2015, predicted the heat health risk of eastern

China in 2019, compared it with the actual data, and calculated

the Kappa coefficient of 0.882 with P < 0.01, indicating that the

prediction results are highly consistent with the actual situation
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FIGURE 3

Spatial distribution of HHR in the eastern China. (A) 2010. (B) 2015. (C) 2019.

TABLE 6 The proportion of HHR.

Risk level 2010 2015 2019

Lowest risk 7.57% 6.49% 6.62%

Low risk 25.24% 21.39% 6.18%

Medium risk 19.05% 21.53% 19.04%

High risk 17.04% 19.01% 19.71%

Highest risk 31.11% 31.58% 48.44%

(Table 8).We took 2015 as the starting year, where based on the heat

health risk area transfermatrix from 2015 to 2019 and the generated

suitability Atlas of various risk levels, we assumed that the heat

health risk level transfer trend from 2010 to 2019 is basically similar

to that 9 of years later, and a 5 × 5 mole neighborhood is used as

the filtering parameter of the CA-Markov model. The operation of

the model is an iterative cycle every year. Through 10 iterations,

the spatial data set of heat health risk in eastern China in 2025 is

simulated, and the spatial distribution prediction map is formed

(Figure 6).

This paper tests the robustness of CA-Markov the model by

varying the number of cellular automaton iterations. The test

results are presented in Table 9. Whether increasing or decreasing

the number of iterations, the Kappa coefficients are similar to the

result in Table 8, verifying the robustness of the CA-Markov model.

The prediction results (Figure 6) show that the distribution

pattern of risk level in eastern China in 2025 is consistent with that

of the past 9 years. The statistics show that the proportions of five

levels of health risk areas in 2025 are as follows: lowest-risk areas are

6.64%, low-risk areas are 2.46%, medium risk areas are 3.67% and

high-risk areas are 38.78%. While the area of highest-risk areas is

accounting for 48.45% of the total area, this level is far higher than

the data of 9 years ago. The overall distribution pattern is high-

risk areas, mainly expanding outwards from cities, creating larger

high-risk areas. Meanwhile, low-risk areas of Shanghai are shifting

to medium-risk, and medium-risk areas in northern Zhejiang

are growing.

5 Discussion

Areas with high levels of social vulnerability (Figure 7) not only

lack health resources and suffer from economic underdevelopment,

but are also affected by other factors (44). These factors may include

income inequality, education levels, access to social services, and

environmental resilience, among others. Conversely, regions with

low vulnerability tend to boast robust economic growth and ample

health resources, reflecting a more equitable and developed societal

structure. For instance, Nantong’s increasing social vulnerability

can be attributed not only to population aging but also to factors

such as limited social welfare programs and inadequate healthcare

infrastructure. Medium vulnerability areas present an intriguing

paradox: they may enjoy high economic development and low

unemployment rates, yet lag behind in health resources (45).

Rapid urbanization (46), often accompanied by environmental

degradation and social disparities, exacerbates this vulnerability.

The influx of migrants, without adequate support systems, can

strain public services and exacerbate social tensions, further

increasing the area’s overall vulnerability. Regions characterized by

low social vulnerability, such as the Yangtze River Delta, typically

exhibit not only high levels of economic development but also

a well-rounded approach to societal wellbeing (47). They invest

heavily in education, healthcare, and environmental sustainability,

creating a resilient social fabric that can withstand external shocks.

These areas also tend to have more equitable income distributions

and robust social safety nets, which further mitigate vulnerability.
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FIGURE 4

Area conversion of HHR in the eastern China.

High-risk areas, despite their advantageous locations, abundant

health resources, and economic development, face heightened

heat health risks and exposure due to a complex interplay of

factors (48). Their dense land use patterns contribute to higher

temperatures, exacerbated by the significant heat storage capacity

of urban structures (49). Additionally, the large construction

workforce, often working outdoors in harsh conditions, further

amplifies their vulnerability. The interaction between urbanization,

industrialization, and socio-economic status creates a multifaceted

landscape where heat hazards are driven not just by physical

characteristics but also by societal structures and behaviors (50).

Conversely, low-risk areas, which tend to be less economically

developed and more reliant on agriculture, animal husbandry,

and fishing, exhibit a different set of dynamics. While they lack

the health resources available in urban centers, they benefit from

lower population densities, which reduce the concentration of heat-

generating activities. Their greater green cover and abundant water

resources provide natural cooling mechanisms (51), mitigating

heat hazards and exposure (52). However, it is important that

these benefits are not absolute, and low-risk areas can still

experience heatwaves and related health impacts, albeit to a lesser

extent. The interplay between natural environmental factors and

human activities, such as land-use changes and deforestation, can

introduce uncertainties and variations in heat health risks even

within these seemingly lower-risk regions.

Some Chinese researchers primarily conduct their studies

through questionnaires and statistical analysis, focusing on

residents’ perceptions of heatwave risks in Guangdong, adaptive

behaviors, and experiences with heatstroke (53). In contrast,

some researchers concentrate on exposed areas and population

dynamics in Beijing (54), employing a variety of methods such as

questionnaires, remote sensing analysis, and morphological spatial

pattern analysis (55). They also specifically introduce dynamic

population data and the exposure-response relationship between

temperature and health to delve deeper into the identification

of heat-exposed areas, heat risk assessment, and the impact of

population dynamics on heat exposure. Ma et al. have expanded

their research to 66 communities in China, emphasizing the impact

of heatwaves on mortality and the modulating effects of individual

and community characteristics (56).

In terms of theory, the study provides a comprehensive

examination of the spatial and temporal distribution patterns of

heat health risk. On one hand, by identifying key areas of highest

and high risk, as well as those with low and lowest risk, the

research contributes to the understanding of how environmental,

social, and urbanization factors interplay to influence health
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FIGURE 5

Spatial distribution of HHR subzones in the eastern China. (A) 2010. (B) 2015. (C) 2019.

TABLE 7 The proportion of areas with the highest and high-health risk

dominated by each category.

Category 2010 2015 2019

Hazard 11.42% 13.92% 27.40%

Social vulnerability 88.49% 85.93% 72.49%

Exposure 0.09% 0.15% 0.11%

TABLE 8 The result of consistency test.

Kappa coe�cient P

0.882 0.000

risks associated with heat. On the other hand, the study’s focus

on the transformation of risk areas over time adds a dynamic

perspective to the theoretical discussion. By showing that area

conversions mainly occur between adjacent risk levels, the research

contributes to the understanding of how risk can evolve and

change, highlighting the need for adaptive and responsive risk

management strategies.

In terms of practice, the study’s findings offer valuable insights

for policymakers. On one hand, by identifying high-risk areas,

the research provides a basis for targeted interventions aimed at

mitigating the impacts of heat on human health. This includes

measures such as improving urban green spaces, enhancing public

awareness about heat-related health risks, and developing early

warning systems. The identification of different factors-dominated

areas suggests that policies should also focus on reducing the

vulnerability of certain populations to heat risks. On the other

hand, the study’s prediction results for 2025 offer a forward-looking

perspective that can inform long-term planning and strategy

FIGURE 6

Spatial distribution of social vulnerability in the eastern China.
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TABLE 9 The results of robustness test.

Number of iterations Kappa coe�cient P

8 0.879 0.000

12 0.881 0.000

development. By highlighting the expansion of high-risk areas and

the shifting of risk levels in specific regions, the research provides a

roadmap for proactive risk management and mitigation efforts.

5.1 Policy suggestions

To significantly reduce health risks associated with urban

environments, a comprehensive and targeted approach is essential.

In central cities, urban planning interventions should focus on

alleviating the heat island effect by planting more trees and shrubs

in public spaces and along streets (57), expanding urban parks

and green spaces, and creating cooler microclimates through the

expansion of water bodies such as fountains, lakes, and rivers (50,

52). Additionally, green building designs that incorporate natural

lighting (58), ventilation, and energy-efficient materials should be

promoted, along with the installation of green roofs and walls to

provide insulation and reduce heat absorption.

Relocating industrial factories to the outskirts of the city can

further minimize greenhouse gas emissions (59) and enhance the

urban environment (60), while robust transportation networks

and employment opportunities in the suburbs can encourage

population decentralization and reduce urban density (18, 61).

Social support plans should include policies and allowances for

outdoor workers to avoid working during peak heat hours, ensuring

access to shaded rest areas and cool drinking water (62).Workers in

agriculture and forestry should be provided with necessary cooling

equipment and protective gear, along with regular health check-ups

and training sessions on heat stress management.

For older adults and vulnerable populations (16), specialized

facilities should be constructed to ensure access to air-conditioned

spaces and medical care, with financial subsidies offered for the

installation of cooling equipment in care institutions (63). Public

health activities should focus on improving medical facilities

in underserved areas through subsidies, staff transfers, training

programs, and the importation of skilled technicians (64, 65).

Comprehensive public awareness campaigns should be launched in

less developed regions to educate the population on heat risks and

preventive measures, utilizing local media, community centers, and

schools to disseminate information and promote healthy behaviors.

Economic incentives and support should be provided to less

developed regions to foster economic growth and resilience against

heatwaves, ensuring that policy frameworks include measures to

mitigate and adapt to rising temperatures. In suburban areas,

zoning regulations should be implemented to prevent excessive

land development that could lead to the loss of green spaces and

water bodies (66, 67), while encouraging the preservation of natural

landscapes and the creation of green corridors to mitigate heat.

By taking these specific and targeted steps, urban and suburban

areas can enhance the overall quality of life for residents while

significantly reducing health risks associated with heat and other

urban hazards.

5.2 Limitations

There are several limitations and uncertainties in the study.

Firstly, the selection of indicators involves various factors,

including meteorological, economic, demographic, and social

factors. However, some indicators were not chosen due to

limitations in the data sources and spatial representation.

Additionally, the selection of indicators might have influenced

the assessment results. There is no standardized approach for

selecting indicators. Understanding heat health risks requires a

nuanced approach that accounts for the intricate interactions

between physical, socio-economic, and environmental factors.

Simplistic explanations fall short of capturing the full complexity

of these issues. Therefore, to conduct a deeper analysis of

social vulnerability, it is imperative to employ a more nuanced

vulnerability index that incorporates a multitude of interconnected

factors, including not just economic indicators but also social

cohesion, environmental health, and governance effectiveness.

Future research should refine selection methods for robustness,

representativeness, and applicability, incorporating such indices.

Methods such as the Heat Vulnerability Index (33), the Hesitant

Analytic Hierarchy Process (34), and LST-based models (68) offer

diverse perspectives but require standardization and integration

to form a comprehensive assessment framework. The CA-Markov

model, while effective in simulating and predicting spatial-temporal

changes, exhibits several limitations. Its predictions are inherently

uncertain due to assumptions about the stationarity of transition

probabilities and the potential oversimplification of complex

system dynamics. Additionally, the model’s reliance on historical

data can lead to inaccuracies if the data is incomplete or does

not accurately represent the system’s true behavior. Furthermore,

incorporating heat-related death statistics enhances risk area

validation. Further research is crucial to improve accuracy and

precision, including exploring advanced modeling techniques,

enhancing data resolution, and refining our understanding of the

multifaceted nature of heat health risks.

6 Conclusion

In conclusion, our research introduces an innovative method

for assessing urban heat-related health risks, which effectively

facilitates risk zoning and prediction. Our findings reveal that

risks decline from urban to rural areas, suggesting that urban

centers require balanced planning strategies to mitigate heat

islands, such as promoting green infrastructure initiatives like

increased tree coverage and green roofs. In contrast, suburbs

necessitate the development of targeted social support plans for

vulnerable populations.

This series of findings unveils the specific spatial characteristics

of heat health risks in urban environments, demonstrating

that these risks are associated not only with the density and

temperature of urban centers, but also influenced by various

factors such as vegetation cover and economic development

levels. These discoveries offer deeper insights into the formation

mechanisms of urban heat island effects and the vulnerability of

different socioeconomic groups to heat health risks. Consequently,

our research not only provides spatial distribution maps of these

risks but also introduces a new perspective for understanding
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FIGURE 7

The prediction of HHR in the eastern China. (A) 2010. (B) 2015. (C) 2019.

the complexity and diversity of urban heat health risks. Firstly,

they serve as a basis for optimizing monitoring systems, enabling

them to more accurately identify and issue early warnings for

high-risk areas. Secondly, by integrating multiple data sources

and risk assessment methods, our study paves the way for the

intelligence and automation of warning systems. Moreover,

these findings reveal distinct challenges faced by urban centers

and suburbs during heatwaves, providing a foundation for

developing targeted mitigation measures. For instance, in urban

centers, measures like increasing greenery, improving building

designs, and urban planning may be necessary to reduce heat

island effects; whereas in suburbs, additional social support and

shelters for vulnerable groups could be required. Furthermore,

these discoveries underscore the importance of community

engagement and public education in raising awareness and

enhancing residents’ capacity to cope with health risks. Lastly,

our research provides scientific evidence for policymakers

to formulate more comprehensive and effective heatwave

mitigation plans.

However, it is important to acknowledge the limitations of

our study, including data availability and quality constraints,

methodological assumptions, and the potential for unmeasured

confounding factors. In the future, we will further refine

our research.

Firstly, the impact of climate change on future heat

health risks should be investigated to anticipate and

prepare for evolving threats. Secondly, more sophisticated

vulnerability assessments that incorporate a broader range

of social and demographic factors. Lastly, by evaluating

the effectiveness of different heatwave mitigation strategies,

we can provide information for policymakers and improve

public health outcomes. By addressing these areas, we can

further refine our responses to heat-related health risks,

ultimately contributing to improved public health in urban

and suburban environments.
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