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Introduction: Healthcare resources are often crucial but limited, requiring

careful consideration and informed allocation based on population needs and

potential healthcare access. In resource allocation settings, availability and

accessibility of resources should be examined simultaneously. The two-step

floating catchment area (2SFCA) method has been previously used to evaluate

spatial accessibility to healthcare resources and services, and to address health-

related disparities. The 2SFCA methods have regained significant popularity

during the COVID-19 pandemic, as their application proved crucial in addressing

priority public health data analysis, modeling, and accessibility challenges.

However, comprehensive comparisons of the 2SFCA method input parameters

in the context of public health concerns in Texas are lacking. Our study aims

to (a) perform a comparative analysis of 2SFCA input parameters on patterns

of spatial accessibility and (b) identify a 2SFCA method to guide evaluation

of equitable allocation of scarce mental health resources for children and

adolescents in Texas.

Methods: We used the Texas Child Psychiatry Access Network (CPAN) data to

assess county-level, regional patterns in access to pediatric psychiatric care, and

to identify areas to expand CPAN to mitigate access-related disparities. Using

the 2SFCAmethod, we further compared accessibility patterns across two kernel

density distance decay functions for 10 catchment area specifications.

Results: As expected, spatial accessibility measures, such as the spatial

accessibility ratio (SPAR), are sensitive to input parameters, particularly the

catchment area. However, across all catchment area thresholds, two clusters

of counties in southern and central Texas had particularly low accessibility,

highlighting the opportunity for expanding the provider network in these areas.

Discussion: Identifying areas with low accessibility can help public health

initiatives prioritize regions in need of improved services and resources. The

incorporation of additional data on supply capacity and care-seeking behavior
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would aid in the refinement of estimates for spatial accessibility at the regional

level and within larger urban centers.

KEYWORDS

floating catchment area, spatial accessibility, kernel density, mental health, comparative

analysis, access to healthcare

1 Introduction

Healthcare resources are crucial but limited, requiring careful

consideration and informed allocation based on population needs.

In the US, healthcare spending has consistently exceeded that of

38 other high-income countries, reaching 12.5% of GDP in 2000

and 17.8% in 2021 (1). Despite this substantial investment, the

performance of the US health care system has been comparatively

poor, ranking last among 11 high-income countries (2). The

emergence of infectious diseases, such as COVID-19, further strains

healthcare systems by escalating the demand for resources. In

such challenging circumstances, maximizing access to healthcare

services becomes paramount.

Barriers associated with access to healthcare have commonly

been grouped into five dimensions: availability, accessibility,

affordability, acceptability, and accommodation (3). Availability is

often defined as the number of service or supply points, such

as clinics or hospitals, while accessibility concerns the travel

impedance between points of demand and points of service. In

resource allocation settings, particularly during unprecedented

events such as the COVID-19 pandemic or to address chronic

priority health problems, availability and accessibility should

be considered simultaneously. This combined measure is often

referred to as spatial accessibility. In 2000, Radke and Mu

(4) proposed the two-step floating catchment area (2SFCA)

methodology to evaluate spatial accessibility to social services,

building upon previous work by Shen (5) and Weibull (6). This

method, later refined by Luo and Wang (7, 8), employs two core

steps to measure spatial accessibility based on a travel impedance

measurement, such as travel distance or time. Compared to

previous methods, the 2SFCA utilizes a floating “catchment” that is

not restricted by county or other geographical delineations. Since

its inception, the methodology has been expanded, refined, and

adjusted to create a family of spatial accessibility methods defined

broadly as the floating catchment area (FCA) family. FCA methods

have been used to assess spatial accessibility to health care facilities

and primary care physicians (7, 9–13), care facilities for older adults

(14), cancer care (15), pharmacies (16), parks and green spaces

(17), and food stores (18). Since the COVID-19 pandemic, the

FCA methods have gained substantial popularity, and have been

utilized to assess access to testing sites, vaccination centers, and

other services related to pandemic response (19–22). These analyses

have aided in evaluating pandemic response strategies and guided

decisions for optimizing resource allocation during such crises.

Despite the FCA family’s popularity, there remains a significant

knowledge gap in comprehensive comparisons between various

FCA method parameters through the public health lens. One

study compared the relative importance of distance decay (travel

impedance) function selection and catchment area thresholds, but

it lacked a public health focus and perspective (23). Another

study by Wang et al. (24), compared three GIS-based accessibility

approaches, including the gravity model from which the FCA

is derived, to urban parks in Australia and the Netherlands. A

recent study by Luan et al. (25), compared multiple measures of

accessibility in New York City using the 2SFCA and Gaussian

2SFCA approaches, emphasizing health-related shortage areas.

To our knowledge, no study has provided a comprehensive

comparison of FCA accessibility parameters across Texas from

a public health perspective. Therefore, our objectives were to

compare county-level accessibility patterns from the 2SFCA

approach across (i) two kernel density functions for travel

impedance and (ii) 10 different catchment thresholds, indicating

the maximum travel time or distance.

We used an early sample of data on clinics participating in a

telehealth program designed to provide community-based Texas

primary care physicians (PCPs) and pediatricians with mental

health consultation services from child psychiatrists and other

mental health professionals to meet the behavioral health needs

of children and adolescents (26). We chose these data to illustrate

a public health response to the ongoing rise in mental health

problems in the US, especially among adolescents. According to a

recent survey by the Centers for Disease Control and Prevention

(CDC), the proportion of emergency department visits related to

mental health issues increased by 24% among children aged 5–11,

and by 31% among adolescents aged 12–17 from 2019 to 2020 (27).

Further, social and economic factors, including socioeconomic

status, insurance coverage, and stigma, have been previously shown

to be barriers to mental health services and may further decrease

access for vulnerable and underserved children and adolescents

(28–31). With the dual objective of performing a comparative

analysis and addressing the need for refined spatial evaluation

methods to guide equitable allocation of scarce mental health

resources for children and adolescents, our study contributes to the

field of spatial accessibility research and its relevance in tackling

critical healthcare challenges.

2 Materials and methods

2.1 Overview

We first provide an overview of the methodology used and

modifiable parameters in the two-step floating catchment area

(2SFCA) analysis, as outlined in Figure 1. The workflow highlights
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FIGURE 1

Methodological outline of the metrics and variable inputs for a typical 2-step floating catchment area (2SFCA) analytical algorithm.

the four key adjustable inputs: (1) demand measure, (2) supply

measure, (3) the construction of a maximum catchment area based

on travel time or distance, and (4) the application of a distance

decay function to account for travel impedance and supply-seeking

behaviors. For our comparative analysis, we focus on adjusting the

distance decay function and maximum catchment area.

2.2 Data

We used data on Texas clinics participating in a statewide

child and adolescent psychiatric telehealth consultation program

(initiated in 2020) to compare the 2SFCA approach with different

kernel distance decay functions and catchment inputs to examine

access to pediatric mental health care opportunities. The goal of this

program is to connect community-based primary care physicians

(PCPs) to health-related institution (HRI)-based psychiatrists for

consults or advice on treating childhood and adolescent patients

with mental health concerns (26). Integrated primary care models

that link mental health specialists with PCPs have shown strong

potential for improving access to mental health services and

appropriate care for mental health problems (32, 33). In the

first phase, the program aimed to enroll clinics within vulnerable

populations or geographic areas with limited access to psychiatrists.

In this analysis, we included a list of participating clinics with

signed agreements during the 1st year of program rollout (N =

1,707) (26). We only considered the clinic locations, as the initial

phase of the program aimed to identify participating clinics to

improve geographic coverage. Although additional information on

the clinic’s capacity (e.g., number of PCPs, etc.) will be incorporated

as the program develops, it was not available at the time of

analysis and thus not included here. We first geocoded the clinic

location coordinates using the Google Geocoding API (34) and

excluded three clinics outside Texas (Supplementary Figure 1A).

We obtained county-level population estimates for children and

adolescents (5–17 years old) from the 2017 to 2021 American

Community Survey (ACS) (35) and population-weighted county

centroids (in latitude and longitude) from the US Census (36).

For the demand estimation, we used the county-level ADHD

estimates generated by Zgodic et al. (37). The authors used

data from the National Survey of Children’s Health (2016–2018),

along with related area-level covariates and mixed effects logistic

regression with post-stratification to create small-area estimates

of ADHD prevalence (37). We defined demand as the estimated

number of children and adolescents with ADHD, which is the

product of the ADHD prevalence estimate and the corresponding

county pediatric population. The study by Zgodic et al. (37) was

conducted independently from the Texas child and adolescent

psychiatric consultation program; ADHD diagnoses were obtained

from survey data and small-area modeling and, thus, do not reflect

active diagnoses found by clinics enrolled in the Texas program.

Population-weighted centroids of each county were used as the

spatial points of demand.

Additionally, we used the CDC’s 2020 Social Vulnerability

Index (SVI) and 2013 county-level Rural-Urban Continuum Codes

(RUCC) from the US Department of Agriculture Economic

Research Service (38, 39). SVI quantifies how social and

environmental factors affect community resilience by assigning

each county a rank from 0 to 1, with higher values indicating greater

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1498819
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Hunyadi et al. 10.3389/fpubh.2025.1498819

vulnerability. The SVI evaluates US counties based on 15 social

factors across four themes: socioeconomic status, racial/ethnic

minority, housing/transportation, and household characteristics.

RUCC codes consider population size, degree of urbanization, and

adjacency to a metro area to classify counties on an urbanization

scale from 1 to 9, with 1 to 3 representing metro (urban)

categories and 4–9 representing non-metro (rural) categories

(Supplementary Figure 1). In this analysis, we included all Texas

counties (N = 254) with corresponding RUCC data.

Prior to performing 2SFCA, we first constructed the Origin-

Destination (OD) matrix, which is designed to quantify the travel

distance or duration from a given demand (origin) point i to

a supply (destination) point j. Each cell within the OD matrix

represents a unique origin-destination pair. The resulting OD

matrix is of J by I dimensions, where J is the number of destination

points and I is the number of origin points. Travel distance and

time between each unique pair was completed using ArcGIS Pro

(version 3.1.1) with the StreetMap Premium extension (40).

2.3 Two-step floating catchment area
methodology

In the absence of specific data on the supply-seeking behavior

of individuals, we may assume that such behaviors depend on travel

distance or time. We can then employ distance decay functions to

reflect that individualsmay favor geographically proximate supplies

(9, 18, 41). In spatial accessibility studies, various distance decay

functions have been used, including step-based and continuous

decay (23, 41, 42). Continuous decay functions include the

Gaussian (13, 21, 27, 43), log-logistic (44, 45), and kernel density

(10, 18, 22). The distance decay function requires the specification

of the maximum distance or maximum travel time that individuals

are willing to undertake (hereafter referred to as the catchment

area). Previous studies have utilized a variety of catchment areas

for travel via private car, including 30min (9, 15, 20, 21, 44),

45min (46), 60min (45, 47), and 90 or more minutes (18, 27,

45). Gu et al. (46) support the 30-min travel time as a standard

threshold for healthcare access, but suggest that 60min may be

more appropriate for regional-level accessibility. Conversely, other

literature argues that the 30-min threshold is, at best, arbitrarily

defined (12). The catchment area can also be defined as the travel

time in which a certain percentage of the population of interest has

access to the service of interest (43). Comprehensive assessments

and comparison of distance decay functions can be found in other

works (23, 41, 42), such as Chen and Jia (23), who performed

a comparative analysis of both distance decay functions and the

selected maximum catchment area (dmax).

For our analysis, we selected two kernel density distance decay

functions both of which have been previously used to examine

accessibility with FCA methods. The first is the Epanechnikov

function proposed by Dai and Wang (18), which is defined as

f
(

dji, dmax

)

=







3
4

[

1−
(

dji
dmax

)2
]

, if dji ≤ dmax

0, if dji > dmax

In this function, dji represents the travel time between supply

location j (e.g. CPAN clinic) and demand location i (e.g., county

centroid), and dmax is the maximum time individuals are willing

to travel (the catchment area). A later study by Polzin et al. (10)

proposed the Quartic function, defined as
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where dinit represents the initial range of travel times that do

not pose any travel impedance and is selected by the investigator

(e.g., 15min). Compared to the Epanechnikov function, theQuartic

function imposes a more lenient penalty for shorter travel times

and a more stringent penalty for longer ones, partially by including

the dinit .

Next, in the first step, the 2SFCA calculates the supply-to-

demand ratio Rj for each supply measure Sj at supply point j and

the weighted demand measure Pi for demand point i as below:

Rj =
Sj

∑

i ∈ {dji ≤ dmax}
Pi · f (dji, dmax)

Here, the supply measure Sj could be numeric metrics such

as the number of hospital beds, the amount of available product,

or the number of services or care providers available. If there is

no information on supply capacity, then Sj may be set equal to

1 to represent the supply’s presence. For our analysis, Sj is set

equal to 1.We considered the estimated county-level ADHD counts

(Pi), which was calculated as the product of the estimated county-

level prevalence and the corresponding county-level pediatric

population size.

In the second step, the supply-to-demand ratios Rj are

combined in a weighted sum over each demand point to create the

Spatial Accessibility Index (SPAI):

SPAIi =
∑

j ∈ {dji ≤ dmax}

Rj · f (dji, dmax)

In the absence of data on people’s health-seeking travel

behavior, the reliance upon often arbitrarily determined travel

thresholds or travel impedance may be problematic as the SPAI

may vary substantially across selected values. The Spatial Access

Ratio (SPAR) was proposed to minimize some of the uncertainty

introduced by impedance parameter selections (48). The SPAR

is calculated by dividing the SPAI of each demand point by the

average SPAI value of all demand points. SPAR values of less than

1 indicate lower-than-average access and values greater than 1

indicate higher-than-average access.

All data processing, statistical analyses, and comparisons were

performed in R (version 4.3.0) (49).

3 Results

We applied the 2SFCA method with a continuous kernel

density distance decay function to the Texas clinic dataset described

above and ADHD prevalence data provided by Zgodic et al. (37).
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The estimated county-level ADHD prevalence among children and

adolescents aged 5–17 presented substantial geographical variation,

ranging from 2.28% in Kenedy County to 35.26% in Galveston

County (median [IQR]: 14.94 [11.93, 17.40]) (Figure 2A). The

estimated ADHD count, reflecting pediatric demand, was highly

skewed (median [IQR]: 476.5 [143, 1485]) with urban areas such as

Houston, Dallas, Austin, and San Antonio showing higher counts

compared to rural areas.

At the time of analysis, clinics enrolled in the 1st year of the

program were present in 193 of the 254 Texas counties. However,

the number of enrolled clinics per county varied substantially

and was highly skewed with 73.06% (141 of 193) of counties

having 1–5 enrolled clinics, while 2.59% (5 of 193) had over

100 (Supplementary Figure 1C). Moreover, urban counties had

more clinics compared to rural counties (Urban: 6 [1, 18.75];

Rural: 1 [0, 2]), with clinics heavily clustered around urban

centers (Supplementary Figure 2). We also calculated the number

of enrolled clinics per 100,000 population aged 5–17 at the county

level, which ranged from 0 to 854.7 (median [IQR]: 40.48 [9.69,

74.90]) (Figure 2B). Accounting for the study population size, rural

counties tended to have a higher, but more variable, enrolled

clinic count per 100,000 (Urban: 29.09 [11.56, 54.01]; Rural: 47.62

[0, 85.21]).

For the kernel density 2SFCA, we compared accessibility

across two kernel distance decay functions, the Epanechnikov and

Quartic, and across a selection of maximum catchment areas (dmax)

based on travel time thresholds (30, 45, 60, 90, and 120min) and

thresholds determined by the percent of the population with access

to at least one point of supply (80%, 85%, 90%, 95%, and 100%).

SPAR values, representing spatial accessibility scores, ranged from

0 to 15.88 (SD: 1.62) for a 30-min travel time catchment. As travel

time increased to 90min, the geographic spread and variability

of SPAR reduced to a range of 0.022–11.20 (SD: 0.98) (Figure 3).

Urban counties had lower average SPAR values (30 min: 0.48 [0.25,

0.79]; 90 min: 0.89 [0.63, 1.20]) compared to rural counties at

the same catchment criteria (30 min: 0.70 [0.20, 1.45]; 90 min:

0.83 [0.50, 1.21]), though this difference was less pronounced at

larger catchments. Between the 30- and 90-min catchments, specific

regions in West Texas, including Jeff Davis, Presidio, and Brewster

counties, exhibited the greatest change in SPAR, transitioning from

the very low accessibility category (SPAR values between 0.0 and

0.5) at 30min to the highest accessibility (SPAR values above 5)

at 90min (Figure 3). In contrast, portions of central and southern

Texas consistently fell within the lowest accessibility category

across all specified catchments and distance decay functions

(Supplementary Figures 3–6). Highly populated counties such as

Harris (including Houston), Dallas, and Tarrant (including Fort

Worth) had an improvement regarding access category between

30- and 90-min (Figure 3), while Travis County, which includes

Austin, remained within the same access category between both

catchment selections. Changing the maximum catchment area by

travel time resulted in distinct variations in the SPAR values across

Texas, presenting noticeable geographic patterns. When holding

the travel time constant but varying the decay functions in defining

the catchment areas, SPAR values were highly correlated (Pearson’s

correlation coefficient r: 0.92–0.99) between the Epanechnikov and

Quartic kernel distance decay functions (Supplementary Figures 7,

8 and Supplementary Table 1) Finally, achieving 80% access for the

demand population required a catchment of 26.15min, while 100%

access required 72.66min (Figure 3).

Bivariate mapping is a useful approach to visually investigate

the association of the SPAR with another relevant areal

characteristic using a color scale to highlight areas potentially in

need of new resource implementation. To illustrate this method,

Figure 4 presents the bivariate map of estimated ADHD prevalence

and county-level SPAR values for four selected catchments of

30-min or 90-min travel time, and 80% or 100% population

with access. We categorized SPAR into terciles representing

low, medium, and high access, for each of the four catchments.

Estimated ADHD prevalence was also divided into equal-sized

terciles of low, moderate, and high groups. Counties with high

prevalence, but very low access, represent potential areas to

prioritize for future program outreach and enrollment efforts.

With a catchment of 30- and 90-min, 29 and 33 counties had high

prevalence but very low access to enrolled clinics, respectively.

Additionally, Figure 5 presents the bivariate map of county-level

SVI and SPAR values for the same selected catchments. SVI was

categorized into terciles, representing low, medium, and high

vulnerability. Counties with low access, but high vulnerability may

also be suitable areas to prioritize for future program allocation.

For both 30- and 90-min catchments, 27 counties had high

vulnerability, but very low access to enrolled clinics. Among these

counties, several urban and highly vulnerable areas were identified,

including Nueces, Polk, and Trinity counties, suggesting these

counties may be suitable areas for future priority enrollment efforts.

4 Discussion

In this study, we compared the relative impact of key 2SFCA

method inputs, specifically the distance decay function and

catchment area. We then assessed the resulting spatial accessibility

measures for clinics enrolled in a statewide child and adolescent

psychiatric consultation program, specifically noting regions in

Texas that consistently had poor access across method inputs.

Pockets of low access were observed in central and southern Texas

paired with high vulnerability. Further, a more spatially granular

investigation of large urban centers will be required for a complete

picture of access to pediatric mental health services. While we use

this Texas clinic data, this study is not intended as an evaluation

of the program, but as guidance for selecting spatial methods to

evaluate future program enrollment or other intervention efforts.

The inclusion of distance decay functions in spatial accessibility

analysis has been explored to account for travel impedance within

the catchment. We considered the Epanechnikov and Quartic

decay functions previously used to assess spatial accessibility

(10, 18), and found that county-level SPAR were similar and

highly correlated between both distance functions for the same

catchment area value (Supplementary Table 1). This consistency

aligns with previous studies (23, 41), suggesting that the specific

choice of distance decay may be less critical in practice. Conversely,

the selection of the catchment area exhibited a more significant

impact on accessibility trends, as evidenced by the notable

increase in SPAR values in counties like Jeff Davis, Presidio, and
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FIGURE 2

Estimated county-level ADHD prevalence among children and adolescents aged 5–17, as obtained by Zgodic et al. (37) (A) and the number of clinics

enrolled in a statewide program per 100,000 aged 5–17 with clinic locations (black dots) overlaid (B).

FIGURE 3

Selected SPAR calculated using individual enrolled clinic-county pairs, and the Epanechnikov distance decay function with di�ering catchment

selections: (A) 30-min travel time, (B) 90-min travel time, (C) 80% of the population with access, and (D) 100% of the population with access.
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FIGURE 4

Bivariate county-level maps of Texas assessing estimated ADHD prevalence, as obtained by Zgodic et al. (37), and accessibility as measured by the

Spatial Accessibility Ratio (SPAR) derived from the 2SFCA. ADHD prevalence was divided into terciles: low (0%−12.82%), moderate (12.82%−16.34%),

and high (>16.34%). Similarly, SPAR was divided by terciles for each catchment area: low (Q1), medium (Q2), and high (Q3). Counties in blue shades

(upper left tile) represent those with low access, but high demand and may be potential priority counties for future enrollment e�orts.

Brewster when the catchment was increased from 30- to 90-

min. Smaller catchments (e.g., 30min) displayed more discrete

and local geographic variability, while larger catchments (e.g.,

90min) produced geographically smoother patterns of SPAR, as

expected (see Figure 3). However, despite changes in the state-

wide accessibility patterns, clusters of counties in central and

southern Texas consistently remained in the lowest SPAR category,

indicating low accessibility across all catchments.

While some general benchmarks exist in the FCA literature,

catchment area specification is often arbitrary (12) and loosely

grounded in empirical data on care-seeking behavior (12, 45,

46). Certain population characteristics have been previously

investigated in relation to care-seeking behavior. Previous work

has shown that residents of rural counties are often more willing

to travel further for care than their urban counterparts (50, 51).

Further, car ownership is not universal and urban residents in

particular may utilize alternative modes of transportation, such

as public transport, cycling, or walking (11, 13, 52, 53). Various

catchments and multi-modal transportation have been proposed

in the 2SFCA approach to address differences in supply capacity

and care-seeking behavior. For example, Tao et al. (20) used facility

size to inform supply catchments and Bauer and Groneberg (45)

integrated different distance decay and catchments, to capture

consumer behavior variations.

However, determining the optimal catchment area to accurately

represent the “true” accessibility pattern remains a challenge since
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FIGURE 5

Bivariate county-level maps of Texas assessing the Social Vulnerability Index (SVI) and accessibility as measured by the Spatial Accessibility Ratio

(SPAR) derived from the 2SFCA. SVI was divided into terciles: low (0–0.33), moderate (0.33–0.67), and high (>0.67). Similarly, SPAR was divided by

terciles for each catchment area: low (Q1), medium (Q2), and high (Q3). Counties in blue shades (upper left tile) represent those with low access and

high vulnerability.

care-seeking behavior is often tied to specific healthcare needs of

the study population and region. Data on specific care-seeking

behavior to define the optimal catchment is often not available. For

example, one study compared the realized and acceptable access

to primary and specialist care (54). Various demographic factors

influenced acceptable differences including age and town size for

primary care and income for specialist care. To the best of our

knowledge, no such study exists for Texas; factors influencing

realized and acceptable access to primary and specialist services

are likely to differ. Other dimensions of accessibility, notably

affordability (e.g., out-of-pocket costs, insurance coverage), are also

likely to influence realized access, but are not incorporated into

the FCA framework. Programs like CPAN may help to overcome

other accessibility barriers by linking primary care providers with

specialist consultations, which may directly improve patient care

and help to build PCP capacity to manage future similar cases (55).

Comparing the resulting SPAR values to estimated ADHD

prevalence patterns (Figure 4) and SVI (Figure 5) revealed a more

nuanced pattern across counties. Assessing SPAR alone, central

and southern Texas counties fell within the lowest accessibility

category. Priority counties may further be specified by identifying

which counties have particularly low access and/or high social

vulnerability, but relatively higher demand. Most counties in

southern Texas had low access coupled with low demand. By

contrast, counties such as Bandera, Kerr, Kimble, and Neuces may

be higher priority counties for future CPAN enrollment as they

exhibit very low access but fall within the highest tercile of ADHD

prevalence across multiple applied catchment areas. However, the
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observed bivariate patterns may be misleading, particularly in large

urban areas (e.g., Harris County), as we were unable to account for

clinic capacity. Further, consideration for varying levels of ADHD

diagnosis could have affected the findings. A complete discussion

on patterns of diagnosis for ADHD is beyond the scope of this

paper, as ADHD prevalence was one example measure selected

among various other mental health conditions that affect children

and adolescents.

Our study has a few limitations of note. First, we were unable

to incorporate a measure of supply capacity (e.g., the number

of primary care physicians, pediatric patient load) due to data

limitations and restrictions, whereby only the location of the clinics

was available. This may have had the strongest impact on urban

clinics, which may be equipped to handle a larger influx of patients

than their rural counterparts. The lack of supply capacity may

explain why some urban areas like Houston, where the Texas

Medical Center is located, received lower accessibility scores.

Second, the 2SFCA method provides a simplification of travel

behavior complexity. Improving data availability on care-seeking

behavior, including the relative importance of distance impedance

versus other barriers to care such as out-of-pocket costs, is crucial

to inform the catchment parameters of the FCA methodology and

better guide policy. Travel distance has been shown to reflect a

significant barrier to care, especially for rural regions (51, 56);

however, with the rise of Telemedicine as a popular alternative

for seeking health services (particularly in mental health services),

the role of distance as a barrier to care may shift, necessitating

a reevaluation of FCA and other accessibility approaches. Finally,

our analysis only provides a broad, state-wide assessment of

accessibility. The 2SFCA approach assumes a uniform population

distribution within the catchment area, which may not reflect the

actual population distribution, particularly for catchment areas that

include large urban areas and small rural counties. The realized

accessibility of more granular units, such as neighborhoods, may

be obscured by county-level patterns.

4.1 Conclusions and future directions

FCA methods are useful tools to assess healthcare resource

accessibility, though its application can further be improved by

greater data availability on care-seeking behavior and supply

capacity. Since the original 2SFCA, substantial work has been made

to address identified shortcomings through various modifications

and adaptations. These include the Three-Step Floating Catchment

Area (3SFCA) approach that incorporated a measure of supply

competition through the addition of the Huff model (57), and

inclusion of the Huff model alongside various distance decay

and catchment sizes into the integrated FCA (iFCA) (45). Other

literature has explored the implementation of multiple modes

of transportation into the FCA approach (11, 13, 52, 53, 58).

Future work could consider applying other FCA methods to better

control for supply competition and variable catchments based on

demographic preferences and willingness to travel. Additionally,

future work in large urban centers should further investigate

accessibility by integrating clinic capacity data and exploring

multi-modal transportation options to refine accessibility estimates

in these areas. Counties in southern and central Texas are priority

candidates to expand enrollment in the CPAN program. Future

work should further investigate the accessibility to pediatric mental

health services in large urban centers to better guide public health

policy and resource allocation in those areas.
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