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Background: Web-based medical services have significantly improved access 
to healthcare by enabling remote consultations, streamlining scheduling, and 
improving access to medical information. However, providing personalized 
physician recommendations remains a challenge, often relying on manual triage 
by schedulers, which can be limited by scalability and availability.

Objective: This study aimed to develop and validate a Retrieval-Augmented 
Generation-Based Physician Recommendation (RAGPR) model for better triage 
performance.

Methods: This study utilizes a comprehensive dataset consisting of 646,383 
consultation records from the Internet Hospital of the First Affiliated Hospital of 
Xiamen University. The research primarily evaluates the performance of various 
embedding models, including FastText, SBERT, and OpenAI, for the purposes 
of clustering and classifying medical condition labels. Additionally, the study 
assesses the effectiveness of large language models (LLMs) by comparing Mistral, 
GPT-4o-mini, and GPT-4o. Furthermore, the study includes the participation of 
three triage staff members who contributed to the evaluation of the efficiency 
of the RAGPR model through questionnaires.

Results: The results of the study highlight the different performance levels of 
different models in text embedding tasks. FastText has an F1-score of 46%, while 
the SBERT and OpenAI significantly outperform it, achieving F1-scores of 95 and 
96%, respectively. The analysis highlights the effectiveness of LLMs, with GPT-
4o achieving the highest F1-score of 95%, followed by Mistral and GPT-4o-mini 
with F1-scores of 94 and 92%, respectively. In addition, the performance ratings 
for the models are as follows: Mistral with 4.56, GPT-4o-mini with 4.45 and 
GPT-4o with 4.67. Among these, SBERT and Mistral are identified as the optimal 
choices due to their balanced performance, cost effectiveness, and ease of 
implementation.

Conclusion: The RAGPR model can significantly improve the accuracy and 
personalization of web-based medical services, providing a scalable solution for 
improving patient-physician matching.
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1 Introduction

Web-based medical services have significantly enhanced 
healthcare accessibility by improving convenience and efficiency 
through features such as remote consultations, streamlined 
scheduling, and enhanced access to medical information (1). 
Nevertheless, challenges persist, particularly in delivering 
personalized physician recommendations (2). The diverse array of 
medical professionals and the varying needs of patients complicate 
the effective identification of suitable physicians. Currently, most 
triage processes depend on manual recommendations made by 
schedulers to guide patients to the appropriate departments or 
practitioners (3). The increasing volume of consultations reveals 
the limitations of such manual methods in maintaining quality and 
professionalism in healthcare delivery (4). Moreover, the 
intermittent availability of schedulers can disrupt patient access 
and continuity of care, underscoring the need for a sophisticated 
recommendation model.

A substantial number of health-related websites now incorporate 
symptom checker tools (5) that offer preliminary assessments based 
on user inputs, employing decision trees (6) or rule-based 
methodologies (7, 8). Following this initial evaluation, the system 
proposes possible medical conditions and recommends relevant 
healthcare providers. Notably, machine learning algorithms, including 
collaborative filtering (9) and content-based filtering (10), have been 
investigated for their efficacy in recommending physicians by 
analyzing patient history, preferences, and demographic data. 
Advances in technology, particularly in natural language processing, 
present promising opportunities to utilize extensive datasets for 
generating tailored and precise recommendations.

The Retrieval-Augmented Generation (RAG) (11) framework 
presents a promising strategy for enhancing the precision and 
personalization of medical recommendations. Originally designed 
for handling fact-based inquiries within conversational models (12), 
RAG comprises two key components: a retriever (13) that locates 
relevant documents and a generator (14) that synthesizes these 
documents into coherent outputs. Embedding models play a crucial 
role in this process by providing linguistic representations that 
encapsulate semantic meanings in the form of numerical vectors, 
which are essential for retrieval systems. Simultaneously, generators, 
such as OpenAI’s GPT series of large language models (LLMs) (15), 
have demonstrated significant proficiency in producing human-like 
text and understanding, influencing numerous natural language 
processing applications, including automated customer support and 
content generation. By integrating information retrieval with 
generative modeling, RAG allows systems to generate contextually 
rich responses that incorporate relevant external data sources (16), 
thus grounding responses in factual information and substantially 

improving accuracy while reducing the likelihood of misleading or 
erroneous outputs.

This study investigates the potential of applying RAG to improve 
the accuracy, reliability, and contextual relevance of physician 
recommendations. The objectives include analyzing the limitations of 
existing web-based medical services, evaluating the effectiveness of 
RAG in this context, and developing a framework for its 
implementation to enhance patient-physician matching. Ultimately, 
the research aims to provide insights that could markedly advance the 
personalization and efficacy of web-based medical services, thereby 
improving patient satisfaction. The study addresses the following 
research questions: How can RAG be utilized to effectively integrate 
extensive medical documents to provide personalized healthcare for 
patients? What impact do large language models and embedding 
models have on the quality of personalized recommendations? How 
effective is the RAG system in the context of medical services, 
particularly concerning the precision, recall, and F1-score 
of recommendations?

2 Methods

The Retrieval-Augmented Generation-Based Physician 
Recommendation (RAGPR) model, as illustrated in the accompanying 
figure, comprises two principal components: document retrieval and 
ingestion, and the generation of user queries and responses. A 
comprehensive account of the methodology is presented below 
(Figure 1).

2.1 Data collection and preprocessing

The research process commenced with the collation of medical 
documents pertaining to patients. The training dataset was comprised 
of 646,383 web-based medical documents, collected from the Internet 
Hospital of the First Affiliated Hospital of Xiamen University. The 
documents spanned the years 2016 to 2023. Subsequently, data 
preprocessing was conducted to ensure that the data were anonymized, 
structured, and formatted for efficient retrieval and analysis. Each 
document in this dataset includes the textual query, de-identified 
codes for the physician and the patient, as well as information on the 
physician’s department and response time. In contrast, the test dataset 
consisted of 965 web-based medical documents obtained from 
Hugging Face, each containing a disease label and a textual query.

2.2 Feature extraction and storage

The process of document analysis employs an embedding model 
that utilizes a pretrained Sentence-BERT (SBERT) model (17), 
specifically “distilute-base-multilingual-cased, “to transform textual 
information into numerical embeddings. The resulting embeddings 
capture the semantic essence of the text (18). The embedding process 

Abbreviations: RAG, Retrieval-Augmented Generation; LLMs, large language 

models; SBERT, Sentence Bidirectional Encoder Representations from Transformers; 

RAGPY, Retrieval-Augmented Generation-Based Physician Recommendation.
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reduces the dimensionality of the data while preserving semantic 
similarity, thereby facilitating efficient data storage and retrieval. The 
resulting document embeddings are stored in Chroma (19), a 
specialized vector database optimized for managing high-dimensional 
data. This optimization allows for the rapid execution of similarity 
searches and serves as a repository for all vector representations of the 
processed documents, ensuring their accessibility for future retrieval 
(Figure 2).

2.3 User query and response generation

The system’s user interface is developed using the Vue 
framework (20) and connects to the backend service via a 
RESTful API (21). It is designed to help users clearly articulate 
their information needs, allowing the system to efficiently 
process requests. The user’s input query is then transformed into 
an embedding using the same embedding model employed in 

FIGURE 1

The architecture of RAGPR model. Firstly, a substantial dataset consisting of 646,383 web-based medical documents is curated, anonymized, and 
formatted for optimized retrieval and analysis. Document embeddings are generated using embedding model, capturing the semantic essence of texts. 
These embeddings are subsequently stored in a vector database, facilitating efficient similarity searches. Secondly, upon initiation of a user query, the 
model employs an embedding transformation, replicating the embedding technique used for document processing, ensuring consistency and 
accuracy. The system retrieves the top six most relevant queries, aligning them with associated physician data. Subsequently, a local large language 
model is prompted with this contextual information, enabling the generation of comprehensive and contextually recommendations.

FIGURE 2

The screenshot of the vector database.
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processing the documents. This ensures compatibility and 
comparability between the document embeddings and the 
query embedding.

Maximal Marginal Relevance (MMR) is a technique employed in 
information retrieval to identify documents that are not only pertinent 
to a given query but also exhibit diversity in relation to those 
previously selected. The system implements MMR by comparing the 
embedding of the user query with the embeddings of each stored 
document. This method effectively reduces redundancy and enhances 
the coverage of various aspects of the query within the selected 
documents. Subsequently, the system retrieves the top  6 closely 
matched queries along with the corresponding physician information 
for the next step.

A locally constructed LLM was developed using the LLaMA 
(22) architecture, incorporating the Mistral-7B (23) model for 
pre-training parameters. This LLM is provided with a prompt 
that includes similar retrieved queries and related physician 
information. The prompt facilitates the LLM in generating 
coherent and contextually appropriate natural language 
responses. This generative capability ensures that users receive 
not only straightforward data retrieval but also insightful 
interpretations and explanations, thereby enhancing their 
understanding and aiding in the decision-making process. The 
prompt is as follows: “You are an assistant for question-answering 
tasks. Use the following pieces of retrieved context to recommend 
a department and physicians with the shorter response time. The 
output must be  in JSON format and contain only department 
and physicians.”

2.4 Evaluation

The evaluation of the proposed RAGPR model’s effectiveness 
employed three key metrics: precision, recall, and F1-score. Precision 
is defined as the ratio of correctly identified positive samples to the 
total number of samples predicted as positive. This metric indicates 
the accuracy of the model in its positive predictions. In contrast, recall 
quantifies the proportion of actual positive samples that the model 
accurately identifies, thus highlighting the model’s ability to detect all 
pertinent instances. The F1-score is a balanced measure that calculates 
the harmonic mean of precision and recall, providing a comprehensive 
assessment of the model’s performance. The formulas for precision, 
recall, and F1-score are outlined in Equations 1–3, where TP denotes 
true positives, FP denotes false positives, and FN denotes 
false negatives:
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+  
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2.5 Baseline experiments

For the embedding models, FastText (“cc.zh.300”) (24), SBERT 
(“distiluse-base-multilingual-cased”), and OpenAI’s “text-
embedding-3-large” were used to examine their performance on the 
test dataset, which consisted of 965 web-based medical documents. 
Each document contained a disease label and a textual query. To 
facilitate visualization, t-distributed Stochastic Neighbor Embedding 
(25) was initially applied to reduce the dimensionality of the 
embeddings. The classification performance of these models was 
then assessed using precision, recall, and F1-score as 
evaluation metrics.

For the LLMs comparison, GPT-4o, GPT-4o-mini, and Mistral 
were employed, focusing on their precision, recall, and F1-score on the 
test dataset. Furthermore, to evaluate the rationality of physician 
recommendations generated by these LLMs, a questionnaire was 
administered to three staff members involved in triaging. The 
participants were asked, “Based on your area of expertise, how would 
you rate the match between physician and the query?” Responses were 
measured using a 5-point Likert scale (26), with scores ranging from 
1 (very inappropriate) to 5 (very appropriate). This evaluation did not 
involve relabeling the test dataset, but was used to assess whether the 
model’s predictions were consistent with the professional judgment of 
these human experts in a triage scenario. The Mann–Whitney U test 
(27) was employed to determine if these assessments revealed any 
statistically significant differences.

3 Results

3.1 Data set summary

The dataset consists of 646,383 consultation records involving 
193,675 patients and 858 physicians across 44 departments. According 
to Table  1, male patients constitute 32.95% (n = 212,983) of the 
records, while female patients make up 67.05% (n = 433,400). The age 
group most represented among patients is 20 to 39 years, accounting 
for 54.6% (n = 352,907) of the total consultations. Notably, senior 
physicians handled the majority of consultations, with 62.65% 
(n = 404,958) attributed to them. Additionally, the majority of 
response times were recorded at less than 90 min, comprising 38.13% 
(n = 246,472) of the total.

3.2 Evaluating the performance of 
embedding models

Figure  3 presents a comparative analysis of the clustering 
performance of three distinct embedding models using the test 
dataset. The models FastText, SBERT, and OpenAI were specifically 
developed for the purpose of labeling medical conditions. The 
evaluation focuses on the models’ efficacy in differentiating 
conditions such as cervical spondylosis, urinary tract infection, 
allergy, and diabetes, which are represented with distinct color-
coded labels.

The initial plot illustrates the moderate capacity of the FastText 
model to differentiate between a numbers of medical conditions. 
Although the model is successful in creating clusters of similar 
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labels, there is considerable overlap, indicating that there are 
challenges in effectively separating data points with identical 
labels. In contrast, the SBERT model demonstrates enhanced 
clustering capabilities, achieving a more distinct separation among 
different medical condition labels. This enhancement suggests 
SBERT’s increased proficiency in distinguishing between 
conditions. The final plot reveals the performance of the OpenAI 
model, which exhibits the most distinct clustering. It forms well-
defined, tightly grouped clusters corresponding to individual 
medical conditions and shows minimal overlap between 
different labels.

Table 2 provides a comparative analysis of the classification 
performance of three distinct embedding models: FastText, 
SBERT, and OpenAI, specifically in the context of medical 
condition labels using the test dataset. The analysis employs a 
classification model to predict disease labels from the embeddings 
of disease description texts. For each model, the precision, recall, 
and F1-score metrics are presented. The FastText model yielded a 
precision of 0.52, a recall of 0.44, and an F1-score of 0.46. In 
contrast, SBERT and OpenAI exhibited markedly superior 
performance, with both attaining high precision (0.95 and 0.97, 
respectively), recall (0.95 and 0.96, respectively), and F1-scores 
(0.95 and 0.96, respectively). These findings suggest that SBERT 
and OpenAI are more efficacious in accurately classifying medical 
condition labels from textual descriptions than FastText. In light 
of these findings and additional considerations, such as 
affordability, data security, and ease of migration, the study 
ultimately determined that the SBERT was the optimal 
embedding model.

3.3 Evaluating the performance of large 
language models (LLMs)

Table 3 presents a comparative analysis of three LLMs—Mistral, 
GPT-4o-mini, and GPT-4o—with a focus on their performance in 
terms of precision, recall, and F1-score in relation to physician 
recommendations using the test dataset. The Mistral model 
demonstrated a precision of 0.95, a recall of 0.94, and an F1-score of 
0.94, indicating a balanced and efficient performance across all 
metrics. The GPT-4o-mini exhibited a precision of 0.95, which was 
comparable to that of Mistral. However, it demonstrated a slightly 
lower recall of 0.90 and consequently a reduced F1-score of 0.92. In 
contrast, the GPT-4o model exhibited a slightly lower precision (0.94) 
but a higher recall (0.97), resulting in the highest F1-score (0.95) 
among the models analyzed. Overall, the GPT-4o model demonstrated 
superior performance in synthesizing precision and recall, as reflected 
in its F1-score.

3.4 Rationality evaluation of LLMs

Table 4 presents a Mann–Whitney U test conducted on three pairs of 
LLMs using the test dataset. The Mistral model has been assigned a rating 
of 4.56, while the GPT-4o-mini has been rated 4.45 and the GPT-4o has 
been rated 4.67. The comparison between the Mistral and the GPT-4o-
mini yielded a p-value of 0.003, indicating a statistically significant 
difference. The p-value for the comparison between Mistral and GPT-4o 
is 0.01, indicating a notable difference. Furthermore, the comparison 
between GPT-4o-mini and GPT-4o yielded a p-value of 0.001, thereby 

TABLE 1 Summary of the characteristics of the collected data records (N = 646,383).

Characteristic Value, n (%)

Gender

from Male 212,983 (32.95)

from Female 433,400 (67.05)

Age of patient at consultation (years)

<20 118,484 (18.33)

20–39 352,907 (54.6)

40–59 125,957 (19.49)

>60 49,035 (7.58)

Physicians’ professional title

Junior 10,766 (1.67)

Intermediate 45,892 (7.1)

Subsenior 184,767 (28.58)

Senior 404,958 (62.65)

Physicians’ response time (minutes)

<90 246,472 (38.13)

91–180 65,732 (10.17)

181–270 41,033 (6.35)

271–360 28,845 (4.46)

>360 126,943 (19.64)

Not response 137,358 (21.25)
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FIGURE 3

Comparison of FastText (top), SBERT (middle) and OpenAI (bottom) in terms of Clustering.

TABLE 2 Classification performance of FastText, SBERT, and OpenAI.

Embedding models Precision Recall F1-score

FastText 0.52 0.44 0.46

SBERT 0.95 0.95 0.95

OpenAI 0.97 0.96 0.96

TABLE 3 Comparative analysis of Mistral, GPT-4o-mini and GPT-4o.

LLMs Precision Recall F1-score

Mistral 0.95 0.94 0.94

GPT-4o-mini 0.95 0.90 0.92

GPT-4o 0.94 0.97 0.95

TABLE 4 The Mann–Whitney U test conducted on three pairs of LLMs.

Comparison p value

Mistral vs. GPT-4o-mini 0.003

Mistral vs. GPT-4o 0.01

GPT-4o-mini vs. GPT-4o 0.001
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affirming the statistical significance of the difference. Considering the 
study’s findings and additional factors such as affordability, data security, 
and ease of migration, the research ultimately concluded that the Mistral 
was the most suitable choice for implementation.

3.5 Case study

As illustrated in Figure 4, the RAGPR model demonstrates the 
capability to accurately identify medical specialties and recommend 
corresponding medical departments and physicians, based on a 
randomly selected set of symptom descriptions from the test database. 
For instance, the model correctly associates dermatological symptoms 
with the dermatology department and gastrointestinal symptoms with 
the gastroenterology department. This demonstrates that the RAGPR 
model effectively processes natural language descriptions to provide 
relevant medical recommendations, highlighting its potential for 
application in medical diagnostic systems.

4 Discussion

4.1 Principal findings

This study introduces an innovative physician triage algorithm 
called the RAGPR model, designed to enhance the accuracy and 

efficiency of web-based medical consultations. In our assessment, 
we  evaluated various embedding and large language models to 
determine the most suitable options based on criteria such as cost-
effectiveness, data security, and ease of migration. Consequently, the 
SBERT and Mistral models were selected as the optimal choices. The 
RAGPR model demonstrates an improved ability to accurately match 
patients’ queries with physicians’ specialties.

4.2 Reasons behind the performance 
achieved by the three algorithms

The performance of FastText, SBERT, and OpenAI’s embedding 
models in the context of medical condition classification is 
reflective of their respective architectures and capabilities. 
FastText, although useful for capturing word representations, 
showed moderate clustering performance with noticeable overlap 
among medical conditions. This is primarily due to its focus on 
word-level embeddings without accounting for sentence-level 
semantics, limiting its effectiveness in distinguishing nuanced 
medical terms.

SBERT, on the other hand, provided a substantial performance 
boost. Its architecture, designed to derive sentence-level embeddings, 
allowed for more refined semantic understanding, resulting in distinct 
clustering for different medical labels. The ability to capture the 
contextual meaning of sentences led to significantly higher precision, 

FIGURE 4

Performance of RAGPR model in mapping symptoms to medical departments and physicians. The layout of the image is divided into three sections: on 
the right are the human queries, on the left are the responses generated by the model, and in the middle are the interpretations of these interactions.
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recall, and F1-scores, making it highly effective for classifying medical 
conditions based on textual descriptions.

OpenAI’s embedding model exhibited the most pronounced 
clustering capabilities, indicating its superior understanding and 
representation of semantic content. Its advanced architecture, likely 
with larger training datasets and refined algorithms, contributed to 
tightly grouped clusters and minimal label overlap. However, when 
considering additional factors such as cost, SBERT was identified as 
the optimal choice for the application, balancing high performance 
with practical implementation advantages.

4.3 Feasibility and potential extensions of 
the proposed model

The successful implementation of the RAGPR model in healthcare 
is contingent upon the existence of a robust IT infrastructure that is 
capable of handling large volumes of data, facilitating real-time 
processing, and integrating seamlessly with existing systems such as 
electronic health records (28). This may require the upgrading of 
existing systems or the adoption of cloud-based solutions (29) that 
offer scalability and flexibility. For the model to be widely adopted, it 
is essential that healthcare professionals receive adequate training to 
ensure effective use and the development of trust in its capabilities. 
Such training should include an understanding of how the model 
generates recommendations and the interpretation of its results. 
Furthermore, a comprehensive cost–benefit analysis is essential to 
assess whether the long-term benefits, such as enhanced efficiency, 
accuracy, and patient outcomes, justify the initial investment. Clearly 
articulated value propositions, such as reducing diagnostic errors, 
optimizing physician workload, or improving patient satisfaction, are 
vital for garnering stakeholder support.

One potential avenue for advancement within the field of 
healthcare is the integration of the RAGPR model into real-time 
decision support systems (30). Such systems could provide real-time 
recommendations during patient consultations, alerting physicians to 
potential problems such as drug interactions or abnormal test results, 
and suggesting next steps based on the latest clinical guidelines. This 
not only increases the efficiency of the visit, but also improves the 
quality of care by providing timely, evidence-based support. While 
current models focus on physician recommendations, future research 
could explore expanding these models to other areas, such as surgical 
recommendations, chronic disease management, or mental health 
support. In addition, models could be tailored to specialty areas, such 
as oncology, cardiology, or pediatrics, to support complex decision-
making processes. Another promising extension is the development 
of personalized medicine frameworks using predictive analytics. By 
analyzing patient-specific data over time, the model could predict 
future health risks, recommend preventive measures, and tailor 
treatment plans to a patient’s unique health profile. This shift from 
reactive to proactive healthcare could significantly improve long-term 
patient outcomes.

4.4 Real-world application challenges

The implementation of the RAGPR model in healthcare is 
confronted with a multitude of considerable challenges, one of the 

most pivotal being the protection of patient data. The utilization of 
such confidential data for training and deployment must adhere to 
rigorous privacy regulations, such as HIPAA (31) in the United States 
and GDPR (32) in the European Union. Breaches of patient 
confidentiality can have profound legal and ethical ramifications. It is, 
therefore, of paramount importance to implement robust data 
encryption, anonymisation techniques, and secure data handling 
protocols to maintain patient trust and regulatory compliance.

A further significant challenge is the integration of the RAGPR 
model with existing healthcare IT infrastructure, such as electronic 
health records systems. This process can be hindered by a number of 
factors, including compatibility issues, inconsistencies in data format, 
and concerns regarding interoperability. It is not uncommon for the 
various systems utilized by healthcare institutions to lack the capacity 
to interact seamlessly with the model, necessitating substantial 
customization and development efforts.

Another challenge is the potential for bias, particularly when 
trained on datasets that are not representative of the population under 
study. Such bias has the potential to perpetuate or even exacerbate 
existing disparities in healthcare access and outcomes. For example, if 
the training datasets predominantly reflect certain demographic 
groups, the model’s performance for underrepresented populations 
may be compromised, which could result in unequal treatment. To 
mitigate these biases, it is essential to employ diverse and representative 
training datasets and to incorporate fairness constraints during model 
development. This ensures that healthcare solutions are equitable.

Furthermore, the RAGPR model must undergo continuous 
adaptation in order to remain relevant and accurate in the context of 
evolving medical knowledge and practice. This necessitates the 
implementation of continuous learning frameworks that permit the 
model to update its knowledge base in response to new medical 
evidence, guidelines, and emerging diseases. Continuous monitoring, 
retraining, and validation mechanisms are essential to guarantee that 
the model provides recommendations that are up-to-date and reliable.

4.5 Limitations and future directions

The study has several important limitations. Firstly, the study was 
conducted exclusively within a single hospital, potentially limiting the 
applicability of the results to other settings or populations. Secondly, 
the dataset included irrelevant questions, such as “Doctor, will 
you be available tomorrow? Where can I find you?” These questions 
could introduce bias into the analysis. Lastly, a significant limitation 
of deep neural networks is their opacity, which refers to their lack of 
transparency in providing explanations for predictive results. This 
opacity poses challenges in understanding the rationale behind the 
predictions for specific samples.

Future research should seek to address the current limitations 
and explore potential avenues for improvement in patient-physician 
matching systems. A crucial objective is the development of 
sophisticated algorithms that enhance both the precision and 
responsiveness of this matching process. The incorporation of real-
time data in conjunction with advanced machine learning models 
may facilitate the dynamic allocation of consultations based on 
physician availability, which could potentially reduce wait times and 
enhance patient satisfaction. Moreover, future studies should 
investigate the integration of multimodal data sources, including 
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patient histories, imaging data, and real-time physiological signals. 
Such integration could facilitate a more comprehensive 
understanding of patient conditions, thereby improving diagnostic 
accuracy and treatment recommendations. Additionally, there is a 
need to develop explainable models that not only provide accurate 
recommendations but also offer transparent justifications for their 
decisions. This transparency would facilitate more informed 
decision-making in clinical settings, enhancing trust and effectiveness 
in healthcare.

5 Conclusion

This paper presents the RAGPR model, which is designed to 
improve the performance of triage in web-based medical services. The 
primary function of this model is to efficiently filter and select 
appropriate physicians, thereby assisting patients in identifying 
medical professionals best suited to address their specific healthcare 
needs. The implementation of this method has significant practical 
implications, suggesting its potential integration into various 
healthcare website systems to enhance the quality of 
physician recommendations.
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