
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Public Health
Sec. Environmental Health and Exposome
Volume 13 - 2025 | doi: 10.3389/fpubh.2025.1517507
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: In China, coronary heart disease (CHD) is a significant public health issue affecting the population's health. Evidence suggests that outdoor PM2.5 is a crucial environmental risk factor for CHD mortality. This study aims to provide scientific evidence for the prevention and treatment of CHD by analyzing the trend of CHD mortality attributed to outdoor PM2.5 in China from 1994 to 2019. Methods: Data were obtained from the Global Burden of Disease Study (GBD) 2019.CHD mortality attributed to outdoor PM2.5 in China from 1994 to 2019 was extracted from the GBD Data tool. We used an age-period-cohort (APC) model based on the intrinsic estimator (IE) algorithm to decompose the age, period, and cohort effects related to CHD mortality attributed to outdoor PM2.5. Results: From 1994 to 2019, the crude mortality rates (CMRs) and age-standardized mortality rates (ASMRs) of CHD attributed to outdoor PM2.5 in China showed an overall upward trend. The APC model analysis showed that the relative risk of CHD mortality attributed to outdoor PM2.5 increased exponentially with age, reaching 89.284 (95% CI: 48.669, 163.793) in the 90-95 age group. The period effect increased monotonically, with a relative risk of 3.699 (95% CI: 3.639, 3.760) in 2019. The cohort effect decreased monotonically, with the lowest relative risk of CHD mortality attributed to outdoor PM2.5 in residents born between 1990 and 1994, at 0.135 (95% CI: 0.031, 0.588). Conclusion: The elderly, a high-risk population, should receive more attention. In the future, continuous efforts should be made to strengthen environmental air pollution control and implement targeted health interventions to reduce the impact of outdoor PM2.5 on CHD mortality.
Keywords: Outdoor PM2.5, coronary heart disease, mortality trends, age-period-cohort model, China
Received: 26 Oct 2024; Accepted: 18 Feb 2025.
Copyright: © 2025 Yuan, xiang, Li, Li, Pei and Qian. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Huang Yu xiang, West China Second University Hospital, Sichuan University, Chengdu, China
Li Li, West China Second University Hospital, Sichuan University, Chengdu, China
Yu Li, West China Second University Hospital, Sichuan University, Chengdu, China
Xiao Pei, West China Fourth Hospital of Sichuan University, Chengdu, Sichuan Province, China
Wang Qian, West China Second University Hospital, Sichuan University, Chengdu, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.