
Frontiers in Public Health 01 frontiersin.org

The relationship between 
epigenetic biomarkers and the 
risk of diabetes and cancer: a 
machine learning modeling 
approach
Shiqi Zhang 1,2†, Jianan Jin 2*†, Benfeng Xu 2†, Qi Zheng 3 and 
Haibo Mou 1*
1 Department of Oncology, Shulan (Hangzhou) Hospital, Affiliated to Zhejiang Shuren University 
Shulan International Medical College, Hangzhou, Zhejiang, China, 2 Graduate School, Zhejiang 
Chinese Medical University, Hangzhou, Zhejiang, China, 3 State Key Laboratory for Diagnosis and 
Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National 
Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment 
of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 
China

Introduction: Epigenetic biomarkers are molecular indicators of epigenetic 
changes, and some studies have suggested that these biomarkers have 
predictive power for disease risk. This study aims to analyze the relationship 
between 30 epigenetic biomarkers and the risk of diabetes and cancer using 
machine learning modeling.

Methods: The data for this study were sourced from the NHANES database, which 
includes DNA methylation arrays and epigenetic biomarker datasets. Nine machine 
learning algorithms were used to build models: AdaBoost, GBM, KNN, lightGBM, 
MLP, RF, SVM, XGBoost, and logistics. Model stability was evaluated using metrics 
such as Accuracy, MCC, and Sensitivity. The performance and decision-making 
ability of the models were displayed using ROC curves and DCA curves, while 
SHAP values were used to visualize the importance of each epigenetic biomarker.

Results: Epigenetic age acceleration was strongly associated with cancer risk 
but had a weaker relationship with diabetes. In the diabetes model, the top three 
contributing features were logA1Mort, family income-to-poverty ratio, and 
marital status. In the cancer model, the top three contributing features were 
gender, non-Hispanic White ethnicity, and PACKYRSMort.

Conclusion: Our study identified the relationship between epigenetic biomarkers 
and the risk of diabetes and cancer, and used machine learning techniques to 
analyze the contributions of various epigenetic biomarkers to disease risk.
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1 Introduction

Diabetes and cancer are major challenges in the field of global public health, with the 
incidence of these diseases continuing to rise (1–3), making it urgent to develop effective early 
detection signals and risk prediction tools.
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Epigenetic biomarkers, particularly DNA methylation, are an 
important direction for studying the mechanisms underlying these 
diseases. DNA methylation is a process in which methyl groups are 
added to DNA, leading to changes in gene function, such as the 
silencing of tumor suppressor genes, activation of oncogenes, and 
abnormalities in promoter regions (4–7). These changes are closely 
linked to the development of various chronic diseases (8–10). 
However, existing studies have mostly been limited to a small number 
of epigenetic biomarkers and lack in-depth exploration of the specific 
relationships between these biomarkers and diseases in different 
contexts. Epigenetic age clocks are constructed based on specific DNA 
methylation sites (CpG sites) and can accurately predict an individual’s 
“biological age,” which refers to the degree of aging of the body 
compared to its chronological age. By measuring different DNA 
methylation patterns, researchers have found that epigenetic age is not 
only highly correlated with chronological age (11), but its acceleration 
(the difference between epigenetic age and chronological age) is 
considered a potential biomarker for aging and various diseases (12). 
For example, accelerated epigenetic age has been found to be closely 
associated with several age-related diseases, such as diabetes, cancer, 
cardiovascular diseases, and others (8, 13, 14).

In this study, we  present 30 epigenetic biomarkers that have 
shown potential associations with diabetes and cancer in research 
across multiple fields. We expanded the selection scope and considered 
the biological significance of these biomarkers in the context of 
various diseases. These include epigenetic clocks (such as HorvathAge, 
LinAge, PhenoAge, WeidnerAge, etc.), lifespan and mortality-related 
biomarkers (such as GrimAgeMort, ADMMort, B2MMort, 
GDF15Mort, etc.), immune system biomarkers (such as CRPMor, 
CD8TPP, CD4TPP, NKcel, Bcell, etc.), and metabolism-related 
biomarkers (such as logA1CMort, LeptinMort, PACKYRSMort), 
which fall into three major categories of epigenetic material. For 
example, biomarkers like HorvathAge and GrimAge are closely 
associated with the aging process and the onset of various chronic 
diseases. LinAge, a biomarker associated with an individual’s age, has 
demonstrated a strong correlation with biological aging (15). 
Meanwhile, biomarkers such as LeptinMort and PACKYRSMort, 
which are linked to metabolic processes, smoking behaviors, and 
nutrition, have been confirmed in multiple studies to be associated 
with an increased risk of diabetes (16, 17). Additionally, GDF15Mort 
is related to age-associated mitochondrial dysfunction (18). Therefore, 
selecting these biomarkers as the focus of this study aims to explore 
their predictive ability and underlying mechanisms in diabetes 
and cancer.

Machine learning (ML), as an emerging artificial intelligence 
technology, offers advantages over traditional statistical analyses, such 
as higher predictive accuracy and the ability to maintain high 
prediction performance even with missing data. It is capable of 
making accurate predictions by utilizing data from various sources. 
The application of machine learning techniques in the medical field 
for disease diagnosis and prediction can significantly contribute to 
disease prevention and treatment (19, 20). In recent years, machine 
learning has been applied across various fields of clinical disease 
diagnosis. For example, studies have widely applied machine learning 
algorithms in the monitoring of tumors and cardiovascular diseases 
(21). Other research has used machine learning to analyze regularly 
collected electronic health record data and construct predictive 
models for the progression from prediabetes to type 2 diabetes (22).

The core objective of this study is to explore the relationship 
between different epigenetic age clocks and diabetes and cancer, 
analyzing the potential role of accelerated epigenetic age in these 
diseases. Secondly, machine learning techniques were used to 
construct risk assessment models for diabetes and cancer based on 
epigenetic biomarkers, and their predictive effectiveness in clinical 
settings was validated. Lastly, by combining clinical features with 
epigenetic biomarkers, the study aims to optimize risk prediction 
models, providing a basis for early disease screening and personalized 
intervention. Nine machine learning algorithms were selected to build 
the models, and model evaluations and comparisons were conducted 
to identify the best model for predicting cancer and diabetes risks. 
Thirty epigenetic biomarkers were used to predict the risk of diabetes 
and cancer and visualized for analysis. The goal is to assess the value 
of each epigenetic biomarker in predicting the occurrence of diabetes 
and cancer, especially in the early screening and prediction of these 
diseases. Epigenetics will undoubtedly help unravel more mysteries 
about aging and its associated diseases, offering strong support for the 
implementation of precision medicine.

2 Methods

2.1 Data sources and study population

The epigenetic biomarker data in this study are based on the DNA 
methylation array and epigenetic biomarker datasets from the 
NHANES database, an epidemiological survey program conducted by 
the National Center for Health Statistics (NCHS) at the Centers for 
Disease Control and Prevention (CDC) in the United States. DNA 
methylation array and epigenetic biomarker data were obtained from 
blood samples of participants. DNA was extracted from the samples 
and DNA methylation measurements were performed using the 
Illumina MethylationEPIC BeadChip. The methylation data were 
processed, preprocessed, and normalized to generate the epigenetic 
biomarker data (Table 1) (NHANES website). Sex, age, race, education 
level, marital status, household income, and poverty ratio were 
obtained from participant questionnaires and physical measurement 
datasets. Questionnaire data were collected using standardized 
questionnaires, and physical measurements were conducted at 
specially designed and equipped mobile centers.

In our study, race was categorized based on the questionnaire 
responses into five groups: Mexican American, non-Hispanic White, 
non-Hispanic Black, other Hispanic, and other races, with values 
assigned from 1 to 5. Education level was classified as high school or 
higher vs. less than high school. Marital status was categorized as 
married, cohabiting, or unmarried/not living with a partner. 
Household income and poverty ratio were divided into ≥300 and 
<300%, and BMI was categorized as ≥24 and <24.

2.2 Statistical analysis

Descriptive statistical analyses were performed using R software 
(version 4.4.1) (Tables 2, 3). For normally distributed continuous 
variables, means and standard deviations were reported, while for 
non-normally distributed continuous variables, medians and 
interquartile ranges were reported. Categorical variables were presented 
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as percentages. Continuous variables were analyzed using t-tests or 
Mann–Whitney U tests, while categorical variables were analyzed using 
chi-square tests or Fisher’s exact tests.

2.3 Machine learning modeling

The study population was randomly divided into training and 
validation sets at an 80:20 ratio, followed by standardization 
preprocessing. Nine machine learning algorithms, including AdaBoost, 
GBM, KNN, LightGBM, MLP, RF, SVM, XGBoost, and Logistic 
Regression (see Table  4 for details), were used to develop 
predictive models.

Oversampling was performed using SMOTE to balance the 
positive and negative samples, generating more positive samples to 
alleviate the class imbalance issue. The dataset was then divided into 
training and test sets. CV was set to 5, indicating 5-fold cross-
validation, which was used to assess the average performance of the 

model under different parameter combinations. The training dataset 
was randomly divided into five mutually exclusive subsets (folds), 
with one subset used as the validation set in each iteration, and the 
remaining four subsets combined for training. This process allowed 
for 5 training and validation cycles, resulting in five validation 
outcomes. Grid search (GridSearchCV) was used in conjunction with 
cross-validation to exhaustively search the parameter grid and return 
the optimal parameter combination for the machine learning model, 
thereby achieving the best performing model. Metrics such as 
Positive Predictive Value, Negative Predictive Value, Sensitivity, 
Specificity, Matthews Correlation Coefficient, AUC, Kappa, Brier 
Score, accuracy, and F1 Score were used to evaluate model 
performance (Tables 5, 6). The Positive Predictive Value (PPV) 
reflects the accuracy of the model’s positive predictions, with higher 
values indicating fewer false positives. The F1 score ranges from 0 to 
1, with higher values indicating a better balance between precision 
and recall, making it suitable for imbalanced class problems. The 
above metrics, combined with ROC curves (Figures 1, 2) and DCA 

TABLE 1 Biomarkers of aging.

Variable Role Source

HorvathAge (PMID: 24138928) Estimated chronological age 51 tissues

HannumAge (PMID: 23177740) Estimated chronological age Whole blood

SkinBloodAge (PMID: 30048243) Estimated chronological age Skin and blood derived tissues

PhenoAge (PMID: 29676998) Estimated chronological age Whole blood

LinAge (PMID: 26928272) Estimated chronological age Whole blood

WeidnerAge (PMID: 24490752) Estimated chronological age Whole blood

VidalBraloAge (PMID: 27471517) Estimated chronological age Whole blood

YangCell (PMID: 27716309) Forecasted mitotic cell division Whole blood

ZhangAge (PMID: 31443728) Estimated chronological age Whole blood and saliva

GrimAgeMort (PMID: 30669119) Estimated mortality Whole blood

GrimAge2Mort (PMID: 36516495) Estimated mortality Whole blood

DunedinPoAm (PMID: 32367804) predicted pace of aging Whole blood

HorvathTelo (PMID: 31422385) Estimated telomere length Leukocytes

ADMMort (PMID: 30669119) Predicted adrenomedullin Whole blood

B2MMort (PMID: 30669119) Predicted beta-2 microglobulin Whole blood

CystatinCMort1 (PMID: 30669119) predicted cystatin C Whole blood

GDF15Mort (PMID: 30669119) Predicted Beta-2 growth differentiation factor 15 u Whole blood

LeptinMort (PMID: 30669119) Predicted leptin Whole blood

logA1CMort (PMID: 36516495) Expected hemoglobin A1c Whole blood

CRPMort (PMID: 36516495) Predicted high sensitivity C-reactive protein Whole blood

PACKYRSMort (PMID: 30669119) Predicted pack years of smoking Whole blood

PAI1Mort (PMID: 30669119) Predicted plasminogen activation inhibitor Whole blood

TIMP1Mort (PMID: 30669119) predicted tissue inhibitor metalloproteinase 1 Whole blood

CD8TPP (PMID: 23903776, PMID: 29843789, PMID: 26956433) Predicted CD8+ T-cell proportion Whole blood

CD4TPP (PMID: 23903776, PMID: 29843789, PMID: 26956433) Predicted CD4+ T-cell proportion Whole blood

NKcel (PMID: 23903776, PMID: 29843789, PMID: 26956433) Predicted natural killer cell proportion Whole blood

Bcell (PMID: 23903776, PMID: 29843789, PMID: 26956433) Predicted B-cell proportion Whole blood

MonoPP2 (PMID: 23903776, PMID: 29843789, PMID: 26956433) Predicted monocyte proportion Whole blood

NeuPP (PMID: 23903776, PMID: 29843789, PMID: 26956433) Predicted neutrophil proportion Whole blood

https://doi.org/10.3389/fpubh.2025.1509458
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2025.1509458

Frontiers in Public Health 04 frontiersin.org

TABLE 2 Cancer baseline table.

Variable Non-tumor patients Tumor patients p Overall

N = 1,083 N = 174

Sex: 0.627

  Female 523 (48.3%) 80 (46.0%)

  Male 560 (51.7%) 94 (54.0%)

Age 63.8 (9.69) 69.1 (10.00) <0.001

Race: <0.001

  Mexican 272 (25.1%) 23 (13.2%)

  Non-Hispanic whites 63 (5.8%) 6 (3.4%)

  Non-Hispanic blacks 459 (42.4%) 119 (68.4%)

  Other Hispanics 249 (23.0%) 25 (14.4%)

  Other Ethnic Groups 40 (3.7%) 1 (0.6%)

Edu: 0.039

  High school and above 857 (79.1%) 150 (86.2%)

  Below high school 226 (20.9%) 24 (13.8%)

Marry: 1.000

  Get married 734 (67.8%) 118 (67.8%)

  Unmarried 349 (32.2%) 56 (32.2%)

Hypertension: 0.053

  Didn’t happened 587 (54.2%) 80 (46.0%)

  Exist 496 (45.8%) 94 (54.0%)

Diabetes: 0.278

  Didn’t happened 894 (82.5%) 150 (86.2%)

  Exist 189 (17.5%) 24 (13.8%)

HorvathAge 65.2 (8.84) 70.3 (9.81) <0.001

HannumAge 64.8 (9.31) 70.2 (9.80) <0.001

SkinBloodAge 62.4 (9.27) 67.4 (9.74) <0.001

PhenoAge 53.3 (10.2) 58.9 (11.0) <0.001

ZhangAge 65.9 (3.62) 68.0 (3.82) <0.001

LinAge 55.3 (11.5) 61.7 (13.3) <0.001

WeidnerAge 53.5 (10.2) 56.9 (11.8) <0.001

VidalBraloAge 59.2 (6.27) 63.0 (7.58) <0.001

HorvathAge acceleration 1.40 (5.32) 1.24 (6.14) 0.755

HannumAge acceleration 0.98 (5.14) 1.11 (5.64) 0.779

SkinBloodAge acceleration −1.40 (4.12) −1.64 (4.90) 0.526

PhenoAge acceleration −10.45 (6.33) −10.18 (6.90) 0.626

ZhangAge acceleration 2.15 (6.47) −1.06 (6.82) <0.001

LinAge acceleration −8.43 (6.66) −7.42 (8.51) 0.134

WeidnerAge acceleration −10.32 (8.80) −12.13 (10.1) 0.027

VidalBraloAge acceleration −4.56 (7.32) −6.08 (8.04) 0.020

GDF15Mort 928 (154) 1,010 (171) <0.001

B2MMort 1,712,009 (168,743) 1,780,582 (166,397) <0.001

CystatinCMort 606,425 (38,641) 625,317 (41,041) <0.001

TIMP1Mort 35,106 (1,555) 35,939 (1,663) <0.001

ADMMort 347 (27.5) 357 (26.8) <0.001

(Continued)
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curves (Figures 3, 4), were used to assess the stability and clinical 
decision-making ability of the model (23).

The ROC curve (Receiver Operating Characteristic Curve) measures 
the model’s discriminatory ability at various thresholds by plotting the 
trade-off between the True Positive Rate (TPR) and False Positive Rate 
(FPR). It is insensitive to the proportion of positive and negative samples 
and is ideal for evaluating binary classification models comprehensively. 
The DCA curve is typically used to assess the “net benefit” of a model in 
practical clinical applications, taking into account the risk–benefit 
balance at different thresholds. Net benefit is a metric that combines the 
risks of false positives and false negatives. A high net benefit indicates 
that the model effectively identifies the disease at that threshold, with a 
greater contribution compared to the cost of incorrect predictions. The 
threshold refers to the probability cutoff used by the decision model, 
which determines whether a sample is classified as positive. A higher 
threshold reduces false positives but may miss some true positives (i.e., 
increasing false negatives). We need to select the model that provides 
higher net benefit across a broader range of thresholds. The best-
performing model was selected, and SHAP values were computed and 
plotted in summary graphs (Figures 5, 6) to report the contribution of 
each feature. Partial dependence plots (Figures  7–9) were used to 
visualize the impact of changes in aging-related genetic biomarkers on 
the outcomes.

3 Results

3.1 Baseline table

Table  3 the diabetes model included a total of 2,205 
participants, with 394 diabetic patients, the majority of whom 
were of other Hispanic descent. The average age of diabetic 

patients was 66.6 years (SD 8.99), significantly higher than that of 
non-diabetic patients, which was 65.6 years (SD 10.1), p = 0.048, 
indicating that age is an important risk factor for tumor 
occurrence. There was also a significant difference in racial 
distribution between the two groups (p < 0.001). The proportion 
of Mexican Americans (34.3%) and other Hispanics (27.1%) was 
significantly higher in diabetic patients compared to non-diabetic 
patients (26.6 and 19.7%, respectively), while the proportion of 
non-Hispanic Blacks was significantly lower in diabetic patients 
(26.9%) compared to non-diabetic patients (44.2%), indicating a 
significant racial difference in tumor incidence. The proportion of 
diabetic patients with a high school education or higher was 
significantly lower than that of non-diabetic patients (66.5% vs. 
75.0%, p = 0.001). In addition, the prevalence of hypertension was 
significantly higher in diabetic patients compared to non-diabetic 
patients (65.0% vs. 43.8%, p < 0.001). There was no significant 
difference in marital status distribution between the two groups 
(p = 0.918). Age-related indicators: All biological age markers 
(such as HorvathAge, HannumAge, PhenoAge, etc.) in the diabetic 
group were significantly higher than those in the non-diabetic 
group (p < 0.05). Indicators such as HorvathAge acceleration, 
HannumAge acceleration, SkinBloodAge acceleration, PhenoAge 
acceleration, ZhangAge acceleration, and LinAge acceleration 
showed significant differences in diabetic patients (p < 0.05), 
While some age acceleration indicators, such as WeidnerAge 
acceleration and VidalBraloAge acceleration, showed no 
significant differences in diabetic patients (p > 0.05). Indicators 
such as GDF15Mort, B2MMort, CystatinCMort, TIMP1Mort, 
ADMMort, PAI1Mort, LeptinMort, CRPMort, logA1CMort, 
GrimAgeMort, GrimAge2Mort, and YangCell were significantly 
higher in diabetic patients than in non-diabetic patients (p < 0.05). 
Indicators such as PACKYRSMort, HorvathTelo, DunedinPoAm, 

TABLE 2 (Continued)

Variable Non-tumor patients Tumor patients p Overall

N = 1,083 N = 174

PAI1Mort 17,262 (2,749) 17,685 (2,632) 0.052

LeptinMort 9,291 (4,075) 9,198 (3,992) 0.776

PACKYRSMort 18.0 (13.0) 20.8 (12.6) 0.007

CRPMort 0.73 (0.45) 0.75 (0.45) 0.508

logA1CMort 1.73 (0.03) 1.73 (0.03) 0.446

GrimAgeMort 64.2 (8.64) 69.0 (9.12) <0.001

GrimAge2Mort 70.0 (8.55) 74.4 (9.04) <0.001

HorvathTelo 6.63 (0.30) 6.47 (0.34) <0.001

YangCell 0.06 (0.02) 0.07 (0.02) 0.312

DunedinPoAm 1.10 (0.09) 1.12 (0.09) 0.020

CD8TPP 0.09 (0.04) 0.09 (0.04) 0.514

CD4TPP 0.17 (0.06) 0.15 (0.07) <0.001

Nkcell 0.06 (0.03) 0.06 (0.03) 0.158

Bcell 0.07 (0.03) 0.06 (0.05) 0.220

MonoPP 0.08 (0.02) 0.08 (0.02) 0.181

NeuPP 0.57 (0.11) 0.60 (0.12) 0.018

WTDN4YR 33,481 (31,803) 38,071 (28,596) 0.054

https://doi.org/10.3389/fpubh.2025.1509458
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2025.1509458

Frontiers in Public Health 06 frontiersin.org

TABLE 3 Diabetic baseline table.

Variable Non-diabetic Diabetic p Overall

N = 1,810 N = 394

Age 65.6 (10.1) 66.6 (8.99) 0.048

Race: <0.001

  Mexican 481 (26.6%) 135 (34.3%)

  Non-Hispanic whites 115 (6.4%) 30 (7.6%)

  Non-Hispanic blacks 800 (44.2%) 106 (26.9%)

  Other Hispanics 357 (19.7%) 107 (27.1%)

  Other Ethnic Groups 57 (3.1%) 16 (4.1%)

Edu: 0.001

  High school and above 1,358 (75.0%) 262 (66.5%)

  Below high school 452 (25.0%) 132 (33.5%)

Marry: 0.918

  Get married 1,170 (64.6%) 253 (64.2%)

  Unmarried 640 (35.4%) 141 (35.8%)

Hypertension: <0.001

  Didn’t happened 1,018 (56.2%) 138 (35.0%)

  Exist 792 (43.8%) 256 (65.0%)

HorvathAge 66.5 (9.23) 67.8 (8.43) 0.007

HannumAge 66.6 (9.75) 68.1 (9.05) 0.003

SkinBloodAge 64.1 (9.74) 65.4 (8.86) 0.006

PhenoAge 55.2 (10.8) 56.8 (9.86) 0.004

ZhangAge 66.6 (3.82) 67.1 (3.45) 0.029

LinAge 57.0 (12.5) 58.7 (11.2) 0.010

WeidnerAge 54.2 (10.9) 54.9 (9.46) 0.197

VidalBraloAge 60.2 (6.89) 60.5 (6.44) 0.326

HorvathAge acceleration 0.85 (5.56) 1.12 (6.02) 0.416

HannumAge acceleration 0.97 (5.50) 1.49 (5.29) 0.077

SkinBloodAge acceleration −1.56 (4.51) −1.20 (4.67) 0.161

PhenoAge acceleration −10.45 (6.67) −9.85 (6.85) 0.118

ZhangAge acceleration 1.00 (6.74) 0.41 (6.14) 0.094

LinAge acceleration −8.58 (7.57) −7.96 (7.07) 0.118

WeidnerAge acceleration −11.44 (9.56) −11.75 (9.15) 0.544

VidalBraloAge acceleration −5.45 (7.58) −6.11 (7.47) 0.116

GDF15Mort 962 (167) 983 (149) 0.014

B2MMort 1,743,827 (175,105) 1,769,706 (171,428) 0.007

CystatinCMort 614,217 (40,737) 620,710 (37,297) 0.002

TIMP1Mort 35,388 (1,613) 35,655 (1,421) 0.001

ADMMort 350 (27.0) 353 (25.6) 0.018

PAI1Mort 17,179 (2,752) 18,550 (2,703) <0.001

LeptinMort 9,330 (4,053) 9,958 (4,299) 0.008

PACKYRSMort 18.8 (13.4) 19.4 (12.1) 0.369

CRPMort 0.75 (0.46) 0.93 (0.44) <0.001

logA1CMort 1.72 (0.03) 1.75 (0.03) <0.001

GrimAgeMort 65.8 (8.93) 67.3 (7.94) <0.001

(Continued)
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CD8TPP, CD4TPP, Nkcell, Bcell, MonoPP, and NeuPP showed no 
significant differences between the two groups (p > 0.05).

Table 2 the cancer model included a total of 1,291 participants, 
with 177 cancer patients, primarily distributed among non-Hispanic 
Black individuals. The average age of cancer patients (69.1 years, SD 
10.00) was significantly higher than that of non-cancer patients 
(63.8 years, SD 9.69), p < 0.001. The proportion of cancer patients with 
a high school education or higher (86.2%) was significantly higher 
than that of non-cancer patients (79.1%), p = 0.039. There was a 
significant difference in racial distribution between the two groups 
(p < 0.001). Among non-cancer patients, the proportion of 
non-Hispanic Black individuals was relatively low (42.4%), while this 
proportion significantly increased to 68.4% in cancer patients. 
Additionally, the proportion of Mexican Americans, other Hispanics, 
and other ethnic groups was significantly lower among cancer 
patients. There was no significant difference between the two groups 
in terms of marital status (Marry), prevalence of hypertension 
(Hypertension), and incidence of diabetes (Diabetes). All age clock 
indicators (such as HorvathAge, HannumAge, SkinBloodAge, 
PhenoAge, ZhangAge, LinAge, WeidnerAge, VidalBraloAge, etc.) 
were significantly higher in cancer patients than in non-cancer 
patients (p < 0.001). ZhangAge acceleration: Cancer patients had 
significantly lower values than non-cancer patients (p < 0.001). 
WeidnerAge acceleration (p = 0.027) and VidalBraloAge acceleration 
(p = 0.020): The acceleration markers in cancer patients were 
significantly different from those in non-cancer patients. Other age 
acceleration markers (such as HorvathAge acceleration, HannumAge 
acceleration, etc.) showed no significant differences (p > 0.05). 
Indicators such as GDF15Mort, B2MMort, CystatinCMort, 
TIMP1Mort, ADMMort, PACKYRSMort, GrimAgeMort, 
GrimAge2Mort, HorvathTelo, DunedinPoAm, CD4TPP, and NeuPP 
were significantly higher in cancer patients than in non-cancer 
patients (p < 0.05). Indicators such as LeptinMort, CRPMort, 
logA1CMort, YangCell, CD8TPP, Nkcell, Bcell, and MonoPP showed 
no significant differences between the two groups (p > 0.05), 
suggesting that these markers may not have a direct association with 
tumor incidence in this study, or their mechanisms of action are 
complex and require further exploration with larger sample sizes or 
multivariate analyses.

3.2 Epigenetic age clocks

Correlation analysis shows that the correlation coefficients 
between eight epigenetic ages and chronological age are all greater 
than 0.5 (Table  7), indicating that they are all strongly positively 
correlated with age, thus confirming the reliability of these clocks.

Further heatmap analysis was performed to examine the 
correlation between epigenetic age acceleration (epigenetic age – 
chronological age) and diabetes, as well as cancer (Figures 10, 11). 
These two heatmaps display the partial correlation coefficients 
between diseases (diabetes and cancer) and epigenetic age clock 
acceleration, illustrating the independent correlations between 
each disease and different age acceleration factors. Partial 
correlation refers to the correlation coefficient for each number, 
representing the partial correlation between a specific disease 
(diabetes or cancer) and a particular age acceleration factor. 
Positive correlation (red): A positive coefficient indicates that the 
disease is positively correlated with the acceleration factor (the 
higher the acceleration factor, the higher the disease risk). 
Negative correlation (blue): A negative coefficient indicates that 
the disease is negatively correlated with the acceleration factor 
(the higher the acceleration factor, the lower the disease risk). 
Close to 0 (gray): No significant correlation. In the heatmap, the 
colors range from red (positive correlation) to blue (negative 
correlation), with gray indicating weak correlations.

The partial correlation coefficients are generally close to 0, 
indicating that there is almost no significant independent correlation 
between diabetes and these epigenetic age clock accelerations. The 
differences in the effects of each acceleration factor on diabetes are 
minimal and not statistically significant.

Figure 10 LinAge acceleration and ZhangAge acceleration show a 
weak negative correlation with cancer (−0.19), suggesting that these 
two acceleration factors may be associated with a reduced risk of 
cancer. VidalBraloAge acceleration and HannumAge acceleration 
show a weak positive correlation with cancer (0.10 and 0.05, 
respectively), indicating that these epigenetic age clock accelerations 
may be associated with an increased risk of cancer. Other acceleration 
factors (such as HorvathAge, SkinBloodAge, etc.) show a correlation 
close to 0 with cancer.

TABLE 3 (Continued)

Variable Non-diabetic Diabetic p Overall

N = 1,810 N = 394

GrimAge2Mort 71.5 (8.82) 73.6 (7.79) <0.001

HorvathTelo 6.58 (0.31) 6.56 (0.31) 0.220

YangCell 0.06 (0.02) 0.07 (0.02) 0.048

DunedinPoAm 1.11 (0.09) 1.12 (0.09) 0.125

CD8TPP 0.09 (0.04) 0.10 (0.05) 0.237

CD4TPP 0.17 (0.06) 0.16 (0.07) 0.503

Nkcell 0.06 (0.03) 0.06 (0.03) 0.616

Bcell 0.07 (0.03) 0.07 (0.03) 0.877

MonoPP 0.08 (0.02) 0.08 (0.02) 0.938

NeuPP 0.59 (0.11) 0.59 (0.11) 0.718

WTDN4YR 32,234 (30,634) 21,961 (25,770) <0.001
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3.3 Development and performance of risk 
models

After calculating evaluation metrics and plotting the ROC and 
DCA curves, this study assesses model performance using multiple 
indicators, with detailed evaluation values provided in Tables 5, 6, 
which present the performance evaluation of the diabetes and cancer 

prediction models. This study plots the ROC curves for various 
models of diabetes and cancer. According to the definition of the ROC 
curve, as the threshold changes, the curve should ideally be  as 
“convex” as possible toward the top-left corner. Regions with high 
TPR and low FPR indicate better classifier performance, so LightGBM 
is chosen as the model with the best performance. Models with higher 
DCA curves indicate greater net benefit at the corresponding 

TABLE 4 Comparison of differences among 9 machine learning models.

Name Features Advantages Disadvantages Applicable Scenarios
AdaBoost (Adaptive 

boosting)

Gradually improve model 

performance by combining multiple 

weak classifiers (typically decision 

trees), with a particular emphasis on 

samples that were previously 

misclassified.

Improve classification accuracy; 

simple and easy to implement; 

applicable to binary 

classification problems.

Sensitive to outliers and noise; 

difficult to handle multi-class 

problems.

Binary classification tasks; 

scenarios where the 

performance of simple models 

needs to be improved.

GBM (Gradient 

boosting machine)

Optimize the loss function by 

gradually adding decision trees and 

use gradient descent methods to 

minimize error.

Powerful predictive ability; high 

flexibility; capable of optimizing 

various loss functions.

Long training time; prone to 

overfitting; complex parameter 

tuning.

Regression and classification 

tasks; prediction problems on 

complex datasets.

KNN (K-nearest 

neighbors)

Based on distance metrics; make 

predictions by finding the nearest K 

neighbors; applicable to classification 

and regression.

Simple and intuitive; no training 

process required; suitable for 

small datasets.

High computational cost; poor 

performance on high-

dimensional data; sensitive to 

noise.

Classification and regression 

tasks; small-scale datasets; 

scenarios requiring simple 

models.
LightGBM (Light 

gradient boosting 

machine)

An efficient gradient boosting 

framework developed by Microsoft, 

utilizing histogram-based decision 

tree algorithms, supporting 

categorical features, offering fast 

training speed, and low memory 

consumption.

Fast training speed; high 

memory efficiency; supports 

large-scale data; efficient 

handling of categorical features.

Complex parameter tuning; 

sensitive to outliers; not suitable 

for small datasets.

Large-scale datasets; tasks 

requiring fast training and 

prediction; scenarios with 

many categorical features.

MLP (Multi-layer 

perceptron)

A multilayer perceptron consists of 

multiple hidden layers, uses nonlinear 

activation functions, and is capable of 

learning complex patterns and 

relationships.

Able to capture complex 

nonlinear relationships; suitable 

for various tasks (classification, 

regression).

Long training time; requires 

large amounts of data; difficult 

to interpret; prone to 

overfitting.

Large-scale and complex 

datasets; tasks requiring 

handling of nonlinear 

relationships.

RF (Random forest) By constructing multiple decision 

trees and combining their prediction 

results, randomly selecting features 

and samples to generate diverse tree 

structures.

Strong resistance to overfitting; 

suitable for high-dimensional 

data; capable of handling 

missing values; easy to 

parallelize.

Large model size; slow 

prediction speed; difficult to 

interpret.

Classification and regression 

tasks; high-dimensional data; 

scenarios requiring robust 

models.

SVM (Support vector 

machine)

Finds a hyperplane that maximizes 

the classification margin; applicable 

to high-dimensional and small-

sample data; handles nonlinear 

boundaries through kernel functions.

Performs well in high-

dimensional spaces; suitable for 

small-sample data; handles 

nonlinear problems through 

kernel functions.

Long training time; not friendly 

to large-scale datasets; complex 

parameter tuning; sensitive to 

noise.

High-dimensional data; small-

scale datasets; tasks requiring 

precise classification 

boundaries.

XGBoost (Extreme 

gradient boosting)

An optimized gradient boosting 

framework with efficient 

implementation and strong 

performance, incorporating parallel 

processing, regularization, and 

pruning techniques.

High performance; strong 

scalability; supports parallel 

computing; prevents overfitting; 

widely used in competitions and 

real-world problems.

Parameter tuning is complex; 

training time is relatively long; 

and there are high requirements 

for data preprocessing.

Regression and classification 

tasks of various types; 

scenarios requiring high 

prediction accuracy and model 

performance; large-scale 

datasets.
Logistic regression Transforms the linearly combined 

input features into probability values 

using a logistic function (e.g., the 

Sigmoid function), suitable for binary 

and multiclass classification 

problems.

Simple and easy to understand; 

computationally efficient; strong 

model interpretability; suitable 

for linearly separable data.

Only applicable to linear 

relationships; sensitive to 

multicollinearity; not suitable 

for handling complex nonlinear 

relationships.

Binary and multiclass 

classification tasks; scenarios 

where model interpretability is 

required; linearly separable 

datasets.
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TABLE 5 Diabetes prediction model performance evaluation.

Model PPV NPV Sensitivity Specificity MCC AUC Kappa Brier 
Score

F1 Accuracy Precision Recall

AdaBoost 0.66 0.88 0.91 0.58 0.52 0.9 0.49 0.25 0.77 0.74 0.66 0.91

GBM 0.71 0.89 0.91 0.67 0.59 0.92 0.57 0.15 0.8 0.78 0.71 0.91

GradientBoosting 0.72 0.89 0.91 0.67 0.59 0.92 0.57 0.15 0.8 0.78 0.72 0.91

KNN 0.67 0.88 0.91 0.6 0.53 0.83 0.5 0.19 0.77 0.75 0.67 0.91

LightGBM 0.84 0.92 0.92 0.84 0.76 0.96 0.75 0.09 0.88 0.88 0.84 0.92

MLP 0.0 0.52 0.0 1.0 0.0 0.5 0.0 0.48 0.0 0.52 1.0 0.0

RF 0.86 0.86 0.85 0.87 0.72 0.94 0.72 0.11 0.85 0.86 0.86 0.85

SVM 0.48 0.0 1.0 0.0 0.0 0.36 0.0 0.26 0.64 0.48 0.48 1.0

XGBoost 0.82 0.91 0.91 0.82 0.73 0.96 0.73 0.1 0.87 0.86 0.82 0.91

LogisticRegression 0.48 0.76 0.98 0.05 0.09 0.67 0.03 0.34 0.65 0.49 0.48 0.98

TABLE 6 Cancer prediction model performance evaluation.

Model PPV NPV Sensitivity Specificity MCC AUC Kappa Brier 
Score

F1 Accuracy Precision Recall

AdaBoost 0.71 0.92 0.94 0.63 0.6 0.9 0.57 0.24 0.81 0.78 0.71 0.94

GBM 0.81 0.95 0.96 0.78 0.75 0.96 0.74 0.1 0.88 0.87 0.81 0.96

GradientBoosting 0.81 0.95 0.96 0.78 0.75 0.96 0.74 0.1 0.88 0.87 0.81 0.96

KNN 0.71 0.86 0.9 0.65 0.56 0.86 0.54 0.17 0.79 0.77 0.71 0.9

LightGBM 0.87 0.96 0.96 0.86 0.83 0.98 0.82 0.07 0.91 0.91 0.87 0.96

MLP 0.5 1.0 1.0 0.03 0.12 0.52 0.03 0.49 0.67 0.51 0.5 1.0

RF 0.89 0.91 0.9 0.89 0.79 0.96 0.79 0.09 0.9 0.9 0.89 0.9

SVM 0.49 0.0 1.0 0.0 0.0 0.66 0.0 0.23 0.66 0.49 0.49 1.0

XGBoost 0.86 0.97 0.97 0.84 0.82 0.98 0.81 0.07 0.91 0.91 0.86 0.97

LogisticRegression 0.49 0.0 1.0 0.0 0.0 0.66 0.0 0.34 0.66 0.49 0.49 1.0
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FIGURE 1

ROC curve of the diabetes model.

FIGURE 2

ROC curves of the cancer model.

threshold probabilities, thus demonstrating superior performance. 
Different models may perform differently across different threshold 
ranges. For example, in the low threshold range (<0.2), some models 
(such as Logistic Regression and LightGBM) may have higher net 
benefits. In the middle range (0.2–0.6), models like Gradient Boosting 

and RF may outperform others. At high thresholds (>0.7), the net 
benefit of the models may approach that of the “Treat None” strategy 
(no intervention). The reference significance of “Treat All” and “Treat 
None”: “Treat All” is an extreme strategy where all patients are treated. 
“Treat None” is another extreme strategy where no patient receives 
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intervention. When the model’s curve lies between “Treat All” and 
“Treat None,” it indicates that the model’s prediction lacks clinical 
value. Selection of the optimal model: Considering the overall 

threshold range, the model that consistently stays above “Treat All” 
and “Treat None” while covering a broader threshold probability range 
is the optimal choice. From this DCA curve, it is observed that 

FIGURE 3

DCA curves of the diabetic model.

FIGURE 4

DCA curves of the cancer model.
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FIGURE 5

Summary plot of SHAP values for the diabetes model.

Gradient Boosting and LightGBM demonstrate superior net benefits 
across larger threshold ranges. This study evaluates model 
performance using various indicators, with detailed evaluation values 
provided in Tables 5, 6, which present the performance evaluation of 
the diabetes and cancer prediction models. In the diabetes prediction, 
LightGBM achieved an AUC of 1.00, an MCC of 0.97, and an F1 Score 
of 0.98 on the validation set, while GBM had an AUC of 0.99, an MCC 
of 0.93, and an F1 Score of 0.95 (Table 5). LightGBM is thus selected 
as the best model. Similarly, in cancer prediction, LightGBM achieved 
an AUC of 0.98, an MCC of 0.83, and an F1 Score of 0.91 (Table 6). 
Therefore, it can be concluded that the LightGBM model is the best 
comprehensive model for assessing the risk of diabetes and cancer, 
and is selected for use.

The SHAP value summary plot reports that the top three 
contributing features in the diabetes model are logA1Mort, family 
income-to-poverty ratio, and marital status (Figure 5). In the cancer 
model, the top three contributing features are gender, non-Hispanic 

white, and PACKYRSMort (Figure 6). Based on the above SHAP value 
summary plot, partial dependence plots for important features were 
drawn. An increase in logA1Mort is positively correlated with the risk 
of diabetes (Figure 9). When the economic status of the subjects is 
poorer (such as when the family income-to-poverty ratio is close to 0 
or 1), the probability of developing diabetes is higher. When the family 
income-to-poverty ratio is between 1 and 4, the partial dependence 
values stabilize, and there is no significant fluctuation in diabetes risk. 
When the poverty ratio exceeds 4, the partial dependence values 
sharply decrease, suggesting that a higher poverty ratio (better 
economic status) may be  associated with a lower risk of diabetes 
(Figure 8). On the other hand, Figure 7 shows that PACKYRSMort is 
non-linearly related to cancer risk. When the cumulative smoking 
burden is less than 10, the risk of cancer is relatively low. When the 
cumulative smoking burden is between 10 and 30, the risk of cancer 
significantly increases. When the cumulative smoking burden exceeds 
30, the risk of cancer shows a declining trend.
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FIGURE 6

Summary plot of SHAP values for the cancer model.

FIGURE 7

Cancer PACKYSMort partial dependence plot. FIGURE 8

Diabetes ratio of poverty partial dependence plot.
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4 Discussion

4.1 Epigenetic age clock

Epigenetic clocks rely on DNA methylation (DNAm) analysis at 
specific CpG sites to predict an individual’s chronological age with 
high accuracy (11). Additionally, epigenetic age acceleration—the 
discrepancy between chronological age and epigenetic age—is 
increasingly recognized as a marker of aging, capable of predicting 
premature onset of diseases and early mortality (12). When applied to 
large-scale human epidemiological datasets, research has shown that 
the gap between predicted epigenetic age and actual chronological age 
is linked to various age-related diseases, particularly when epigenetic 
age surpasses chronological age. There is growing evidence supporting 
the notion that accelerated epigenetic aging serves as a novel 
biomarker for cancer risk. A study by Plonski et al. (13) found that 
epigenetic age acceleration correlates with late-stage mortality in both 
cancer and chronic diseases. Similarly, research by Zheng et al. (24) 
demonstrated a statistically significant positive correlation between 
epigenetic age acceleration and overall mortality, highlighting its role 
as a key predictor of colorectal cancer survival. Levine et  al. (25) 
further suggested that accelerated epigenetic aging could serve as a 
useful biomarker for assessing lung cancer susceptibility. In the 
present study, univariate analysis revealed that all epigenetic clocks 
(including HorvathAge, HannumAge, PhenoAge, and others) were 
significantly elevated in cancer patients compared to non-cancer 

controls. Heatmap analysis also identified a weak negative correlation 
(−0.19) between LinAge acceleration and ZhangAge acceleration with 
cancer risk, suggesting that these two forms of epigenetic age 
acceleration might be associated with a lower cancer risk. Conversely, 
VidalBraloAge acceleration and HannumAge acceleration showed 
weak positive correlations (0.10 and 0.05, respectively) with cancer, 
indicating that these epigenetic age accelerations may be linked to an 
increased cancer risk. These findings support the conclusion that 
epigenetic age acceleration is potentially associated with cancer risk. 
Consistent with previous studies (14), which have suggested that 
epigenetic age accelerations, such as Horvath acceleration, Hannum 
acceleration, and Grim acceleration, can predict cancer mortality, the 
results reinforce the role of epigenetic age acceleration in 
cancer outcomes.

In this study, various epigenetic age acceleration markers, 
including HorvathAge accelerations, HannumAge accelerations, 
SkinBloodAge accelerations, PhenoAge accelerations, ZhangAge 
accelerations, and LinAge accelerations, exhibited significant 
differences in diabetic patients (p < 0.05). However, there was little 
to no significant independent correlation between diabetes and 
these accelerations of epigenetic age clocks. Previous research (8) 
has also shown that epigenetic age is linked to the mortality risk in 
individuals with type 2 diabetes. Vetter et al. (26) noted that after 
adjusting for covariates, no significant cross-sectional association 
was found between epigenetic age acceleration and the diagnosis 
of diabetes. On the other hand, longitudinal analysis indicated that 
in male diabetic participants, each additional year of 7-CpG 
DNAm acceleration at baseline was associated with an 11% 
increased likelihood of developing new diabetes-related 
complications or exacerbating pre-existing complications during 
the follow-up period. A separate longitudinal study conducted 
among twins (27) found a positive correlation between blood 
glucose levels and epigenetic age markers. As this study is cross-
sectional, it did not perform longitudinal comparisons, suggesting 
that future research should explore the relationship between 
epigenetic age and diabetes in more depth through longitudinal 
studies. Furthermore, due to sample limitations in the database, 
diabetes was not categorized in this study, highlighting the need for 
more detailed research with categorized data and larger sample 
sizes in future investigations.

4.2 The relationship between other 
epigenetic materials and diseases

In this study, epigenetic markers such as GDF15Mort, B2MMort, 
CystatinCMort, TIMP1Mort, ADMMort, PACKYRSMort, 
GrimAgeMort, GrimAge2Mort, HorvathTelo, DunedinPoAm, 
CD4TPP, and NeuPP were significantly higher in cancer patients 
compared to non-cancer patients (p < 0.05). These biomarkers are 
involved in key cellular processes, such as cell cycle regulation, 
inflammatory response, apoptosis, and gene expression regulation, 
all of which play crucial roles in cancer development and 
progression. GDF15 promotes tumor cell invasion and metastasis by 
regulating cell migration and apoptosis (28). High expression of 
GDF15 in various cancer types is associated with tumor invasiveness 
and poor prognosis (29). TIMP1 as a matrix metalloproteinase 
inhibitor, TIMP1 regulates matrix remodeling in the tumor 

FIGURE 9

Diabetes logA1CMort partial dependence plot.

TABLE 7 Correlation analysis of chronological age and epigenetic age.

Variable Correlation coefficient

HorvathAge 0.847

HannumAge 0.861

SkinBloodAge 0.910

PhenoAge 0.804

ZhangAge 0.930

LinAge 0.811

WeidnerAge 0.571

VidalBraloAge 0.662
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microenvironment and promotes tumor metastasis (30, 31). Elevated 
levels of TIMP1 are linked to poor prognosis in multiple cancers 
(32–34).

4.3 Diabetes risk assessment model

This study employed machine learning techniques to analyze the 
relationship between 30 epigenetic biomarkers and the risks of 
diabetes and cancer, and it visualized the association between the most 
influential biomarkers and the outcomes. In the diabetes risk 
assessment model, the top three most important features identified 

were logA1Mort, the household income to poverty ratio, and marital 
status. Among these, logA1Mort demonstrated a linear relationship 
with the onset of diabetes, where its increase was positively correlated 
with an elevated risk of diabetes. LogA1Mort refers to the 
log-transformed glycated hemoglobin value derived from DNA 
methylation (35), and evidence indicates that it is strongly correlated 
with insulin, triglyceride, and glucose levels, as well as with insulin 
sensitivity and glucose metabolism (35). Importantly, studies have 
shown that for each standard deviation increase in logA1Mort, the 
risk ratio for coronary heart disease rises by approximately 30% (35). 
These findings suggest that logA1Mort could serve as a valuable 
biomarker for predicting diabetes, particularly in the context of an 

FIGURE 10

Epigenetic age acceleration correlation heatmaps.
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aging population. Integrating age with epigenetic biomarkers could 
facilitate the identification of high-risk groups, enabling earlier 
interventions. This study is the first to quantify the contribution of 
logA1Mort in diabetes prediction using machine learning techniques. 
By incorporating machine learning models alongside 30 epigenetic 
biomarkers, we were able to more accurately assess the contribution 
of these biomarkers to diabetes risk, offering a novel approach for 
early diabetes screening.

In this study, a poorer economic status, as indicated by a 
household income-to-poverty ratio close to 0 or 1, was associated with 
a higher likelihood of developing diabetes. When the household 
income-to-poverty ratio ranged from 1 to 4, the partial dependence 

values stabilized, showing no significant fluctuations in diabetes risk. 
However, when the poverty ratio exceeded 4, the partial dependence 
values sharply decreased, suggesting that a higher poverty ratio (which 
reflects better economic status) may be linked to a reduced risk of 
developing diabetes. The household income-to-poverty ratio, as a 
proxy for socioeconomic status, has been demonstrated in several 
studies to significantly influence both the incidence and prognosis of 
diabetes (36). This study further highlights the predictive role of 
income and poverty ratio in assessing diabetes risk, particularly in 
low-income groups, where both the incidence and mortality rates of 
diabetes are higher. Socioeconomic factors can elevate the risk of 
diabetes by influencing behaviors related to health, access to 

FIGURE 11

Epigenetic age acceleration correlation heatmaps.
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healthcare, and other factors. Therefore, future diabetes prevention 
and intervention strategies should take these socioeconomic variables 
into account, with a particular focus on enhancing early screening and 
health education for low-income populations.

In this study, marital status is also one of the important features in 
the diabetes model. Studies have pointed out (37) that for minority 
men and non-Hispanic white men, divorce/separation status is 
significantly associated with diabetes mortality, while for minority 
women and non-Hispanic white women, widowhood status is 
significantly associated with diabetes mortality. Some studies have 
shown (38, 39) that the impact of marital status on diabetes mortality 
differs by gender.

4.4 Cancer risk assessment model

In the cancer risk assessment model, gender, non-Hispanic White 
ethnicity, and PACKYRSMort were identified as the top three 
important features. Among these, gender was found to be one of the 
most significant contributing factors, which aligns with existing 
literature, underscoring gender as a critical element in cancer risk 
prediction. The incidence of various cancers shows notable differences 
between males and females. Several studies have indicated (40) that 
men generally exhibit a higher incidence of various cancer types 
compared to women, particularly cancers that are strongly linked to 
smoking and alcohol consumption, such as lung cancer, esophageal 
cancer, and metastatic cancers. Due to differences in endocrine 
functions, immune system responses, and other factors such as 
physical activity, men tend to have higher susceptibility to these 
cancers. For instance, in the case of lung cancer (41), men face a 
significantly higher risk compared to women, especially among 
smokers. Although smoking rates have decreased among women, the 
incidence of lung cancer in women has risen in recent years, which 
may be attributed to factors such as women’s smoking levels, genetic 
predispositions, and gender-specific differences in smoking behaviors. 
Conversely, breast cancer incidence is substantially higher in women 
than in men (42, 43), a difference closely tied to the role of estrogen in 
the female body. Estrogen promotes the development and lactation of 
breast tissue, and prolonged exposure to this hormone may increase 
the risk of developing breast cancer.

There is substantial evidence that habitual smoking is a major risk 
factor for immune-mediated inflammatory diseases and various 
cancers (44). Specifically, smoking is a major risk factor for head and 
neck cancers and lung cancer (45). Approximately 90% of lung cancer 
cases are directly related to smoking (46). Smoking is also closely 
linked to bladder cancer, pancreatic cancer, and renal pelvic cancer. 
Smoking is also associated with the etiology of colon cancer, liver 
cancer, and stomach cancer (45, 46). Existing data clearly indicate that 
smoking increases the risk of cancer in multiple organs (47) and often 
leads to premature death. The five-year survival rate for lung cancer is 
very low, only 15%. Other smoking-related cancers, such as liver 
cancer and pancreatic cancer, also have low five-year survival rates (18 
and 9%, respectively). PACKYRSMort is a composite biomarker for 
estimating pack-years of smoking, proposed by Ake T. Lu based on 
DNA methylation (17). Our study shows that PACKYRSMort has a 
nonlinear relationship with cancer risk. When the cumulative 
smoking burden is <10, the risk of cancer is relatively low. When the 

cumulative smoking burden is between 10 and 30, the risk of cancer 
significantly increases. When the cumulative smoking burden is >30, 
the risk of cancer begins to decline. Our results differ from other 
studies. Rota et al. (48) quantified the dose–response relationship 
between smoking and gastric cancer risk and found that smoking is 
not only an independent risk factor for gastric cancer, but the risk 
increases with the number of cigarettes smoked daily, from a small 
amount to 20, and the risk increases in a dose-dependent manner with 
the duration of smoking. A meta-analysis by Lugo et al. showed that 
the risk of gallbladder cancer increases linearly with smoking intensity 
and duration (49). In addition, the risk of breast cancer (50) and 
cervical cancer (51) has also been reported to be linearly associated 
with smoking intensity. Our study is consistent with previous research 
when the cumulative smoking burden is ≤30, but when the cumulative 
smoking burden is >30, cancer risk shows a certain degree of decline. 
This phenomenon requires further biological explanation. A possible 
explanation is that the carcinogenic risk brought by long-term 
smoking has pushed the individual’s health status to the limit, and 
other health factors (such as immune decline, organ failure, etc.) may 
begin to significantly affect their cancer risk. Additionally, long-term 
smoking may alter DNA methylation patterns (52, 53), leading to the 
suppression or activation of certain gene expressions, thus affecting 
the mechanisms of cancer development.

In the cancer prediction model, the non-Hispanic White population 
emerged as a key sociodemographic factor, underscoring the significant 
role of race and cultural background in cancer risk prediction. Previous 
studies have shown (54) that, compared to non-Hispanic White 
individuals, Hispanic men and women experienced 25–30% lower 
cancer incidence (2014–2018) and mortality rates (2015–2019), with a 
notably lower incidence of common cancers. This study further 
substantiates the relevance of this group in the cancer model, 
highlighting the potential influence of racial differences on cancer 
susceptibility. These findings not only enhance our understanding of 
cancer risk prediction but also lay the groundwork for future 
personalized risk assessments. By integrating epigenetic biomarkers 
(such as PACKYRSMort) with sociodemographic factors (such as 
gender and non-Hispanic White ethnicity), we can more accurately 
identify high-risk populations, particularly in contexts where gender, 
race, and socioeconomic factors intersect. These results offer both 
theoretical support for personalized cancer prevention strategies and 
data-driven insights that can inform public health policy development.

5 Limitations and future directions

Although this study has made significant progress in exploring the 
relationship between epigenetic biomarkers and the risk of diabetes 
and cancer, and has successfully developed relevant predictive models, 
several limitations remain. These limitations highlight important areas 
for improvement and provide a clear direction for future research.

Firstly, although this study is based on a large amount of 
epigenetic data, the data is sourced from a single NHANES database. 
The types of diabetes and cancer are not further categorized, and the 
data is geographically limited to North America. Additionally, there 
are missing data points within the dataset, leading to sample 
imbalances. While standardization and other balancing techniques 
were applied during data processing, some bias remains inevitable. 
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Therefore, future validation with external cohorts and additional 
cohort studies would be helpful for further analysis. Expanding data 
collection and analysis to include diverse regions, races, and cultural 
backgrounds would improve the model’s applicability and 
external validity.

Secondly, this study mainly relies on existing epigenetic clocks and 
machine learning techniques for risk prediction. While these methods 
have demonstrated their effectiveness in certain aspects, there is still 
significant potential for improvement in terms of algorithm complexity 
and predictive accuracy. For instance, training machine learning 
models requires large volumes of high-quality data, and challenges 
such as reducing data bias, addressing data loss, and improving feature 
selection accuracy remain critical areas for improvement. Additionally, 
the interpretability of these models is another key concern, particularly 
in the medical field, where it is essential to understand and explain the 
model’s predictions for clinical applications. Therefore, future research 
should place greater emphasis on enhancing the interpretability of 
these models, with a particular focus on integrating biological contexts 
to clarify the roles of various epigenetic biomarkers in 
disease prediction.

Thirdly, while epigenetic biomarkers offer promising new 
biological indicators for early regulation and risk assessment of diabetes 
and cancer, the genetic mechanisms involved are highly complex and 
operate across multiple regulatory levels. Single markers, such as 
specific DNA methylation sites or epigenetic age clocks, may not fully 
capture the underlying biological processes. To address this limitation, 
future research should incorporate multidimensional analyses that 
combine epigenetic biomarkers with other molecular markers, such as 
genetic mutations, proteomics, and transcriptomics. This multi-omics 
approach would provide a more comprehensive understanding of an 
individual’s aging process and enhance the accuracy of disease 
risk predictions.

Additionally, as a cross-sectional study, this research is limited in 
its ability to establish causal relationships and may be influenced by 
age-related effects or selection bias. To overcome these limitations, 
future research should consider conducting longitudinal studies to 
track changes in epigenetic biomarkers over time. This approach 
would help clarify causal relationships between epigenetic changes 
and disease development, providing a more dynamic understanding 
of how these biomarkers contribute to the progression of diseases such 
as diabetes and cancer.

6 Conclusion

This study is the first to combine epigenetic age acceleration with 
risk assessment of diabetes and cancer, and conducted a 
comprehensive analysis using machine learning models. The results 
indicate that epigenetic age acceleration is closely associated with 
cancer risk, but has a weaker relationship with diabetes. Through 
machine learning methods, the top three contributing features in the 
diabetes model are logA1Mort, household income-to-poverty ratio, 
and marital status, with an increase in logA1Mort being positively 
correlated with diabetes risk. In the cancer model, the top three 
contributing features are gender, non-Hispanic White ethnicity, and 
PACKYRSMort, with PACKYRSMort showing a nonlinear 
relationship with cancer risk.

Data availability statement

Publicly available datasets were analyzed in this study. The data 
can be accessed from the NHANES Database at: https://www.cdc.gov/
nchs/nhanes/index.htm.

Ethics statement

This study was based on publicly available datasets. Ethical review 
and approval was not required for the study, in accordance with the 
local legislation and institutional requirements.

Author contributions

SZ: Conceptualization, Data curation, Formal analysis, 
Writing – review & editing. JJ: Conceptualization, Data curation, 
Writing  – original draft. BX: Writing  – review & editing, 
Software. QZ: Investigation, Methodology, Validation, Writing – 
original draft. HM: Data curation, Visualization, Writing  – 
original draft.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Acknowledgments

We express our gratitude to the participants and staff of the 
National Health and Nutrition Examination Survey (NHANES) from 
2011 to 2018 for their valuable contributions.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

https://doi.org/10.3389/fpubh.2025.1509458
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm


Zhang et al. 10.3389/fpubh.2025.1509458

Frontiers in Public Health 19 frontiersin.org

References
 1. GBD 2021 Diabetes Collaborators. Global, regional, and national burden of 

diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis 
for the global burden of disease study 2021. Lancet. (2023) 402:203–34. doi: 
10.1016/S0140-6736(23)01301-6

 2. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. 
Global cancer statistics 2022: Globocan estimates of incidence and mortality 
worldwide for 36 cancers in 185 countries. CA Cancer J Clin. (2024) 74:229–63. doi: 
10.3322/caac.21834

 3. GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years 
lived with disability (Ylds), disability-adjusted life-years (Dalys), and healthy life 
expectancy (Hale) for 371 diseases and injuries in 204 countries and territories and 811 
subnational locations, 1990-2021: a systematic analysis for the global burden of disease 
study 2021. Lancet. (2024) 403:2133–61. doi: 10.1016/S0140-6736(24)00757-8

 4. Huang Q, Han L, Liu Y, Wang C, Duan D, Lu N, et al. Elevation of Ptpn 1 promoter 
methylation is a significant risk factor of type 2 diabetes in the Chinese population. Exp 
Ther Med. (2017) 14:2976–82. doi: 10.3892/etm.2017.4924

 5. Sheaffer KL, Elliott EN, Kaestner KH. Dna Hypomethylation contributes to 
genomic instability and intestinal Cancer initiation. Cancer Prev Res (Phila). (2016) 
9:534–46. doi: 10.1158/1940-6207.CAPR-15-0349

 6. Sergeev AV, Loiko AG, Genatullina AI, Petrov AS, Kubareva EA, Dolinnaya NG, 
et al. Crosstalk between G-Quadruplexes and Dnmt3a-mediated methylation of the 
c-Myc oncogene promoter. Int J Mol Sci. (2023) 25:45. doi: 10.3390/ijms25010045

 7. Chu AY, Tin A, Schlosser P, Ko YA, Qiu C, Yao C, et al. Epigenome-wide association 
studies identify Dna methylation associated with kidney function. Nat Commun. (2017) 
8:1286. doi: 10.1038/s41467-017-01297-7

 8. Sabbatinelli J, Giuliani A, Kwiatkowska KM, Matacchione G, Belloni A, Ramini D, et al. 
Dna methylation-derived biological age and long-term mortality risk in subjects with type 
2 diabetes. Cardiovasc Diabetol. (2024) 23:250. doi: 10.1186/s12933-024-02351-7

 9. Jones AC, Patki A, Srinivasasainagendra V, Hidalgo BA, Tiwari HK, Limdi NA, 
et al. A methylation risk score for chronic kidney disease: a hypergen study. Sci Rep. 
(2024) 14:17757. doi: 10.1038/s41598-024-68470-z

 10. Morales Berstein F, Mccartney DL, Lu AT, Tsilidis KK, Bouras E, Haycock P, et al. 
Assessing the causal role of epigenetic clocks in the development of multiple cancers: a 
Mendelian randomization study. eLife. (2022) 11:11. doi: 10.7554/eLife.75374

 11. Lee HS, Park T. The influences of DNA methylation and epigenetic clocks, on 
metabolic disease, in middle-aged Koreans. Clin Epigenetics. (2020) 12:148. doi: 
10.1186/s13148-020-00936-z

 12. Gialluisi A, Santoro A, Tirozzi A, Cerletti C, Donati MB, de Gaetano G, et al. 
Epidemiological and genetic overlap among biological aging clocks: new challenges in 
biogerontology. Ageing Res Rev. (2021) 72:101502. doi: 10.1016/j.arr.2021.101502

 13. Plonski NM, Chen C, Dong Q, Qin N, Song N, Parikh HM, et al. Epigenetic age 
in peripheral blood among children, adolescent, and adult survivors of childhood 
cancer. JAMA Netw Open. (2023) 6:e2310325. doi: 10.1001/jamanetworkopen.2023.10325

 14. Mendy A, Mersha TB. Epigenetic age acceleration and mortality risk prediction in U.S. 
adults. medRxiv. [Preprint]. (2024) 2024.08.21.24312373. doi: 10.1101/2024.08.21.24312373

 15. Lin Q, Weidner CI, Costa IG, Marioni RE, Ferreira MRP, Deary IJ, et al. DNA 
methylation levels at individual age-associated CpG sites can be  indicative for life 
expectancy. Aging (Albany NY). (2016) 8:394–401. doi: 10.18632/aging.100908

 16. Ofori EK, Adekena CN, Boima V, Asare-Anane H, Yorke E, Nyarko ENY, et al. 
Serum leptin levels in patients with chronic kidney disease and hypertensive heart 
disease: an observational cross-sectional study. Health Sci Rep. (2023) 6:e1053. doi: 
10.1002/hsr2.1053

 17. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA methylation 
GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). (2019) 
11:303–27. doi: 10.18632/aging.101684

 18. Fujita Y, Taniguchi Y, Shinkai S, Tanaka M, Ito M. Secreted growth differentiation 
factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-
related disorders. Geriatr Gerontol Int. (2016) 16:17–29. doi: 10.1111/ggi.12724

 19. Han K, Wang J, Chu Y, Liao Q, Ding Y, Zheng D, et al. Deep learning based method 
for predicting DNA N6-methyladenosine sites. Methods. (2024) 230:91–8. doi: 
10.1016/j.ymeth.2024.07.012

 20. Baviera-Martineza C, Martinez-Millana A, Lopez-Casanova FB. Integrating 
automation, interactive visualization, and unsupervised learning for enhanced diabetes 
management. Stud Health Technol Inform. (2024) 316:1699–703. doi: 10.3233/SHTI240750

 21. Zhou D, Tian F, Tian X, Sun L, Huang X, Zhao F, et al. Diagnostic evaluation of a 
deep learning model for optical diagnosis of colorectal cancer. Nat Commun. (2020) 
11:2961. doi: 10.1038/s41467-020-16777-6

 22. Anderson JP, Parikh JR, Shenfeld DK, Ivanov V, Marks C, Church BW, et al. 
Reverse engineering and evaluation of prediction models for progression to type 2 
diabetes: an application of machine learning using electronic health records. J Diabetes 
Sci Technol. (2015) 10:6–18. doi: 10.1177/1932296815620200

 23. Guo J, He Q, Li Y. Machine learning-based prediction of vitamin D deficiency: 
NHANES 2001-2018. Front Endocrinol (Lausanne). (2024) 15:1327058. doi: 
10.3389/fendo.2024.1327058

 24. Zheng C, Li L, Xu R. Association of epigenetic clock with consensus molecular 
subtypes and overall survival of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 
(2019) 28:1720–4. doi: 10.1158/1055-9965.EPI-19-0208

 25. Levine ME, Hosgood HD, Chen B, Absher D, Assimes T, Horvath S. DNA 
methylation age of blood predicts future onset of lung cancer in the women's health 
initiative. Aging (Albany NY). (2015) 7:690–700. doi: 10.18632/aging.100809

 26. Vetter VM, Spieker J, Sommerer Y, Buchmann N, Kalies CH, Regitz-Zagrosek V, 
et al. DNA methylation age acceleration is associated with risk of diabetes complications. 
Commun Med. (2023) 3:21. doi: 10.1038/s43856-023-00250-8

 27. Miao K, Hong X, Cao W, Lv J, Yu C, Huang T, et al. Association between epigenetic 
age and type 2 diabetes mellitus or glycemic traits: a longitudinal twin study. Aging Cell. 
(2024) 23:e14175. doi: 10.1111/acel.14175

 28. Joo M, Kim D, Lee MW, Lee HJ, Kim JM. Gdf15 promotes cell growth, migration, 
and invasion in gastric cancer by inducing Stat3 activation. Int J Mol Sci. (2023) 24:2925. 
doi: 10.3390/ijms24032925

 29. Siddiqui JA, Pothuraju R, Khan P, Sharma G, Muniyan S, Seshacharyulu P, et al. 
Pathophysiological role of growth differentiation factor 15 (Gdf15) in obesity, cancer, and 
cachexia. Cytokine Growth Factor Rev. (2022) 64:71–83. doi: 10.1016/j.cytogfr.2021.11.002

 30. Dantas E, Murthy A, Ahmed T, Ahmed M, Ramsamooj S, Hurd MA, et al. Timp1 
is an early biomarker for detection and prognosis of lung cancer. Clin Transl Med. (2023) 
13:e1391. doi: 10.1002/ctm2.1391

 31. Tian Z, Ou G, Su M, Li R, Pan L, Lin X, et al. Timp1 derived from pancreatic 
cancer cells stimulates Schwann cells and promotes the occurrence of perineural 
invasion. Cancer Lett. (2022) 546:215863. doi: 10.1016/j.canlet.2022.215863

 32. Guccini I, Revandkar A, D'ambrosio M, Colucci M, Pasquini E, Mosole S, et al. 
Senescence reprogramming by Timp1 deficiency promotes prostate cancer metastasis. 
Cancer Cell. (2021) 39:68–82.e9. doi: 10.1016/j.ccell.2020.10.012

 33. Lin X, Zhao R, Bin Y, Huo R, Xue G, Wu J. Timp1 promotes thyroid cancer cell 
progression through macrophage phenotypic polarization via the Pi3K/Akt signaling 
pathway. Genomics. (2024) 116:110914. doi: 10.1016/j.ygeno.2024.110914

 34. Yang L, Jiang Q, Li DZ, Zhou X, Yu DS, Zhong J. Timp1 mRNA in tumor-educated 
platelets is diagnostic biomarker for colorectal cancer. Aging (Albany NY). (2019) 
11:8998–9012. doi: 10.18632/aging.102366

 35. Lu AT, Binder AM, Zhang J, Yan Q, Reiner AP, Cox SR, et al. DNA methylation 
GrimAge version 2. Aging (Albany NY). (2022) 14:9484–549. doi: 10.18632/aging.204434

 36. Larkin HD. AAP recommends immediate, intensive treatment for child obesity. 
JAMA. (2023) 329:364. doi: 10.1001/jama.2022.24498

 37. Kposowa AJ, Aly Ezzat D, Breault K. Diabetes mellitus and marital status: 
evidence from the national longitudinal mortality study on the effect of marital 
dissolution and the death of a spouse. Int J Gen Med. (2021) 14:1881–8. doi: 
10.2147/IJGM.S307436

 38. Escolar-Pujolar A, Córdoba Doña JA, Goicolea Julían I, Rodríguez GJ, Santos 
Sánchez V, Mayoral Sánchez E, et al. The effect of marital status on social and gender 
inequalities in diabetes mortality in Andalusia. Endocrinol Diabetes Nutr (Engl Ed). 
(2018) 65:21–9. doi: 10.1016/j.endinu.2017.10.006

 39. Ramezankhani A, Azizi F, Hadaegh F. Associations of marital status with diabetes, 
hypertension, cardiovascular disease and all-cause mortality: a long term follow-up 
study. PLoS One. (2019) 14:e0215593. doi: 10.1371/journal.pone.0215593

 40. Haupt S, Caramia F, Klein SL, Rubin JB, Haupt Y. Sex disparities matter in cancer 
development and therapy. Nat Rev Cancer. (2021) 21:393–407. doi: 10.1038/ 
s41568-021-00348-y

 41. Siegfried JM. Sex and gender differences in lung cancer and chronic obstructive 
lung disease. Endocrinology. (2022) 163:bqab254. doi: 10.1210/endocr/bqab254

 42. Bhardwaj PV, Gupta S, Elyash A, Teplinsky E. Male breast cancer: a review on 
diagnosis, treatment, and survivorship. Curr Oncol Rep. (2024) 26:34–45. doi: 
10.1007/s11912-023-01489-z

 43. Coelingh Bennink HJT, Egberts JFM, Mol JA, Roes KCB, van Diest PJ. Breast 
cancer and major deviations of genetic and gender-related structures and function. J 
Clin Endocrinol Metab. (2020) 105:e3065–74. doi: 10.1210/clinem/dgaa404

 44. Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative 
stress, inflammation, macromolecular damage, and cancer. Mutat Res Rev Mutat Res. 
(2021) 787:108365. doi: 10.1016/j.mrrev.2021.108365

 45. National Center for Chronic Disease Prevention and Health Promotion (US) 
Office on Smoking and Health. The health consequences of smoking—50 years of 

https://doi.org/10.3389/fpubh.2025.1509458
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1016/S0140-6736(23)01301-6
https://doi.org/10.3322/caac.21834
https://doi.org/10.1016/S0140-6736(24)00757-8
https://doi.org/10.3892/etm.2017.4924
https://doi.org/10.1158/1940-6207.CAPR-15-0349
https://doi.org/10.3390/ijms25010045
https://doi.org/10.1038/s41467-017-01297-7
https://doi.org/10.1186/s12933-024-02351-7
https://doi.org/10.1038/s41598-024-68470-z
https://doi.org/10.7554/eLife.75374
https://doi.org/10.1186/s13148-020-00936-z
https://doi.org/10.1016/j.arr.2021.101502
https://doi.org/10.1001/jamanetworkopen.2023.10325
https://doi.org/10.1101/2024.08.21.24312373
https://doi.org/10.18632/aging.100908
https://doi.org/10.1002/hsr2.1053
https://doi.org/10.18632/aging.101684
https://doi.org/10.1111/ggi.12724
https://doi.org/10.1016/j.ymeth.2024.07.012
https://doi.org/10.3233/SHTI240750
https://doi.org/10.1038/s41467-020-16777-6
https://doi.org/10.1177/1932296815620200
https://doi.org/10.3389/fendo.2024.1327058
https://doi.org/10.1158/1055-9965.EPI-19-0208
https://doi.org/10.18632/aging.100809
https://doi.org/10.1038/s43856-023-00250-8
https://doi.org/10.1111/acel.14175
https://doi.org/10.3390/ijms24032925
https://doi.org/10.1016/j.cytogfr.2021.11.002
https://doi.org/10.1002/ctm2.1391
https://doi.org/10.1016/j.canlet.2022.215863
https://doi.org/10.1016/j.ccell.2020.10.012
https://doi.org/10.1016/j.ygeno.2024.110914
https://doi.org/10.18632/aging.102366
https://doi.org/10.18632/aging.204434
https://doi.org/10.1001/jama.2022.24498
https://doi.org/10.2147/IJGM.S307436
https://doi.org/10.1016/j.endinu.2017.10.006
https://doi.org/10.1371/journal.pone.0215593
https://doi.org/10.1038/s41568-021-00348-y
https://doi.org/10.1038/s41568-021-00348-y
https://doi.org/10.1210/endocr/bqab254
https://doi.org/10.1007/s11912-023-01489-z
https://doi.org/10.1210/clinem/dgaa404
https://doi.org/10.1016/j.mrrev.2021.108365


Zhang et al. 10.3389/fpubh.2025.1509458

Frontiers in Public Health 20 frontiersin.org

progress: a report of the surgeon general. Atlanta (GA): Centers for Disease Control and 
Prevention (US) (2014).

 46. Viale PH. The American Cancer Society's facts & figures: 2020 edition. J Adv Pract 
Oncol. (2020) 11:135–6. doi: 10.6004/jadpro.2020.11.2.1

 47. Larsson SC, Burgess S. Appraising the causal role of smoking in multiple diseases: 
a systematic review and meta-analysis of Mendelian randomization studies. 
EBioMedicine. (2022) 82:104154. doi: 10.1016/j.ebiom.2022.104154

 48. Didovyk A, Tsimring LS. Synthetic gene circuits learn to classify. Cell Syst. (2017) 
4:151–3. doi: 10.1016/j.cels.2017.02.001

 49. Lugo A, Peveri G, Gallus S. Should we consider gallbladder cancer a new smoking-
related cancer? A comprehensive meta-analysis focused on dose-response relationships. 
Int J Cancer. (2020) 146:3304–11. doi: 10.1002/ijc.32681

 50. Scala M, Bosetti C, Bagnardi V, Possenti I, Specchia C, Gallus S, et al. Dose-
response relationships between cigarette smoking and breast cancer risk: a 

systematic review and meta-analysis. J Epidemiol. (2023) 33:640–8. doi: 
10.2188/jea.JE20220206

 51. Malevolti MC, Lugo A, Scala M, Gallus S, Gorini G, Lachi A, et al. Dose-risk 
relationships between cigarette smoking and cervical cancer: a systematic review and 
meta-analysis. Eur J Cancer Prev. (2023) 32:171–83. doi: 10.1097/CEJ.0000000000000773

 52. Zeilinger S, Kühnel B, Klopp N, Baurecht H, Kleinschmidt A, Gieger C, et al. 
Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS 
One. (2013) 8:e63812. doi: 10.1371/journal.pone.0063812

 53. Su D, Wang X, Campbell MR, Porter DK, Pittman GS, Bennett BD, et al. Distinct 
epigenetic effects of tobacco smoking in whole blood and among leukocyte subtypes. 
PLoS One. (2016) 11:e0166486. doi: 10.1371/journal.pone.0166486

 54. Miller KD, Ortiz AP, Pinheiro PS, Bandi P, Minihan A, Fuchs HE, et al. Cancer 
statistics for the US Hispanic/Latino population, 2021. CA Cancer J Clin. (2021) 
71:466–87. doi: 10.3322/caac.21695

https://doi.org/10.3389/fpubh.2025.1509458
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.6004/jadpro.2020.11.2.1
https://doi.org/10.1016/j.ebiom.2022.104154
https://doi.org/10.1016/j.cels.2017.02.001
https://doi.org/10.1002/ijc.32681
https://doi.org/10.2188/jea.JE20220206
https://doi.org/10.1097/CEJ.0000000000000773
https://doi.org/10.1371/journal.pone.0063812
https://doi.org/10.1371/journal.pone.0166486
https://doi.org/10.3322/caac.21695

	The relationship between epigenetic biomarkers and the risk of diabetes and cancer: a machine learning modeling approach
	1 Introduction
	2 Methods
	2.1 Data sources and study population
	2.2 Statistical analysis
	2.3 Machine learning modeling

	3 Results
	3.1 Baseline table
	3.2 Epigenetic age clocks
	3.3 Development and performance of risk models

	4 Discussion
	4.1 Epigenetic age clock
	4.2 The relationship between other epigenetic materials and diseases
	4.3 Diabetes risk assessment model
	4.4 Cancer risk assessment model

	5 Limitations and future directions
	6 Conclusion

	References

