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Background: Public health policy evaluation is crucial for improving health 
outcomes, optimizing healthcare resource allocation, and ensuring fairness and 
transparency in decision-making. With the rise of big data, traditional evaluation 
methods face new challenges, requiring innovative approaches.

Methods: This article reviews the principles, scope, and limitations of traditional 
public health policy evaluation methods and explores the application of machine 
learning in evaluating public health policies. It analyzes the specific steps for 
applying machine learning and provides practical examples. The challenges 
discussed include model interpretability, data bias, the continuation of historical 
health inequities, and data privacy concerns, while proposing ways to better apply 
machine learning in the context of big data.

Results: Machine learning techniques hold promise in overcoming some limitations 
of traditional methods, offering more precise evaluations of public health policies. 
However, challenges such as lack of model interpretability, the perpetuation of 
health inequities, data bias, and privacy concerns remain significant.

Discussion: To address these challenges, the article suggests integrating data-driven 
and theory-driven approaches to improve model interpretability, developing multi-
level data strategies to reduce bias and mitigate health inequities, ensuring data 
privacy through technical safeguards and legal frameworks, and employing validation 
and benchmarking strategies to enhance model robustness and reproducibility.
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1 Introduction

Policy assessment constitutes a vital component of the national governance framework 
(1). A scientific and accurate assessment of policy impacts is essential for the modernization 
of the national governance system and its capacity (2). Traditional policy assessment 
predominantly utilizes data from sources like official statistical yearbooks, publicly accessible 
questionnaire databases, and field surveys. The main objective of policy assessment is to 
empirically validate economic theories (3). In contrast, public health policy evaluations often 
require integrating various data sources, such as epidemiological, healthcare, and 
socioeconomic data. The diversity and complexity of data involved in public health assessments 
are more pronounced compared to other policy evaluations. Additionally, due to the sensitive 
nature of health data, these evaluations must carefully address data privacy and ethical 
concerns to ensure individual rights and privacy are protected during data usage. With the 
advent of the digital economy, driven by the rise of the Internet, cloud computing, and artificial 
intelligence, many biological data and medical records have been digitized. This has introduced 
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new types of data, such as text, image, and audio data, which are 
typically unstructured, high-dimensional, low in information density, 
and large in scale, exceeding the capabilities of traditional public 
health policy evaluation methods (4). Introducing machine learning 
methods is essential for effectively exploring and managing these data.

Machine learning is an emerging technology that integrates 
knowledge from diverse fields such as computer science, engineering, 
and statistics. It is widely utilized in areas including science, 
technology, and medicine, and is increasingly attracting interest from 
researchers in the social sciences (5). The advent of machine learning 
offers a novel approach to public health policy evaluation. By 
leveraging advanced algorithms and significant computational power, 
machine learning can extract critical insights from large datasets and 
develop more precise predictive models, thereby providing more 
reliable references for public health policy formulation. Currently, 
machine learning has become widely prevalent in social science 
research, leading to numerous review articles focusing on machine 
learning and causal relationships (6). For example, Grimmer (7), 
Varian (8), Guo et  al. (9). Provide brief introductions to the 
fundamental concepts and logic of causal identification, explore the 
intersection of machine learning with causal identification, and 
discuss the potential of integrating machine learning models into 
causal identification processes. Mullainathan and Spiess (10), Guo and 
Tao (11) underscore the critical role of machine learning in causal 
identification within social sciences, while also addressing the novel 
challenges it introduces. The existing literature primarily explores the 
relationship between machine learning and causal identification and 
emphasizes the significance of incorporating machine learning 
methods for causal identification within the context of big data. This 
article, however, emphasizes the value of machine learning in public 
health policy effect evaluation. Related literature includes research by 
Shen et al. (12), who compare traditional policy evaluation methods 
such as the difference-in-differences method, synthetic control 
method, and panel data method with machine learning approaches, 
offering empirical researchers a guide for method selection. 
Nevertheless, this article differs significantly: Shen et al. (13) primarily 
introduce traditional and machine learning-based policy evaluation 
methods, conducting a detailed comparison for methodological 
selection. In contrast, this article delves into the limitations of 
traditional public health policy evaluation methods within the context 
of big data and provides a comprehensive exploration of expanding 
public health policy evaluation boundaries using machine learning 
methods. Unlike Shen et al.’s straightforward comparison, this article 
presents a more thorough and detailed examination of machine 
learning’s application in public health policy evaluation.

This study aims to address the following key question: How can 
machine learning techniques improve the evaluation of public health 
policies in the era of big data, and what challenges and solutions are 
associated with their application? Hence, the primary contributions 
of this paper are twofold: first, it outlines the challenges encountered 
by traditional public health policy effect assessment methods in the 
context of big data and highlights the advantages and significant value 
of machine learning in this field. It also offers new insights for scholars 
seeking to expand the applicability of public health policy effect 
assessment. Second, the article addresses the limitations of machine 
learning in public health policy effect assessment and suggests 
potential directions and efforts for the further development of public 
health policy assessment and machine learning. The structure of the 
remaining sections in this article is as follows: Section 2 introduces 

traditional methods of public health policy impact assessment and 
examines their challenges in the context of big data. Section 3 
highlights the advantages and substantial value of machine learning 
in public health policy impact assessment within the realm of big data. 
Section 4 discusses the limitations of machine learning in public 
health policy impact assessment and proposes future directions. 
Finally, Section 5 provides a comprehensive summary of the 
entire paper.

2 Traditional methods of public health 
policy impact assessment and their 
existing issues

2.1 Traditional methods of public health 
policy assessment

The field of econometrics has developed several traditional 
methods for quantitatively analyzing public health policy effectiveness. 
Key among these are the difference-in-differences (DID), synthetic 
control method (SCM), and regression discontinuity design (RDD), 
which have gained prominence in academia and are extensively used 
across various public health policy domains. This section examines the 
principles, applicability, specific model configurations, and potential 
challenges related to these conventional public health policy 
evaluation methods.

2.1.1 Difference-in-difference (DID)
The difference-in-differences (DID) method, originally 

introduced by Card et al. in their study of minimum wage policy, has 
been widely adapted for use in public health policy evaluation (14). 
This method assesses the effects of public health interventions by 
comparing the differences in outcomes between treatment and control 
groups before and after a policy is implemented. The first step involves 
calculating the difference in health outcomes for individuals before 
and after the policy intervention, which helps control for individual 
fixed effects (unchanging characteristics specific to each individual). 
The second step takes a secondary difference, focusing on time-based 
differentiation across the treatment and control groups, which aims to 
eliminate time fixed effects (common factors that remain consistent 
over time). This approach is particularly valuable in public health 
when policies are tested in certain regions or populations before being 
rolled out more broadly. It provides a robust way to assess the impact 
of interventions by controlling for both individual and time-specific 
effects. However, public health policies implemented simultaneously 
across all regions may not be  well-suited for the DID method. 
Generally, the model specification for DID in public health policy 
evaluation follows this structure:

 

it i t i t
J

j ijt i t it
j 1

Y = Treat Post + Treat Post

Z

0 1 2 3

=

β + β + β β

+ θ + µ + δ + ε∑
 

(1)

In Equation (1), subscript i denotes the sample and t denotes time. 
itY  represents the dependent variable, indicating the outcome for 

sample i at time t. iTreat  is a dummy variable indicating whether the 
sample is subject to the public health policy intervention, assigned 1 
if affected by the policy, otherwise 0. tPost  is a dummy variable for the 
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policy implementation time point, 0 before and 1 after implementation. 
The term i tTreat Post  represents the interaction term in the difference-
in-differences method, used to identify policy effects. If 3â 0> , the 
policy increased itY ; if 3â 0< , it decreased itY . ijtZ  is the matrix of 
control variables, including factors affecting the dependent variable. 

iì  and tä  are individual and time fixed effects, respectively. itå  
represents the random disturbance term.

Figure  1 demonstrates the application of the Difference-in-
Differences (DID) methodology in evaluating public health policy 
interventions. It highlights changes in outcome variables, such as 
health expenditures and mortality rates, between treatment and 
control groups before and after the intervention. The observed parallel 
trends in the pre-intervention period confirm the validity of the DID 
approach, while the divergence in outcomes post-intervention 
quantifies the policy’s causal impact. By incorporating machine 
learning into this framework, the study enhances policy evaluation by 
capturing complex, non-linear relationships and systemic factors, such 
as hospital ownership. This integration establishes a robust empirical 
foundation for analyzing public health outcomes and assessing 
policy effects.

The double-difference method may encounter challenges related 
to the parallel trend assumption and selection bias in evaluating public 
health policy effects. This method relies on the parallel trend 
assumption, which posits that the health trends of the treatment and 
control groups are parallel before and after the implementation of 
public health policies. However, fulfilling this assumption is often 
difficult in real-world evaluations, particularly when external health 
interventions or uncontrollable factors, such as epidemics, influence 
the policy implementation. If the parallel trend assumption is violated, 
it can result in significant bias in estimating policy effects, thereby 
compromising the accuracy and reliability of public health 
assessments. Additionally, the double-difference method is susceptible 
to selection bias. If, following the implementation of a public health 
policy, the differences between the treatment and control groups arise 
not only from the policy effects but are also influenced by other 
health-related factors (e.g., health infrastructure, access to medical 
services), the double-difference method may not accurately assess the 
actual effects of the policy, leading to distorted evaluation results.

In the context of big data and machine learning, the Difference-
in-Differences (DID) method can be  improved by incorporating 
machine learning algorithms, such as propensity score matching 
(PSM) or random forests, to construct balanced treatment and 
control groups that more effectively satisfy the parallel trends 
assumption. For instance, machine learning models can analyze 
high-dimensional datasets to identify key covariates influencing 
treatment assignment, thereby enhancing the robustness of DID 
analysis. Additionally, DID can be adapted to process unstructured 
data, such as social media health posts or electronic medical records, 
by employing natural language processing (NLP) or image 
recognition techniques, expanding its applicability in public 
health contexts.

2.1.2 Synthetic control method (SCM)
The synthetic control method (SCM) extends the double-

difference method by serving as a counterfactual for the treatment 
group. In evaluating the effects of public health policies, it is often 
challenging to identify an optimal control group that closely matches 
the treatment group in all relevant aspects. SCM, based on the 
counterfactual estimation framework, offers a viable solution. The core 
idea is that, although it is difficult to find ideal control samples 
identical to the subjects undergoing policy intervention, a control 
group can be constructed by linearly combining weights from a pool 
of potential control groups. This synthetic control group can mirror 
the characteristics of the treatment group prior to policy 
implementation, ensuring that the predictor variables align with those 
of the treated sample. Consequently, it allows for a comparison of 
changes in health variables between the “real treatment group” and the 
“synthetic control group” before and after policy implementation, 
ultimately revealing the net effect of the public health policy (15). This 
approach is particularly suitable for public health policies with few 
pilot programs, as they may be tested in only one or two regions, 
making it difficult to find exact matches elsewhere. Thus, constructing 
a synthetic counterfactual reference group through an appropriate 
linear combination of non-pilot districts becomes essential. Typically, 
the synthetic control method follows four key steps:

Firstly, the model specification assumes an experimental group 
where the public health policy is implemented, and multiple control 
groups where the public health policy is not implemented. For each 
sample i and time t, the model is represented as follows:

 

J
it it j ijt i t it

j 1
Y = Treat Z0 1

=
β + β + θ + µ + δ + ε∑

 
(2)

In Equation (2), Subscript i denotes the sample and t denotes time. 
itY  is the dependent variable, representing the outcome for sample i at 

time t. itTreat  is a dummy variable indicating public health policy 
implementation, assigned 1 if the policy is implemented for sample i, 
and 0 otherwise. ijtZ  represents the matrix of control variables, 
including factors affecting the dependent variable. iì  and tä  denote 
individual and time fixed effects, respectively. itå  represents the 
random disturbance term.

Secondly, the synthetic control group is constructed for each 
sample i where the public health policy is not implemented, by 
weighting and averaging observed data from other control 
group samples.

FIGURE 1

Difference-in-differences (DID) method.
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In Equation (3), s
itY  denotes the predicted value of the synthetic 

control group; j represents the number of reference samples used to 
construct the synthetic control group; ijW  represents the weights 
computed for each reference sample j.

Thirdly, synthetic weights are determined by minimizing the 
differences observed between the experimental group and the 
synthetic control group before public health policy implementation.
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(4)

In Equation (4), 0T  and 1T  denote the time points before and after 
public health policy implementation, respectively.

Fourthly, as shown in Equation (5), public health policy effects are 
estimated by comparing the observed values of the experimental 
group with the predicted values of the synthetic control group.

 
s

it itPolicy Effects Y Y= −  (5)

Figure 2 demonstrates the application of the synthetic control 
method (SCM) in the context of public policy evaluation. The x-axis 
represents the time period, while the y-axis indicates the outcome 
variable of health. The solid line depicts the actual observations for the 
treated unit, whereas the dashed line represents the estimated 
counterfactual outcomes generated by the synthetic control group. 
Before the intervention, marked by a vertical line, the treated unit and 
the synthetic control group exhibit a similar trajectory, confirming 
that the SCM effectively approximates the pre-intervention trend of 
the treated unit. After the intervention, a noticeable divergence 
between the two lines emerges, reflecting the treatment effect. This gap 
quantifies the impact of the intervention on the treated unit, assuming 
the synthetic control group serves as a valid counterfactual.

The synthetic control method may encounter selection bias in 
public health policy evaluation due to synthetic portfolio construction. 
This method necessitates the creation of a synthetic portfolio to 

simulate the post-policy implementation scenario for comparison 
with the actual treatment group. However, the selection process may 
be  influenced by the researcher’s subjective preferences and 
methodological choices, leading to biased outcomes. For instance, a 
researcher might favor synthetic combinations that demonstrate more 
favorable effects post-implementation or might rely on specific 
techniques or models while overlooking alternative methods that 
could be more suitable. Such subjective and technical decisions can 
yield synthetic combinations that do not accurately reflect the actual 
context and compromise the validity and reliability of the policy 
assessment. Furthermore, public health policies typically target unique 
intervention objectives and specific populations, making it challenging 
to identify an appropriate control group. This limitation further 
diminishes the objectivity and accuracy of the evaluation results. 
Consequently, the validity and applicability of the synthetic control 
method in public health policy evaluation are subject to 
significant constraints.

In the era of big data, machine learning algorithms, such as 
k-means clustering and neural networks, can automate the selection 
of control units, thereby minimizing subjectivity in the construction 
of synthetic portfolios. These algorithms detect patterns and 
similarities in large-scale datasets, facilitating the creation of more 
representative synthetic control groups. For instance, when evaluating 
a public health policy targeting specific regions, unsupervised learning 
techniques can group similar regions based on health indicators, 
socioeconomic variables, and other high-dimensional features, 
thereby enhancing the accuracy and credibility of synthetic control 
method (SCM) applications in public health.

2.1.3 Regression discontinuity design (RDD)
The regression discontinuity design (RDD) was initially proposed 

by Thistlewaite and Campbell (16), but it gained widespread attention 
and application in 2001 following Hahn et al.’s formal proof (17). 
Currently, RDD is extensively used by social science researchers to 
evaluate public health policies in non-experimental settings (18). The 
core idea is that when individual characteristics of a subgroup cross a 
specific policy threshold, the policy induces a discontinuity in the 
outcome variable. Near the discontinuous policy threshold, groups on 
both sides form “comparable” experimental and control groups. Given 
the similarity of these groups, any disparities in the outcome variable 
are solely attributable to the policy intervention. The breakpoint 
regression model is ideal for “one-size-fits-all” policies that necessitate 
explicit policy thresholds, where entities must surpass (or fall below) 
these thresholds to fall under the policy’s purview. Typically, 
breakpoint regression models are structured as follows:

 

( ) ( )it 0 1 it 2 it 3 it it
J

j ijt i t it
j 1

Y X c D X c D

Z
=

= γ + γ − + γ + γ − •

+ θ + µ + δ + ε∑
 

(6)

In Equation (6), subscript i denotes the sample and t denotes time. 
itY  is the dependent variable indicating the outcome for sample i at 

time t. itX  represents the continuous variable related to the public 
health policy observed for individual i at time t. c denotes the public 
health policy threshold location. itD  is an indicator variable, equaling 
1 when itX  exceeds c and 0 otherwise. 1ã  is the coefficient of itX , 
reflecting the slope near the public health policy threshold. 2ã  is the 

FIGURE 2

Synthetic control method.
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coefficient of itD , indicating the public health policy effect on the 
outcome variable. 3ã  represents the coefficient of the interaction term 
capturing the discontinuity effect due to the public health policy. ijtZ  
is a matrix of control variables affecting the dependent variable. iì  and 

tä  denote individual and time fixed effects, respectively. itå  represents 
the random disturbance term.

Figure  3 demonstrates the central concept of regression 
discontinuity design (RDD) by depicting the relationship between the 
running variable (x-axis) and the outcome variable (y-axis). The graph 
features two fitted lines, each representing observations on either side 
of the threshold, marked by a vertical dashed line. The left segment 
corresponds to the control group, while the right segment represents 
the treatment group. At the threshold, the discontinuity, or “jump,” in 
the outcome variable indicates the causal effect of the treatment, 
provided the model’s validity conditions are satisfied. The curvature 
in the fitted lines reflects non-linear relationships in the data, which 
are addressed through the chosen modeling strategy, such as higher-
order polynomials or machine learning algorithms.

Regression discontinuity design may suffer from breakpoint 
selection bias in public health policy evaluation. The core of this 
model relies on a predetermined breakpoint to distinguish between 
treatment and control groups. However, the selection of breakpoints 
can be influenced by the researcher’s subjective preferences or external 
factors, leading to inappropriate or inaccurate choices. In public health 
policy, breakpoints may be unclear and challenging to define. If a 
researcher arbitrarily selects a breakpoint without adequate 
justification, it can result in significant bias in the assessment results, 
thereby affecting the accurate evaluation and interpretation of policy 
effects. For instance, a researcher might search for the most optimal 
breakpoints in the data or choose different breakpoints before and 
after the implementation of the policy to obtain more favorable results. 
Such subjectivity and flexibility in breakpoint selection may 
compromise the objectivity and credibility of the assessment 
outcomes. Additionally, regression discontinuity design relies on the 
uniform distribution of the sample on both sides of the cutoff point. 
If the sample size is insufficient or if there is systematic selection bias 
on either side of the cutoff, the reliability of the assessment results may 
be further weakened.

In the context of big data and machine learning, Regression 
Discontinuity Design (RDD) can be  enhanced by leveraging 
algorithms such as gradient boosting or support vector machines to 
identify breakpoints more objectively. These methods analyze high-
dimensional datasets to detect natural thresholds or discontinuities in 
the data, thereby reducing reliance on arbitrary or subjective 
breakpoint selection. Additionally, RDD can be extended to fuzzy 
designs using machine learning techniques to predict treatment 
probabilities when treatment assignment is not perfectly determined 
by the threshold. For example, in a vaccination program study, 
machine learning models can estimate individual-level probabilities 
of receiving treatment near the threshold, thereby enhancing the 
robustness of RDD analysis.

2.2 The problems of traditional public 
health policy assessment methods in the 
context of big data

The information technology revolution, driven by the Internet, 
cloud computing, and artificial intelligence, has facilitated the 
widespread adoption of digital technology in public health. Many 
aspects of human health behavior and medical activities are now 
digitally recorded, resulting in vast amounts of new data that 
encompass dynamic information on individual health status and 
healthcare service usage. These data are interrelated in complex ways 
(19), and traditional public health policy evaluation methods are often 
insufficient for processing and analyzing such complex datasets (20).

2.2.1 Unstructured data challenges and huge 
volume difficulties

Unstructured data in the era of big data presents new challenges 
for public health policy evaluation. Traditional assessments primarily 
rely on structured data, such as health statistics yearbooks, medical 
record databases, or field surveys, which have clear formats and fixed 
fields, making them easier to analyze and model. However, with the 
rapid advancement of computer information technologies like the 
Internet, cloud computing, and artificial intelligence, unprecedented 
and diverse data types—such as text, images, and audio—are now 
available, posing challenges for traditional public health evaluations 
(21). Big data is characterized by unstructured formats, high 
dimensionality, and low information density (22), creating complexity 
for traditional evaluation methods. Unstructured data, including 
electronic medical records, health monitoring data, and social media 
health information, differs from structured data in its flexibility and 
diversity. Traditional methods are ill-equipped to extract and analyze 
such data. High dimensionality involves numerous features and 
attributes, such as individual health behaviors and environmental 
factors, exceeding the capacity of traditional tools. Moreover, big data’s 
low information density requires sophisticated techniques to extract 
meaningful insights, making manual analysis insufficient for 
processing high-noise data. Additionally, the sheer volume of big data 
poses significant challenges in terms of storage, transmission, and 
processing (23). Public health policy evaluation often necessitates the 
integration of data from multiple domains, such as medical, social, 
and environmental sources. This may involve merging multiple large 
databases, which traditional computing methods handle inefficiently. 
Thus, advanced technologies like parallel computing and distributed 

FIGURE 3

Regression discontinuity design (RDD).
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storage are essential for efficiently processing large-scale data and 
ensuring the accuracy and timeliness of public health 
policy evaluations.

2.2.2 Model specification issues

2.2.2.1 Misspecification issue
Quantitative empirical research on public health policy assessment 

can be  categorized into two types: theory-driven and data-driven 
approaches. Theory-driven research, which traditionally dominates 
this field, constructs low-dimensional parametric models based on 
public health theories. However, these theories are often derived from 
mathematical models built on numerous assumptions, aiming to 
simplify and abstract complex health systems. This method focuses on 
identifying causal relationships between key health indicators and 
policy interventions to reveal the intrinsic effects of policies on health 
outcomes. The advantages of the theory-driven approach lie in its 
model simplicity, ease of understanding, and straightforward result 
interpretation. In macroeconomics, the Lucas Critique illustrates how 
dynamic, theory-driven models integrate rational expectations to 
improve predictions of policy impacts, thereby avoiding the limitations 
of purely data-driven models. Similarly, in psychology, cognitive 
behavioral therapy (CBT) utilizes behavioral theories to explain the 
interaction between cognitive distortions and behavioral outcomes, 
offering a structured and interpretable framework for clinical 
interventions. These examples highlight the strength of theory-driven 
approaches in promoting deeper understanding and more effective 
application of models. However, its limitations stem from reliance on 
a priori knowledge and theoretical assumptions. Model construction 
depends on the researcher’s prior understanding of the health problem 
and domain knowledge, making it difficult to handle complex big 
data. This approach may overlook the intricate relationships and 
nonlinear patterns present in large datasets. Consequently, theory-
driven models may struggle to capture deeper insights in high-
dimensional health data, leading to potential model misspecification 
and impeding accurate public health policy evaluation (4).

2.2.2.2 Multicollinearity issue
In the era of big data, public health datasets contain numerous 

variables, resulting in high-dimensional data. This increase in 
dimensionality amplifies the correlation between variables, 
heightening the risk of multicollinearity, which threatens both the 
accuracy and interpretability of models (24). Multicollinearity arises 
from the interrelationships between health-related variables within 
large datasets. Big data encompasses vast and complex information 
across multiple domains, including individual health status, 
socioeconomic factors, and environmental conditions. Traditional 
methods for evaluating public health policies struggle to identify 
correlations among variables within such large-scale data, potentially 
leading to multicollinearity. This complicates the accurate estimation 
of independent contributions from variables in traditional models, 
resulting in unstable and unreliable coefficient estimates, which can 
even lead to incorrect evaluations of public health policies, ultimately 
undermining the scientific rigor and effectiveness of policy decisions.

2.2.2.3 Overfitting issue
Traditional models for assessing the effects of public health 

policies typically involve low-dimensional explanatory variables and 

unknown parameters. Researchers primarily focus on consistently 
estimating these unknown parameters and assessing the statistical 
significance of their estimates using the t-statistic or p-value, thus 
inferring their actual impact on health outcomes. For instance, when 
the t-statistic exceeds its critical value, researchers may reject the null 
hypothesis (commonly the hypothesis that the parameter equals zero) 
in favor of the alternative hypothesis, concluding that the parameter 
estimate is statistically significant and has a meaningful impact on 
public health. However, in the context of big data, large sample sizes 
often result in parameter estimates closely aligning with true values or 
their probability limits, accompanied by small standard errors. 
Consequently, even when true parameter values are near zero and 
their actual impact on health outcomes is minimal, the t-values may 
still achieve statistical significance, raising concerns about overfitting. 
Therefore, while the distinction between statistical significance and 
actual significance of public health effects is less critical with smaller 
data volumes, it becomes essential to differentiate between the two in 
big data contexts (4). Otherwise, a parameter deemed statistically 
significant may not possess sufficient actual impact on public health 
to support substantive policy conclusions.

3 The advantages of machine learning 
in public health policy impact 
assessment

Big data, characterized by unstructured formats, high 
dimensionality, low information density, and large volumes, poses 
significant challenges for traditional public health policy evaluation 
methods. Issues such as model misspecification, multicollinearity, 
and overfitting are increasingly prominent in this context. Machine 
learning offers a solution to these challenges by flexibly handling 
large-scale, high-dimensional health data, uncovering hidden 
associations, identifying nonlinear relationships, and reducing 
dependence on a priori knowledge through automatic 
feature extraction.

3.1 Addressing challenges of unstructured 
data and massive volume

In the era of big data, machine learning offers a flexible and 
adaptive tool to address the challenges posed by unstructured data in 
public health policy evaluation. Machine learning is particularly 
effective in handling unstructured, high-dimensional, and 
low-information-density data. For unstructured health data, such as 
text, images, and audio from sources like consultation records and 
medical imaging, machine learning—particularly deep learning 
models—leverages its capability to process unstructured information. 
These models comprehensively analyze textual health content, 
recognize patterns in medical images, and interpret audio data, 
thereby extracting diverse health-related insights and aiding in the 
deeper analysis of public health policy effects (25). Machine learning 
algorithms also manage high-dimensional health data by utilizing 
techniques like feature selection and dimensionality reduction, 
enabling automatic identification of key features linked to policy 
effects and alleviating the burden of dimensionality on traditional 
methods (26). Additionally, machine learning excels at extracting 
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valuable information from noisy health data, where traditional 
methods struggle, improving both the efficiency and accuracy of data 
analysis. Furthermore, machine learning addresses the challenges of 
storing, transmitting, and processing large-scale health data using 
advanced technologies such as parallel computing and distributed 
storage. Parallel computing allows for the simultaneous execution of 
multiple tasks, boosting computational efficiency, while distributed 
storage enables the decentralized management of large datasets across 
multiple nodes, enhancing data access speed and overall processing 
capacity. These technologies make machine learning models more 
efficient in handling large-scale health data, meeting the real-time and 
precision demands of public health policy evaluation. In summary, 
machine learning algorithms provide a comprehensive approach to 
extracting and analyzing big health data, offering policymakers more 
accurate and reliable assessments of public health policy effects.

3.2 Addressing issues in traditional public 
health policy evaluation models

3.2.1 Data-driven solutions to address 
mis-specification issues

Machine learning mitigates the risk of model mis-specification in 
public health policy evaluation through a data-driven approach. 
Traditional modeling often relies on specific theoretical frameworks 
that may simplify actual conditions. As a result, it typically employs 
linear models, such as linear regression, which assume a linear 
relationship between variables. However, these assumptions may 
be  overly simplistic and fail to accurately capture the potential 
nonlinearities and interactions among variables when applied to 
complex public health phenomena in the context of big data and 
heterogeneity. Furthermore, manually incorporating these 
relationships can lead to model mis-specification, biasing the 
estimated parameters. In contrast, machine learning algorithms, such 
as decision trees and support vector machines, effectively capture 
nonlinear relationships without the risk of biased estimates resulting 
from model mis-specification (27, 28). Additionally, ensemble 
algorithms in machine learning, such as Super Learner, Bayesian 
Stacked Regression Trees, and Deep Learning, are designed to 
optimize model specification. These algorithms utilize foundational 
models trained independently on the same samples, leveraging 
relatively weak learning models and subsequently integrating their 
results for improved generalization. By evaluating the strengths of 
each model, ensemble algorithms aim to identify the optimal model, 
thereby significantly reducing the risk of mis-specification. This 
approach provides researchers with more flexible and adaptable tools 
for understanding and interpreting patterns and associations in large-
scale health data, ultimately enhancing the accuracy and reliability of 
public health policy effect assessments.

3.2.2 Dimensionality reduction of 
high-dimensional models resolves 
multicollinearity issues

Dimensionality reduction in high-dimensional models is an 
effective strategy for addressing multicollinearity issues in the 
assessment of public health policy effects. Reducing the number of 
variables in the model decreases correlations between them, thereby 
improving the stability and interpretability of the model. The primary 

objective of dimensionality reduction in high-dimensional models is 
to preserve essential information while eliminating redundant 
dimensions, aiming for a more concise and interpretable model. 
Common dimensionality reduction methods include Principal 
Component Analysis (PCA), Singular Value Decomposition (SVD), 
and other techniques. These methods transform the original 
explanatory variables through linear transformations to produce a 
new set of variables known as principal components. These principal 
components are linear combinations of the original variables designed 
to preserve as much variance from the original data as possible. 
Selecting a subset of principal components enables dimensionality 
reduction of the original high-dimensional data, thereby reducing the 
number of explanatory variables in the model and mitigating 
multicollinearity issues. Multicollinearity arises from high 
correlations between variables, and principal components are 
typically constructed by identifying directions of maximum variance, 
making them orthogonal to each other. This orthogonality implies 
that correlations between variables are significantly reduced in the 
space of principal components, thereby mitigating the impact of 
multicollinearity (29). Selecting principal components allows us to 
focus on the most representative directions in the public health data, 
condensing the information of the original data into fewer 
dimensions. This approach captures the essential characteristics of the 
data more effectively. However, it is crucial to carefully select the 
number of principal components to retain during dimensionality 
reduction. Choosing too few components may lead to loss of 
important information, while selecting too many may not effectively 
reduce dimensionality. A common method is to determine the 
number of principal components based on the cumulative 
contribution of explained variance (30). Typically, the number of 
principal components chosen achieves a cumulative contribution rate 
above a certain threshold, ensuring sufficient information retention 
while reducing dimensionality.

3.2.3 Regularization addresses overfitting 
problems

Regularization mitigates model complexity by introducing a 
penalty term into the model’s loss function of the public health policy 
effects assessment model, thereby preventing overfitting to the 
training data and enhancing its generalization ability on unseen data. 
The central concept of regularization is to balance the model’s fit and 
complexity to avoid overfitting. The most commonly used 
regularization methods are L1 regularization (Lasso) and L2 
regularization (Ridge) (31). L1 regularization sparsifies the model by 
incorporating the L1 norm of the parameter vectors into the loss 
function. This approach drives some model coefficients to zero, 
thereby reducing the impact of less important features. Conversely, L2 
regularization encourages smaller coefficient values by adding the L2 
norm of the parameter vectors to the loss function. This effectively 
controls the model’s weight size and mitigates overfitting to noise. 
Additionally, regularization is manifested through the penalty term in 
the model. This term modifies the model’s loss function to ensure that 
the model not only fits the training data well but also keeps its 
parameters within a reasonable range. Consequently, the model 
emphasizes capturing the essential patterns in the public health data 
while minimizing overfitting to noise. The strength of regularization 
is controlled by a tuning parameter, which, when adjusted, helps strike 
a balance between model complexity and fit.

https://doi.org/10.3389/fpubh.2025.1502599
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Li et al. 10.3389/fpubh.2025.1502599

Frontiers in Public Health 08 frontiersin.org

4 Applying machine learning for 
public health policy evaluation

4.1 Application steps

Machine learning has emerged as a powerful tool for evaluating 
policy effectiveness in the context of big data, addressing limitations 
associated with traditional methods. Using text data as an illustrative 
example, this article explores the application of machine learning in 
policy evaluation, focusing on critical steps such as data preparation 
and cleaning, model selection, training and tuning, model 
interpretation, and result analysis. The objective is to assist researchers 
in effectively utilizing this advanced methodology.

4.1.1 Data preparation and cleaning
The process of preparing and cleaning data for machine learning 

begins with text data mining. Natural language processing (NLP) 
techniques, such as word vectors and bag-of-words models, are 
employed to analyze text structure and semantics, extracting key 
information to generate meaningful features for subsequent 
processing. The next step addresses missing and outlier data through 
techniques like random forests and k-nearest neighbors for predicting 
and imputing missing values. Outlier detection methods, including 
isolation forests and One-Class SVM, are applied to identify and 
manage anomalies, thereby enhancing data quality. Data smoothing 
and transformation follow, utilizing approaches like moving averages 
and exponential smoothing to stabilize time series data, reduce noise, 
and improve interpretability. Subsequently, feature engineering 
techniques, such as principal component analysis (PCA) and feature 
selection methods (e.g., variance thresholding), are employed to 
extract critical features, optimizing model inputs and improving 
generalization. The final step standardizes and normalizes data using 
techniques such as Z-score standardization and MinMax 
normalization, ensuring consistent feature scales to mitigate bias and 
provide stable inputs for model training.

4.1.2 Model selection, training and tuning
After data processing and cleaning, the next critical step is 

model selection, training, and tuning, which significantly impacts 
model performance. The initial phase involves selecting candidate 
models, such as decision trees, support vector machines, random 
forests, linear regression, logistic regression, k-nearest neighbors, 
naïve Bayes, and neural networks, to encompass diverse modeling 
approaches. Unlike traditional methods, this process integrates data-
driven strategies with domain expertise and policy theories, 
fostering the development of interpretable and credible models. 
Model training and hyperparameter tuning then proceed, using 
cross-validation techniques like k-fold cross-validation to partition 

the dataset into training and validation sets. Techniques such as grid 
search, random search, Bayesian optimization, genetic algorithms, 
gradient boosting, and automated machine learning (AutoML) are 
employed to identify optimal hyperparameter configurations, guided 
by policy considerations. These configurations are selected based on 
validation set performance. Subsequently, model comparison and 
selection evaluate metrics like accuracy, precision, F1 score, 
AUC-ROC curves, and confusion matrices to identify the best-
performing model. This evaluation integrates domain knowledge, 
ensuring alignment with broader policy objectives. Finally, ensemble 
learning techniques, including voting classifiers, stacked models, 
random forests, gradient boosting trees, and deep learning 
ensembles, are employed to enhance generalization capabilities. The 
finalized model is validated using an independent test set to ensure 
robust performance on unseen data. The models available for each 
step are shown in Table 1.

4.1.3 Model interpretation and results analysis
After the processes of model selection, training, and tuning, it is 

essential to interpret the final model and its outcomes using robust 
methodological tools. Local interpretability analysis, for instance, 
employs techniques like Local Interpretable Model-Agnostic 
Explanations (LIME). LIME constructs interpretable surrogate models 
for specific samples, allowing researchers to identify key factors—such 
as vaccination rates, hospital accessibility, or community outreach 
programs—that significantly influence the classification of public 
health interventions as “effective” or “ineffective.” This approach 
facilitates a nuanced understanding of decision-making in individual 
cases, such as assessing the effectiveness of a vaccination campaign in 
a particular region.

Global interpretability analysis utilizes Shapley Additive 
Explanations (SHAP) values to quantify the contribution of each 
feature across the entire dataset. In evaluating public health policies, 
SHAP values provide insights into how variables such as healthcare 
expenditure, population density, and disease prevalence influence 
model predictions. For example, a SHAP summary plot might 
demonstrate that higher healthcare expenditure consistently correlates 
with improved health outcomes, whereas the impact of population 
density varies depending on regional infrastructure.

To complement these analyses, causal model visualization is used 
to illustrate the pathways and interactions between policy 
interventions and health outcomes. Directed acyclic graphs (DAGs) 
enable researchers to explicitly map the relationships between public 
health interventions, such as mask mandates or quarantine measures, 
and their effects on outcomes like infection rates or mortality. For 
instance, a DAG might show how increasing testing capacity reduces 
disease transmission through early detection and isolation, aligning 
the model’s predictions with epidemiological theory.

TABLE 1 Models available for model selection, training and tuning.

Step Available models

Initial model selection
Decision trees, support vector machines, random forests, linear regression, logistic regression, k-nearest neighbors, naïve 

Bayes, neural networks, etc.

Model training and tuning
Grid search, random search, Bayesian optimization, genetic algorithms, gradient boosting trees, automated machine learning 

(AutoML), etc.

Ensemble learning and final validation Voting classifiers, stacked models, random forests, gradient boosting trees, deep learning ensembles, etc.
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Model evaluation and validation are crucial for ensuring that 
interpretability results align with theoretical expectations and public 
health frameworks. These results are subsequently tested on an 
independent dataset to evaluate the model’s performance on unseen 
data, thereby confirming its robustness in predicting policy 
effectiveness across diverse settings.

Counterfactual analysis is a vital component of public health 
policy evaluation, enabling the exploration of hypothetical scenarios. 
For instance, the model can simulate potential outcomes if a lockdown 
policy had not been implemented during a pandemic, helping 
researchers assess the policy’s direct and indirect effects on public 
health metrics such as infection rates, hospital admissions, and 
fatalities. This approach strengthens the model’s capacity to generate 
actionable insights for policymakers and public health officials. 
Figure 4 outlines the steps involved in applying machine learning to 
public health policy evaluation.

4.2 Application examples

Machine learning has been effectively applied in various public 
health policy contexts to improve evaluation accuracy and inform 
policy decisions. A typical example is the use of machine learning 
techniques to assess the effectiveness of Brazil’s smoking cessation 
treatment policy, which combines theory-driven public health 
models with data analysis. By analyzing records from 1,202 patients, 
key variables such as drug use, nicotine dependence level, and 
relapse frequency were identified. These variables were selected 
based on the theoretical framework of smoking cessation 
interventions and clinical practice, ensuring the scientific validity 
and interpretability of the data and model. The study utilized 
multiple machine learning algorithms, including support vector 
machines (SVM) and random forests, for training and validation, 
ultimately selecting SVM as the best model, with a prediction 
accuracy of 72.6%. Additionally, the study calculated the odds ratio 

(OR) for the variables to quantify their association with smoking 
cessation success. For instance, the importance of drug use was 
consistent with the theoretical model (OR = 4.42). Based on this 
model, Massago et  al. (32) developed a user-friendly tool that 
predicts the probability of treatment success based on patient 
characteristics, helping to optimize resource allocation and 
personalized intervention strategies. This provides a scientifically 
driven, theory- and data-based foundation for public health 
policy implementation.

Furthermore, there are numerous other examples. For instance, 
Sarmiento et al. (33) highlighted the application of machine learning 
in COVID-19 clinical diagnosis, epidemiological variable analysis, 
and drug discovery through protein engineering. Kwak et al. (34) used 
machine learning to identify optimal COVID-19 control strategies, 
while Moosazadeh et al. (35) assessed the vulnerability of U.S. counties 
and the impact of various policies. Machine learning also plays a vital 
role in identifying high-risk populations, enabling targeted public 
health interventions. Clinical Decision Support Systems (CDSS) 
powered by machine learning assist clinicians in decision-making. 
Patel et al. (36) analyzed factors affecting maternal healthcare policies 
in India, providing insights for precision healthcare. Additionally, 
machine learning improves healthcare cost management, quality, and 
accessibility (37). In tobacco control, machine learning analyzes social 
media content to uncover factors affecting anti-smoking message 
dissemination and public engagement, aiding evidence-based 
policymaking (38, 39). Moreover, machine learning can also 
be applied to disease prediction and diagnosis, such as in cases of 
abnormal increase of transaminase in valproic acid-treated epilepsy 
(40) and colon cancer diagnosis and staging classification (41).

To implement machine learning in public health policy 
assessment, factors influencing health information systems (HIS) 
adoption must be addressed. Effective integration relies on system 
readiness to manage large-scale health data. A key determinant is the 
perceived ease of use and usefulness of HIS (42). Moreover, healthcare 
facility size and structure moderate adoption; larger hospitals possess 

FIGURE 4

Steps in the application of machine learning to public health policy evaluation.
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resources and capacity for advanced technologies, whereas smaller 
ones face budget, expertise, and infrastructure constraints. These 
challenges shape machine learning adoption, especially in resource-
limited settings.

5 Limitations and future directions of 
machine learning in public health 
policy impact assessment

In light of the data challenges presented by the era of big data, 
machine learning can significantly broaden the applicability of 
traditional public health policy effect assessments by introducing 
numerous new methods and application scenarios. However, this 
approach also has certain limitations in the context of public health 
policy effect evaluation, which will be examined in this section. Based 
on these discussions, we  will propose directions for the future 
development of public health policy effect assessments and machine 
learning methodologies.

5.1 Limitations of machine learning in 
public health policy impact assessment

5.1.1 Challenges in explanation brought by 
black-box models

As previously noted, machine learning addresses the 
mis-specification issues inherent in traditional public health policy 
effect assessment methods through its data-driven approach. However, 
the complexity of these models can lead to difficulties in result 
interpretation. Machine learning models are generally classified as 
either white-box or black-box models (43). White-box models, such 
as linear regression and single decision trees, provide relatively 
straightforward mappings from inputs to outputs, making them easier 
to understand but also more susceptible to mis-specification. In 
contrast, black-box models—including neural networks, support 
vector machines, and random forests—enhance model accuracy by 
capturing intricate variable relationships. Nonetheless, the use of 
black-box models introduces a range of new challenges. Scholars often 
understand only the inputs and outputs of these models, lacking 
insight into the specific decision-making processes, parameter 
settings, and feature processing that occur internally. This lack of 
transparency complicates the interpretation and validation of the 
models, potentially rendering the derived conclusions less meaningful 
due to their inability to be reasonably interpreted (44). Therefore, 
achieving a balance between data-driven approaches and theory-
supported relationships to ensure model interpretability and 
credibility poses a significant challenge for machine learning in the 
realm of public health policy evaluation.

5.1.2 Issues of data bias and the perpetuation of 
historical inequalities

As previously discussed, the advent of big data enables the 
application of machine learning methods that do not rely on specific 
models or functional forms. Instead, these methods leverage large-
scale datasets to train the model, allowing the data itself to reveal the 
underlying functional relationships and facilitating a transition from 
theory-driven to data-driven assessments of public health policy 

effects. However, this data-driven approach can also introduce data 
bias into machine learning evaluations of public health policy. On one 
hand, systematic biases may arise during the data collection process, 
leading to the underestimation or overestimation of certain groups or 
characteristics within the training data. Such biases may stem from 
socioeconomic factors, limitations in technical access, or flaws in data 
collection methodologies (48). For instance, if certain patients lack 
access to healthcare resources due to poverty or the digital divide, 
their representation in the training data may be inadequate, resulting 
in their underrepresentation in public health policy assessments. This 
data collection bias can reflect existing societal inequalities and 
disparities, introducing distortions in machine learning models that 
hinder accurate assessments of policy effects on these groups. On the 
other hand, data-driven approaches may inadvertently perpetuate 
historical data biases that reinforce past inequalities and social 
injustices. If historical data contains biases or reflects unequal 
treatment of certain groups, machine learning models may internalize 
these biases, leading to unfair predictions in public health policy 
evaluations. For example, if a particular group has historically 
experienced discriminatory treatment in healthcare, the model may 
disproportionately emphasize the negative aspects of this group while 
neglecting their positive attributes, thus rendering public health policy 
effect assessments incomplete and unjust.

5.1.3 Data privacy and ethical issues
Large-scale public health datasets contain a wealth of sensitive 

information, and the application of machine learning models can raise 
significant data privacy and ethical concerns during the processing of 
this data. Data privacy issues primarily arise from the presence of 
sensitive information within these datasets, such as individuals’ 
identities, health statuses, and lifestyles. When this information is 
utilized for public health policy evaluation, there is a potential risk of 
misuse, which could result in targeting individuals, discriminatory 
decision-making, and privacy violations. Furthermore, machine 
learning models may inadvertently lead to information leakage while 
processing high-dimensional, unstructured public health data, thereby 
jeopardizing individual privacy. Additionally, the potential misuse of 
data represents a serious ethical issue. Once public health data is 
collected, there is a risk that it may be used for unauthorized purposes 
or combined with other datasets to extract additional information. 
This shift in purpose can threaten individual rights and provoke 
privacy and ethical controversies.

5.2 Future directions of public health policy 
impact assessment and machine learning 
methods

5.2.1 Combining data-driven and theory-driven 
approaches to enhance model interpretability

As noted earlier, theory-driven approaches often fail to capture 
the complex, nonlinear relationships in public health data, while 
data-driven black-box models reduce interpretability. To optimize 
the use of public health data and machine learning methods, future 
research should adopt a combined “data-driven and theory-driven” 
framework. Theory provides a priori knowledge on public health 
variables, guiding the construction of data-driven models. 
Integrating theoretical frameworks during model development 
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allows for more targeted model selection and construction, 
enhancing interpretability and credibility. For example, Cao et al. 
(45) used a theory-driven approach to study geographic factors 
influencing healthcare expenditures, offering insights for policy 
interventions. A data-driven approach can also validate theoretical 
assumptions by comparing the results of theory-guided and data-
driven models. This comparison can assess the alignment of 
theoretical frameworks with real-world data, providing a more 
comprehensive understanding of their applicability and limitations. 
Moreover, the integration of theory and machine learning fosters 
innovation in public health theory through predictive analysis (46). 
By revealing previously unrecognized patterns, machine learning can 
inspire new theoretical perspectives and guide future 
research directions.

5.2.2 Developing a multi-level data strategy to 
mitigate data bias and perpetuation of historical 
inequalities

To mitigate data collection bias in big data-driven machine 
learning for public health policy assessment, a multilevel strategy is 
essential. Enhancing the quality and diversity of data collection 
across populations can reduce biases from socioeconomic factors, 
technological limitations, and flawed methods. Integrating diverse 
data sources, such as electronic health records, demographic 
surveys, and social media, improves representativeness, reducing the 
risk of misestimating certain groups. Bias detection tools like 
Fairness Indicators and IBM AI Fairness 360 can help identify 
disparities in data coverage and model outputs. A transparent, 
accountable data collection process is vital, supported by clear 
standards, privacy protections, and open data-sharing principles. 
Adopting FAIR (Findable, Accessible, Interoperable, and Reusable) 
principles ensures equitable data practices. Strengthened 
collaboration with community organizations and stakeholders 
further ensures comprehensive representation of diverse health 
needs. To address the impact of historical data on models, data 
balancing techniques such as SMOTE (Synthetic Minority 
Oversampling Technique) and reweighting can correct biases by 
focusing on underrepresented populations during training. 
Combined with continuous fairness assessments, these techniques 
ensure model predictions align with public health policy equity 
goals. The specific application steps for methods such as Fairness 
Indicators, IBM AI Fairness 360 (AIF360), and SMOTE are outlined 
in the Table 2.

5.2.3 Integrating technical, legal, and social 
oversight to ensure data privacy and ethical 
issues

Addressing data privacy and ethics in public health requires 
technical, legal, and social strategies. Differential privacy techniques, 
like those used by the U.S. Census Bureau in 2020, protect individual 
data by adding noise while enabling trend analysis (47). Advanced 
encryption, such as homomorphic encryption and secure multi-party 
computation frameworks like OpenMined, safeguards privacy during 
data processing. These methods balance privacy with analytical utility, 
proving effective in public health. Legal frameworks like the EU’s 
GDPR and U.S. HIPAA enforce data protection through consent 
requirements and privacy protocols. Institutions such as the UK’s 
Information Commissioner’s Office and independent review boards 

(IRBs) strengthen oversight and ethical compliance. Social 
engagement, through programs like the U.S. All of Us Research 
Program and community advisory boards, ensures accountability. 
Participatory workshops, citizen juries, media, and NGOs, like Privacy 
International, promote transparency, address privacy concerns, and 
advocate for ethical practices.

5.2.4 Employing validation and benchmarking 
strategies to ensure robustness and 
reproducibility

To enhance the accuracy and reliability of machine learning 
models in public health policy evaluations, it is crucial to employ 
robust validation and benchmarking strategies. Validation can 
be achieved using standard performance metrics, including precision, 
recall, and the area under the receiver operating characteristic curve 
(AUC-ROC). Furthermore, cross-validation techniques, such as 
k-fold cross-validation, help assess a model’s generalizability across 
different data subsets. Benchmarking involves utilizing standardized 
datasets that reflect the scope of public health policies, enabling 
comparative evaluations of various machine learning approaches. For 
instance, public datasets like health insurance claims or national 
epidemiological surveys offer a consistent baseline for model 
performance assessment. Combining these strategies ensures the 
robustness of machine learning applications while promoting 
transparency and reproducibility in policy evaluations.

6 Conclusion and discussion

Current empirical research in public health primarily focuses on 
evaluating the effects of public health policies. Scientific policy 
evaluation helps decision-makers understand the real impact of policy 
implementation, identify potential issues and deficiencies, and provide 
critical support for policy adjustments and improvements. This paper 
summarizes the principles, applicability, and specific model settings 
of three traditional public health policy evaluation methods: the 
difference-in-differences method, regression discontinuity design, and 
synthetic control method. It also examines the challenges these 
methods face in the era of big data, including unstructured health 
data, large-scale data processing, and model-related issues such as 
misspecification, multicollinearity, and overfitting. In response, this 
paper explores how machine learning addresses these challenges. 
Machine learning can handle unstructured health data and large-scale 
data more effectively, while resolving limitations in traditional models. 
Specifically, it corrects model misspecification through data-driven 
approaches, mitigates multicollinearity by reducing high-dimensional 
models, and tackles overfitting through regularization techniques. 
This enhances the scope, analytical dimensions, and practical value of 
public health policy evaluation.

However, machine learning also introduces new challenges in 
public health policy evaluation, as outlined in this paper: black-box 
models hinder result interpretation, data bias risks reinforcing 
historical health inequalities, and data privacy and ethical concerns 
emerge. Therefore, relying solely on machine learning for public 
health policy evaluation is limited and requires integration with 
theoretical and practical insights from the public health domain. This 
paper proposes several strategies for advancing the use of machine 
learning in public health policy evaluation: combining data-driven 
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and theory-driven approaches to enhance model interpretability, 
developing a multi-level data strategy to address data bias and the 
perpetuation of historical health inequalities, and integrating technical 
measures, legal frameworks, and social oversight to safeguard data 
privacy and ensure ethical use.

Practical integration requires developing hybrid models that 
combine machine learning’s data exploration strengths with 
established theoretical frameworks. Effective collaboration between 
data scientists and public health experts is crucial. For instance, 
jointly developing validation frameworks based on epidemiological 
theories can enhance the interpretability of machine learning 
applications. Additionally, pilot studies comparing purely data-
driven and hybrid models can assess their effectiveness and 
feasibility across various health policy contexts. Implementing 

multi-level data strategies requires comprehensive data governance 
frameworks. Public health agencies can collaborate with community 
organizations to ensure diverse representation in data collection. The 
feasibility of real-world applications can be enhanced by leveraging 
federated learning, which enables data sharing across institutions 
while maintaining privacy, thus overcoming challenges in creating 
unified datasets. A practical step is forming interdisciplinary 
committees of legal experts, technologists, and public health 
practitioners to oversee the implementation of safeguards. These 
committees could create use-case templates for ethical machine 
learning applications in health policy, addressing data privacy 
concerns with tools like differential privacy algorithms. Public 
outreach initiatives can increase transparency and build trust 
among stakeholders.

TABLE 2 Steps and techniques for detecting and addressing bias and inequality.

Fairness indicators

Defining subgroups Identify the subgroups that need to be evaluated based on the research objectives. For instance, in public health policy 

evaluation, subgroups can be defined by characteristics such as gender, age, race, or region.

Data collection and preparation Prepare datasets containing subgroup labels, ensuring the data format is compatible with the analytical tools. The dataset 

should also include target variables and predictions.

Selecting evaluation metrics Decide on the metrics to assess model performance, such as accuracy, AUC, recall, etc.

Running Subgroup Analysis The tool will split the data according to the defined subgroups and calculate metric values for each subgroup. This helps 

observe performance differences across various groups.

Generating visual reports The tool provides visualizations, such as bar charts or heatmaps, to compare performance differences among subgroups. 

These visualizations help identify groups with the largest biases.

Interpreting results and improving the model Based on the evaluation results, identify subgroups with performance imbalances and adjust the data, model, or algorithms 

to reduce biases. For instance, add more training data or redesign the model for underperforming subgroups.

IBM AI Fairness 360 (AIF360)

Define fairness objectives Clearly identify the fairness concerns in your research. For example, determine whether the model should provide equal 

opportunities for individuals of different races or genders in its predictions.

Prepare the dataset Ensure the dataset includes sensitive attributes (e.g., gender, race) along with the target variable. AIF360 supports various 

data formats and provides benchmark datasets for researchers.

Select fairness metrics Choose appropriate metrics based on the research goals, such as Demographic Parity, Equal Opportunity, or Disparate 

Impact.

Conduct bias detection The tool will calculate disparities between different groups based on the selected metrics, quantifying the model’s 

unfairness. For example, it might reveal that the positive prediction rate for one gender is significantly lower than for 

others.

Choose bias mitigation methods Address the identified biases by selecting suitable mitigation strategies, such as pre-processing, in-processing, or post-

processing methods.

Reevaluate the model Recompute fairness metrics using the adjusted data or model to determine whether the mitigation measures effectively 

reduced biases.

SMOTE

Analyze class distribution Examine the sample counts for each class in the dataset to identify imbalanced classes (e.g., a severe disparity between 

positive and negative samples). Determine the target class (minority class) and the number of synthetic samples required.

Select an appropriate feature space SMOTE generates synthetic samples in the feature space of the minority class. Ensure that the selected features are relevant 

to the classification task. If the dataset contains noise or outliers, preprocess the data first (e.g., denoising, normalization).

Generate synthetic samples Select Nearest Neighbors, Create New Samples, Adjust Generation Ratio

Integrate new data Combine the synthetic samples with the original dataset to create a new training dataset. Ensure the data distribution is 

balanced and avoid generating excessive minority class samples, which could introduce bias.

Evaluate model performance Train the model on the balanced dataset and compare its performance metrics (e.g., accuracy, recall, F1 score) with those 

before balancing. Check if the model demonstrates improved recognition of minority class samples while avoiding 

increased misclassification of majority class samples.
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