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Coronavirus Disease 2019, caused by severe acute respiratory coronavirus 2, has 
been an ever-evolving disease and pandemic, profoundly impacting clinical care, 
drug treatments, and understanding. In response to this global health crisis, there 
has been an unprecedented increase in research exploring new and repurposed 
drugs and advancing available clinical interventions and treatments. Given the 
widespread interest in this topic, this review aims to provide a current summary—for 
interested professionals not specializing in COVID-19—of the clinical characteristics, 
recommended treatments, vaccines, prevention strategies, and epidemiology of 
COVID-19. The review also offers a historical perspective on the pandemic to 
enhance understanding.

KEYWORDS

COVID-19, SARS-CoV-2, clinical presentation, epidemiology, risk factors, vaccines, 
treatments, public health

1 Introduction

Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), rapidly became a worldwide pandemic in 2020, leading to 
widespread illness and death. As the understanding of the disease and its impact evolves, and 
as the disease proceeds to endemicity, it is crucial to review and summarize the current 
knowledge of clinical features, symptoms, risk factors, epidemiology, treatments, vaccines, and 
prevention strategies. This review provides a comprehensive clinical overview of the current 
understanding of COVID-19.

2 Clinical features/symptoms and pathogenesis of 
COVID-19

Whereas the clinical nature of the COVID-19 pandemic has evolved greatly following the 
roll-out of vaccines, updated vaccine boosters, and emergence and dominance of Omicron 
variants to a less morbid condition for many with dramatically lower hospital rates and virus-
related deaths, moderate and severe acute disease is still observed with a mortality greater than 
influenza and other respiratory illnesses. The National Institutes of Health (NIH) classify five 
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stages of COVID-19 based on severity (Figure  1) (1). These are 
asymptomatic or presymptomatic, mild, moderate, severe, and critical 
illnesses. The first stage, asymptomatic or presymptomatic, is when 
persons test positive for SARS-CoV-2 by a nucleic acid amplification 
test or antigen test but do not display clinical symptoms (1, 2). The 
mild illness stage is those patients without dyspnea or lower 
respiratory radiological findings but with other symptoms such as 
fever, cough, pharyngitis, malaise, cephalgia, nausea, or emesis. Those 
in the classification of moderate illness are persons with clinical 
symptoms, radiological findings of disease in the lower respiratory 
tract, and oxygen saturation > 94%. The severe illness stage is those 
with tachypnea at a respiratory frequency > 30 breaths/min, or lung 
infiltrates >50%, oxygen saturation < 94%, and partial pressure of 
oxygen/fraction of inspired oxygen (PaO2/FiO2) <300 mmHg. 
Critical illness is the most severe stage and includes patients who 

develop acute respiratory distress syndrome (ARDS) or display acute 
respiratory failure with septic shock or multiple organ dysfunction (1, 
2). ARDS is a form of respiratory failure that requires clinical and 
radiological findings. ARDS progression is evaluated by decreasing 
PaO2/FiO2 levels from mild (200–300 mmHg) to moderate 
(100–200 mmHg) to severe (<100 mmHg).

ARDS (Figure 2A) is the hallmark of COVID-19 and accompanies 
a histological pattern known as diffuse alveolar damage (DAD). DAD 
includes edema, death of pneumocytes, thrombosis, capillary 
congestion, and hyaline membrane formation. The dead and dying 
pneumocytes will release cytokines and chemokines to recruit 
immune cells and cause inflammation (Figure 2B). Ultimately, the 
inflammatory response will damage microvascular endothelial cells, 
further causing leaky vessels. Hyaline membrane formation 
diminishes oxygen exchange, resulting from coagulation dysregulation 

FIGURE 1

Stages of COVID-19 and recommended treatment timing in adults. This figure demonstrates the five stages of COVID-19, the corresponding findings 
associated with each stage, the recommended practice for physicians encountering patients in their respective stages (isolation, telehealth, in-person, 
and hospitalization), and the currently recommended treatment guidelines relating to time and severity of disease. *Care providers initiate based on 
contraindications and risk factors for more severe disease, and follow local protocols. **Final 2024 NIH Panel recommends against dexamethasone 
(I) or other corticosteroids (J) for COVID-19 treatment if no (F) or (G). *** If using dexamethasone + IV remdesivir, PO baricitinib or IV toxilizumab. If 
using dexamethasone, but not using or do not have access to IV remdesivir, IV adatacept or IV infliximab. ↟Dosing information can be obtained at 
dailymed.nlm.nih.gov ↡Drug–drug Interactions can be found at https://www.idsociety.org/paxlovid and https://www.covid19-druginteractions.org/
checker. Further guidelines at UpToDate.com and www.covid19treatmentguidelines.nih.gov.
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and fibrotic signaling. Also, hyaline membranes will result in fibrin 
thrombi, depleting platelets and generating clots. Clotting further 
increases inflammation and is exacerbated by interleukin (IL)-6 

production. The death of the lung epithelium and endothelium will 
result from viral replication, coagulation, and hypoxia and is the 
underlying pathology of pneumonia in SARS-CoV-2 infection (3, 4).

FIGURE 2

Effect of SARS-CoV-2 infection on healthy alveolus and pneumocyte, and associated targets of interventions. (A) In cases where SARS-CoV-2 infection 
progresses from the upper to the lower respiratory tract, the pathophysiological response can result in Acute Respiratory Distress Syndrome (ARDS). 
SARS-CoV-2 will preferentially target type II pneumocytes and cause infiltration by immune cells (macrophages, neutrophils, mast cells, and dendritic 
cells). The combined response of infected and immune cells will generate the cytokine storm and cause the endothelial cells to become leaky. The 
leaky endothelial cell junctions will leak fluid into the alveoli and interstitium, developing platelets and fibrin thrombi to compensate. The damaged 
cells, platelets, and thrombi will generate scar tissue. Together, these effects result in diffuse alveolar damage, which can be visualized histologically. 
The diffuse alveolar damage is the cause of the symptoms seen with critical COVID-19 illness and is known as Acute Respiratory Distress Syndrome. 
(B) Within a pneumocyte exposed to SARS-CoV-2, an intracellular inflammatory response and viral replication, lead to extracellular cytokines and 
inflammatory markers and infectious SARS-CoV-2. Medication categories (anticoagulants, convalescent plasma, corticosteroids, direct antivirals, 
immunomodulatory, and monoclonal antibodies) currently in use to target SARS-CoV-2 and alleviate the symptoms of COVID-19 are shown in purple.
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Symptomatic clinical presentations include dyspnea, fever, cough, 
pharyngitis, nausea, anorexia, anosmia, dysgeusia, cephalgia, malaise, 
myalgia, and diarrhea. Dyspnea, fever, and cough are the most 
common presentations in 70% of cases, followed by myalgia (36%) 
and cephalgia (34%) (2). SARS-CoV-2 infection, especially with 
pre-Omicron variants, can target the brain, eyes, nose, lungs, 
vasculature, liver, kidneys, and intestines. Approximately 23% of 
persons infected with SARS-CoV-2 will progress to severe COVID-19, 
with 5.6% of infected persons dying pre-Omicron and before 
widespread vaccination (5). Progression to more severe disease has 
become rare with the Omicron variants in those without risk factors. 
Symptoms relating to the gastrointestinal system, such as nausea and 
emesis, are associated with severe COVID-19 with pre-Omicron 
strains, as are symptoms of the respiratory system, such as angina and 
dyspnea (5). Finally, end-organ failure and pneumonia are associated 
with mortality (5).

3 Risk factors

Moving on to risk factors, risk factors for COVID-19 can 
be  classified into environmental, viral, and host. Environmental 
factors include human crowding, occupational exposure, poor 
ventilation, and animal contact. On the other hand, viral risk factors 
are associated with the rapid evolution of SARS-CoV-2 throughout 
the pandemic and include transmissibility, evasive mutations, and 
viral loads associated with a particular variant (6).

Shifting our focus to host risk factors, most of which were 
identified prior to most persons experiencing vaccination or at least 
one infection, the primary host risk factors for COVID-19  in 
non-vaccinated individuals are old age, male sex, racial and ethnic 
minorities, diabetes mellitus, immunocompromised state, obesity, 
hypertension, lung disease, cardiovascular disease, cancer, pregnancy. 
For instance, advanced age is associated with COVID-19, intensive 
care unit (ICU) admission and mortality (6–11). This can be explained 
by the fact that age is associated with more comorbidities, weaker 
immune response, and septic shock complications that correlate with 
mortality (9, 12, 13). Moreover, males are more likely to acquire, 
be admitted to the ICU, and die from COVID-19 than females (5, 6, 
8, 9). The underlying reasons for this sex difference include estrogen’s 
effect on solubilizing ACE2, levels of ACE2 and TMPRSS2, hormonal 
differences in the inflammatory response, health behaviors, personal 
concerns, social alarm, and responsible attitudes (6, 8, 9, 14, 15). 
Racial and ethnic minorities are also at higher risk for COVID-19 
hospitalization and death. The reasons for this may include barriers to 
healthcare access, transportation, lack of insurance, and hesitancy 
about COVID-19 treatments (16). Other risk factors include diabetes 
mellitus, a known inflammatory disease shown to have immune 
system consequences (17). People with diabetes mellitus are at a 
higher risk for COVID-19, are less responsive to treatments, are more 
frequently admitted to the ICU, and are at higher risk of mortality 
(5–10, 13). An independent risk for people with diabetes mellitus is 
poorly controlled and elevated glucose (13, 18). Elevated glucose levels 
are also associated with increased ACE2 expression (9, 17, 18) and 
higher viral titers (19), as SARS-CoV-2 hijacks host cell metabolism 
(20, 21). Additionally, cardiovascular disease is a risk factor for 
COVID-19 due to the expression of ACE2 on cardiac myocytes and 
vascular fibroblasts (6, 7). Statin and aspirin use in diabetes and 

cardiovascular disease should be continued in those already taking 
them. Still, it should not otherwise be initiated during COVID-19 
(22). Furthermore, immunodeficiency or immunosuppression 
increases the risk of severe disease and mortality in COVID-19 (23). 
Next, obesity in persons under 50 years of age increases the risk of 
hospitalization with COVID-19. Notably, obesity lengthened the stay 
of COVID-19 patients in hospitals (7, 9). As for hypertension, it causes 
a higher risk of acquiring COVID-19 and dying from the disease. 
Hypertension is related to the renin-angiotensin-aldosterone axis 
regulating blood pressure, (9, 24, 25), and a component of that axis is 
ACE2, the protein that SARS-CoV-2 binds to for entry. As many with 
hypertension take medications that decrease blood pressure, they will 
also be  increasing ACE2 expression (6). However, the increase in 
mortality of hypertensives is related to the condition itself, and 
antihypertensives reduce the mortality in COVID-19 in those already 
on antihypertensive; thus, those on ACE inhibitors are often advised 
to continue to use them (22, 26). Lung diseases such as chronic 
obstructive pulmonary disease (COPD), interstitial lung disease 
(ILD), and pulmonary embolism are also risk factors for COVID-19 
(9). Malignancy increases the risk of COVID-19, as it is associated 
with a weakened immune response, particularly when associated with 
chemotherapy (6). Pregnant women are more susceptible to 
COVID-19 infection than are non-pregnant women (9). Lastly, other 
host risk factors include malnutrition, autoimmunity, neurological 
disease, chronic kidney disease, smoking, and liver disease (6, 9–11).

4 Epidemiology

The SARS-CoV-2 virus first emerged in Wuhan, Hubei Province, 
China, on December 12, 2019 (27, 28). Upon its emergence, the Hubei 
Provincial Hospital notified the Chinese public health authorities that 
many unexplained pneumonia cases emerged from the Huanan 
market (29). Subsequently, the first report to the World Health 
Organization (WHO) of the outbreak of SARS-CoV-2 (then known 
as 2019-nCoV) was on December 31, 2019 (29–31). In a matter of 
weeks, by January 18, 2020, 2019-nCoV had spread to the 
United States, with the first reported case in Washington State (31, 32). 
Rapidly escalating, by February 12, 2020, more than 44,730 cases had 
been reported in China (28). Recognizing the severity, on March 11, 
2020, the WHO declared the COVID-19 pandemic (30, 31, 33), and 
the White House announced on March 31, 2020, that 100,000–
240,000 U.S. deaths were expected (31, 34). The Centers for Disease 
Control and Prevention (CDC) recommended facial masking 
guidelines in early April to curb the spread (31). In a further effort to 
contain the virus, 43 states of the United States had issued stay-at-
home orders by April 24, 2020 (35). Despite these and other efforts, by 
November 30, 2020, SARS-CoV-2 had spread worldwide, infecting 
more than 62 million persons. Although vaccines gave hope to an end 
to the pandemic in early 2021, tragically, by early November 2021, 
there were more than 250  million confirmed cases and 5 million 
deaths worldwide. As of August 2024, that number had grown to 
775  million cases and 7 million deaths worldwide, with over 
103 million cases and 1.2 million deaths in the US (36, 37).

The natural history of COVID-19 (Figures 3A–C), determined 
pre-Omicron, begins with exposure to SARS-CoV-2 (38–42). Upon 
exposure, the mean incubation period—the point of exposure to 
the onset of clinical signs—is between 5.8 and 6.9 days, ranging 
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FIGURE 3

Natural history of COVID-19. (A) The dynamics of SARS-CoV-2 infectiousness are shown in A. The y-axis demonstrates a relative density for the latent 
period, infectious virus, viral RNA, serial interval, and generation time by time in days. (B) The dynamics of COVID-19 disease are shown in B, with the 
y-axis demonstrating a relative density of incubation period and tissue seeding by time in days. Approximate recovery time for vaccinated (Vx) and 
unvaccinated (UnVx) individuals is shown. (C) Schematic of the transmission of SARS-CoV-2 from primary case to secondary case, with the onset of 
symptoms and progression of disease.
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from 2.33 to 17.6 days. The range may vary due to age and 
infectious dose, and Omicron and other evolving strains will alter 
these metrics (38, 41, 43). As the infection develops, the latent 
period for SARS-CoV-2, the time between infection and 
infectiousness, is between 5.5 and 6.0 days (41, 44). Infectiousness 
and transmission start before symptom onset and peak at symptom 
onset (39). The intrinsic generation time—the interval between the 
infection dates of an infector and its secondary cases in a fully 
susceptible population—averages 6.84 days for the Omicron 
variant (45). The serial interval—the time between the onset of 
symptoms between successive cases—is between 4.8 to 6.8 days, 
with a mean of 5.8 days. During the infection, viral RNA load peaks 
near symptom onset or an average of 2 to 4 days post-infection and 
then gradually wanes, with infectiousness averaging 9.8 days post-
symptom onset (38, 42). Interestingly, this waning corresponds 
with the approximate limit of detection of SARS-CoV-2 by viral 
RNA of 21 days (39). Immunocompromised persons, however, 
shed for much longer, with one study showing shedding for 
151 days post-initial infection, during which time the virus evolved 
intra-host (46). IgG and IgM seroconversion occurs ~13 days 
following symptom onset (47). Some patients who cannot limit the 
infection to a mild illness will progress to severe disease. Severe 
disease can progressively be classified into the pulmonary phase 
and hyperinflammatory phase. The pulmonary phase of the disease 
happens an average of 5 days after symptom onset and is 
characterized by pneumonia and lung infiltrates (42). 
Unfortunately, some will further progress to the hyperinflammatory 
phase, characterized by ARDS discussed above (42). Ultimately, 
hospital discharge or death occurs at a mean of 18.1 days (15.1–21) 
from symptom onset (40). Tissue seeding is a concept that has 
come to light with the advent of Long COVID (48, 49). Tissue 
seeding likely begins during the initial viral infection and can 
be detected in organs throughout the body for weeks to years (49, 
50). Major gaps in our knowledge of tissue seeding are currently 
being addressed. The viruses’ continued evolution and widespread 
vaccination will likely continue to alter these 
epidemiological characteristics.

5 Treatments and vaccines

The interventions in this pandemic are continuously evolving and 
involve vaccines and treatments, including small-molecule drugs, 
convalescent plasma, and monoclonal antibodies (summarized in 
Table 1 and Figure 2) (51, 52). As of 2024, the three recommended 
treatments for non-hospitalized COVID-19 in the United States are 
ritonavir-boosted nirmatrelvir (Paxlovid), remdesivir, and 
molnupiravir (53, 54). In contrast, for patients requiring 
hospitalization, nine treatments are presently in use depending on 
disease severity and therapeutic indications: remdesivir, 
dexamethasone, baricitinib, heparin, tofacitinib, tocilizumab, 
sarilumab, infliximab, and abatacept (54, 55). The European Medicines 
Agency refused marketing authorization for molnupiravir due to a 
lack of clinical benefit (56, 57). This decision followed the 
PANORAMIC study, which showed that molnupiravir did not reduce 
hospitalizations and death in a vaccinated population of high-risk 
adults during the omicron variant time period—and may contribute 
to further viral evolution (58).

5.1 Small molecules and approved drugs

Given the importance of small molecules in the treatment 
landscape, mainly those approved by the Food and Drug 
Administration (FDA) discussed below, it is essential to summarize 
their collection as shown in Table 1. As of 2024, the small molecules 
used to treat COVID-19 can be  divided into four categories: 
corticosteroids, JAK inhibitors, direct antivirals, and others.

Even with the wide use of Emergency Use Authorization (EUA) 
and off-label, as shown in Table 1, there are only four drugs with 
complete FDA approval for treating COVID-19. The first 
FDA-approved drug for treating COVID-19 requiring hospitalization 
was remdesivir (Veklury) on October 22, 2020. Remdesivir is an 
SARS-CoV-2 RNA-dependent RNA polymerase inhibitor, essential 
for viral replication. Three randomized controlled trials contributed 
to its approval from manufacturer Gilead, including the ACTT-1 trial, 
which found that the median time to recovery with remdesivir was 
10 days compared to 15 on placebo, a statistically significant difference 
(59). An open-label multicenter trial of hospitalized adults with 
moderate COVID-19 showed that the odds of a patient’s symptoms 
improving were higher in those who received 5 days of remdesivir 
versus placebo (60). The third study helped determine the optimal 
duration of treatment of 5 days as these patients had similar outcomes 
compared to those 10 days of therapy (61).

Baricitinib (Olumiant) was approved on May 10, 2022, for treating 
COVID-19 for hospitalized adults requiring supplemental oxygen, 
non-invasive or invasive mechanical ventilation, or extracorporeal 
membrane oxygenation. Manufactured by Eli Lilly, the proposed 
mechanism is inhibition of the JAK–STAT signaling pathway and 
inhibition of AP2-associated protein kinase, which controls viral 
endocytosis (62). Approval was based upon data published from two 
phase 3, randomized, double-blind, placebo-controlled clinical trials. 
The first showed an improvement in time to recovery when baricitinib 
was combined with remdesivir vs. placebo with remdesivir in adults 
hospitalized with COVID (63). The second trial demonstrated that 
fewer patients died or progressed to ventilation within 4 weeks when 
treated with baricitinib vs. placebo (64).

Next, to be approved by the FDA was tocilizumab (monoclonal 
antibody). Tocilizumab (Actemra) was approved for hospitalized adult 
patients receiving systemic corticosteroids requiring supplemental 
oxygen, non-invasive or invasive mechanical ventilation, or 
extracorporeal membrane oxygenation. Manufactured by Genentech, 
the drug selectively and competitively binds to the IL-6 receptor, 
theoretically reducing lung tissue injury caused by COVID-19 (65). 
Data compiled from several trials contributed to its approval on 
December 21st, 2022. In the RECOVERY trial, 4,116 hospitalized 
patients with severe COVID-19 pneumonia were randomized, and 
primary analysis revealed a statistically significant difference in the 
probability of death by day 28  in the tocilizumab group versus 
standard of care (66).

The final FDA-approved agent in the treatment of COVID-19 is 
nirmatrelvir + ritonavir (Paxlovid). Nirmatrelvir is a peptidomimetic 
inhibitor of SARS-CoV-2 3C-like protease, which prevents viral 
replication. Ritonavir, an HIV-1 protease inhibitor, inhibits the 
CYP3A-mediated metabolism of nirmatrelvir, increasing plasma 
concentrations of nirmatrelvir. The combination drug, manufactured 
by Pfizer, was officially approved by the FDA on May 25, 2023, though 
it has been widely used under EUA since December 2021. The 
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TABLE 1 Current and historical FDA-approved and EUA drugs for COVID-19, including drugs commonly used off-label in COVID-19.

Type Class Names Brief summary FDA status COVID-19 (2024)

Monoclonal Antibody

Anti-IL6R (Immunomodulatory)

tocilizumab (Actemra)
IL6R; block inflammatory pathway to prevent disease 

progression
FDA approval

sarilumab (Kevzara)
IL6R; block inflammatory pathway to prevent disease 

progression
off-label *

Anti-TNFalpha (Immunomodulatory)
infliximab (Avsola, Flixabi, Inflectra, Remicade, 

Renflexis, Zymfentra)
TNFɑ; reduce key inflammatory cytokine, thereby 

reducing capillary leak
off-label *

Anti-complement (Immunomodulatory) vilobelimab (Gohibic) complement factor 5a FDA EUA

Anti-SARS-CoV-2

casirivimab + imdevimab (REGN-COV2) SARS-CoV-2 Spike glycoprotein EUA revoked

sotrovimab (Xevudy (VIR-7831)) SARS-CoV-2 Spike glycoprotein EUA revoked

bamlanivimab (LY-CoV555) ^^ SARS-CoV-2 Spike glycoprotein EUA revoked

etesevimab (LY-CoV016) ^^ SARS-CoV-2 Spike glycoprotein EUA revoked

tixagevimab + cilgavimab (EVUSHELD) SARS-CoV-2 Spike glycoprotein EUA revoked

regdanvimab (Regkirona (CT-P59)) SARS-CoV-2 Spike glycoprotein EUA revoked

bebtelovimab (LY-CoV1404) SARS-CoV-2 Spike glycoprotein EUA revoked

pemivibart (Pemgarda (VYD222))
pre-exposure prophylaxis of COVID-19; SARS-

CoV-2 Spike glycoprotein
FDA EUA

Plasma convalescent plasma
plasma with high titers of anti-SARS-CoV-2 

antibodies
FDA EUA

Biologic abatacept (Orencia)

fusion protein (CTLA4-Ig) disease-modifying anti-

rhematic drug; selective T cell costimulation 

modulator

off-label *

(Continued)
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TABLE 1 (Continued)

Type Class Names Brief summary FDA status COVID-19 (2024)

Small molecule

Corticosteroids

dexamethasone anti-inflammatory or immunosuppressant agent off-label *

hydrocortisone
glucocorticoid used to treat endocrine, immune, and 

allergic disorders
off-label *

methylprednisolone anti-inflammatory or immunosuppressive drug off-label *

prednisone (Deltasone, Rayos, Winpred) anti-inflammatory or immunosuppressive drug off-label *

Immunomodulatory

baricitinib (Olumiant)
JAK inhibitor used to treat rheumatoid arthritis; 

believed to interfere with viral entry
FDA approval

anakinra (Kineret) recombinant antagonist of IL1R FDA EUA

tofacitinib (Xeljanz)
JAK inhibitor used to treat rheumatic conditions/

ulcerative colitis/COVID-19
off-label *

Direct Antivirals

molnupiravir (Lagevrio) isopropylester cytidine analog; uptake by RdRp FDA EUA

nirmatrelvir + ritonavir (Paxlovid) protease inhibitor + CYP 3A4 inhibitor FDA approval

remdesivir (Veklury) nucleoside analog; binds RdRp FDA approval

Other

hydroxychloroquine (Plaquenil, Sovuna) disease-modifying anti-rhematic drug EUA revoked **

chloroquine antimalarial drug also used in rheumatoid arthritis EUA revoked **

heparin (Defencath, Heparin Leo)

anticoagulant; directly inhibit the conversion 

fibrinogen to fibrin by blocking the activity of factor 

IV and activating anti-factor 10 which neutralizes the 

effects

off-label *

propofol-lipuro (Diprivan) sedative to assist mechanical ventilation EUA revoked

propoven (Diprivan) sedative to assist mechanical ventilation EUA revoked

Other
multiFiltrate PRO System CRRT FDA EUA

REGIOCIT replacement solution replacement colution in CRRT FDA EUA

Janus Kinase (JAK); Interleukin-6 Receptor (IL6R); Severe acute respirtory syndrome coronavirus 2 (SARS-CoV-2); Food and Drug Administration (FDA); Emergency Use Authorization (EUA); RNA-dependent RNA polymerase (RdRp); cytochrome P450 (CYP). 
*FDA approved for other indications. Off-label use in the setting of COVID-19. **Use is not indicated. Unclear clinical benefit. No rigorous prospective data showing efficacy. ^^eventually co-administered. FDA status current as of 04/2024.
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combination drug was approved based upon outcomes from the 
EPIC-HR study, which showed an 86% reduction in risk of COVID-
19-related hospitalization or death from any cause through Day 28 in 
patients who started treatment with Paxlovid within 5 days of 
symptoms onset as compared to placebo (67). The EPIC-SR also 
supported its approval, as it showed a numerical reduction in COVID-
19-related hospitalizations or death in a sub-group of non-hospitalized 
adults with confirmed COVID-19 who had at least one risk factor for 
progression to severe disease and who were fully vaccinated (68).

5.2 Convalescent plasma

During COVID-19, as with the previous outbreaks of Severe Acute 
Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome 
(MERS), convalescent plasma was a safe and effective tool in treatment 
and post-exposure prophylaxis (69). Drawing from a long history of 
success, using convalescent plasma or serum to counter infectious 
diseases has been successfully used for over a century (69, 70). In the 
early stages of the pandemic, the need for convalescent plasma was 
prevalent mainly in the first year, wherein the only available treatment 
for COVID-19 was convalescent plasma or sparingly-successful 
repurposed antivirals (69). At that time, convalescent plasma was used 
in ~10% of all worldwide infected persons in the COVID-19 
pandemic’s first year (71). Fast forward to today, convalescent plasma 
continues to have FDA EUA in the United States for immunosuppressed 
persons (72, 73). However, the research and evidence remain divergent 
in the consensus on the efficacy of convalescent plasma, and efficacy 
could include factors such as time from infection to infusion, antibody 
titer, plasma quality, and co-administration with corticosteroids (70, 
74, 75). Nonetheless, the use of convalescent plasma appears safe (76).

5.3 Monoclinal antibodies

Monoclonal antibodies (mAbs) were the initial pursuit of many 
companies worldwide (51, 77, 78). In the early stages, at one point, nine 
anti-SARS-CoV-2 mAbs and two anti-interleukin-6 receptor (IL6R) 
mAbs had received FDA EUA (51, 79–82). However, most anti-
SARS-CoV-2 monoclonal antibodies had diminished efficacy against 
the evolving SARS-CoV-2 variant strains (77, 83–85). The loss of 
efficacy is due to the development of mAbs and the evolution of SARS-
CoV-2. Most mAbs were designed against the proteins from ancestral 
sequences of the virus (27). Consequently, as the virus evolved, many 
changes in the Spike glycoprotein resulted in an inability of the 
monoclonal antibodies to recognize their epitope and neutralize the 
virus. Subsequently, all anti-SARS-CoV-2 monoclonal antibody 
treatments that had received FDA EUA have since been revoked due to 
lost efficacy (79, 81, 84–90). Remarkably, only tocilizumab received FDA 
approval for use in COVID-19 from all monoclonal antibodies once in 
use. More recently, in 2024, one anti-SARS-CoV-2 mAb, Pemgarda, has 
received FDA EUA for pre-exposure prophylaxis of COVID-19 (91, 92).

5.4 Vaccine development

Shortly after the publication of the first SARS-CoV-2 whole-
genome sequences elucidated the ~30 kb genome (Figure 4A) (27, 

93), the race to develop vaccines began, with the first in development 
by early 2020 (94, 95). Whereas traditional vaccine development has 
taken 15 years or longer, vaccine development to distribution with 
SARS-CoV-2 took between 10–17 months (95). These vaccines—
including Pfizer and Moderna—were designed to elicit a response 
against the Spike glycoprotein (Figure  4B) (96). The Spike 
glycoprotein, one of four structural proteins in SARS-CoV-2, is 
critical for viral entry and antibody neutralization. Variants of 
concern have continuously evolved the Spike glycoprotein 
(Figure  4C), diminishing the efficacy of vaccines, monoclonal 
antibody treatments, and antiviral therapies. This ongoing evolution 
underscores the importance of continuous surveillance and research 
(58, 87, 97, 98).

Phase 1 trials for these vaccines began only 3 months into the 
pandemic, and by September 2020, there were hundreds in preclinical 
development, with many proceeding into clinical trials (95, 99). Many 
vaccine platforms were being tested, including live-attenuated, 
recombinant protein subunits, virus-like particles, replication-
incompetent vectors, replication-competent vectors, inactivated virus, 
DNA, and RNA (95, 100–109). By early 2021, approximately 11 
vaccines of five unique platform strategies made it through to phase 3 
trials (108). These strategies and vaccines were:

 1. RBD recombinant protein subunits.
 2. Pre-fusion stabilized (S-2P) (110) lipid nanoparticle 

(LNP) mRNA.
 3. S-2P replication-competent vectors.
 4. Full-length S replication-competent virus vectors.
 5. Whole inactivated virus (95).

Despite still being under clinical evaluation, the first SARS-CoV-2 
vaccine received FDA EUA approval on December 11, 2020 (Pfizer 
and BioNTech BNT162b2) (94, 111). The BNT162b2 vaccine 
demonstrated an initial efficacy of 95% (94). BNT162b2, an S-2P LNP 
mRNA vaccine, became the first FDA-approved SARS-CoV-2 vaccine 
on August 23, 2021 (112, 113). Following suit, the S-2P LNP mRNA 
Moderna vaccine (mRNA-1273) also received full FDA approval on 
January 31, 2022 (114).

Other vaccines in the United  States with FDA EUA approval 
included the S-2P Ad26 replication-incompetent vector Janssen 
vaccine (Ad26.COV2.S) and the S-2P protein subunit Novavax 
vaccine (NVX-CoV2373) (108, 115–117). The mRNA-1273, Ad26.
COV2.S, and NVX-CoV2373 vaccines had initial efficacies of 94, 66, 
and 89.7%, respectively (117–120). Janssen later voluntarily withdrew 
their EUA. Globally, other vaccines against SARS-CoV-2 were 
approved worldwide by the WHO (95, 121). As of September 2021, 53 
vaccines were being marketed and investigated for the future of SARS-
CoV-2 vaccines, with 161 vaccine candidates by July 2022 (122, 123). 
Fast forward to March 2023, 382 SARS-CoV-2 vaccines were in 
pre-clinical or clinical development (124).

Initially, vaccines received approval as one or two doses for adults 
and have since progressed to include many age groups and boosters 
to three and four doses as the pandemic continues and the virus 
evolves (125–131). Additionally, as the SARS-CoV-2 virus is predicted 
to remain endemic (132), these vaccines will involve changing the 
sequences of the genomes and proteins as part of next-generation 
vaccine design to match the evolution of SARS-CoV-2, akin to 
influenza virus vaccines (97). Such has been demonstrated with the 
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bivalent vaccines with the addition of Omicron strain (BA.4 and BA.5) 
spike proteins to the original Pfizer and Moderna vaccines (133).

The vaccination schedule and strategies are also an essential topic 
for consideration. While the Pfizer and Moderna vaccines initially 
recommended three and four-week intervals, respectively, (134) 
scheduling guidelines have since been updated to 3–8 weeks and 
4–8 weeks, respectively (135). Currently, 8 weeks is the 

recommendation for persons who are not immunocompromised 
(136). Interestingly, the longer dosing interval also reduces the 
occurrence of COVID-19 vaccine-related myocarditis, which is 
highest among young males receiving mRNA vaccines (136–138). 
Moreover, research has shown that neutralizing antibody 
concentrations are up to 2.3-fold greater at 6–14 weeks (139). Initially, 
this extension of interval practice began in Europe as a method to 

FIGURE 4

SARS-CoV-2 genome, spike protein domains, epitope densities, and omicron sublineage mutation frequencies. (A) The positive-sense RNA genome 
structure of SARS-CoV-2 showing the untranslated regions (UTR), structural proteins Spike (S), Envelope (E), Membrane (M), and Nucleocapsid (N), and 
non-structural proteins including ORF1a and ORF1b. (B) The Spike protein domains, including the signal peptide, N-terminal domain (NTD), receptor-
binding domain (RBD), furin cleavage site, fusion peptide, heptad repeat 1 (HR1), HR2, transmembrane region (TM), and cytoplasmic tail. The S-2P pre-
fusion stabilization site is shown at positions 986 and 987. The density of predicted B and T cell epitopes against pre-2022 variants (97) is shown as a 
color scale for each domain. (C) Bar plots showing mutation frequencies for BA.1, BA.2, BA.4/5, and XBB Omicron lineage families (98). Bar positions 
represent amino acid residue in Spike (1–1273), and the height represents the percentage of sublineages in that lineage family that contain a mutation 
at that residue.

https://doi.org/10.3389/fpubh.2025.1498445
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Maison et al. 10.3389/fpubh.2025.1498445

Frontiers in Public Health 11 frontiersin.org

increase the population with first-dose protection by delaying second 
doses. Still, researchers found the method effective and immunogenic, 
potentially reducing mortality (139, 140). A model predicting the 
optimal delay between the first and second dose elucidates 12 weeks 
as the optimal time (141).

Given the evolving nature of the virus, there are many factors to 
consider when evaluating vaccines against SARS-CoV-2, including 
variant effects, humoral and cellular responses, epitopes, delivery 
methods, and adjuvants. Firstly, SARS-CoV-2 Variants of Concern 
(VOC) do not compromise T cell responses. However, B cell responses 
and neutralizing antibodies significantly decrease against emerging 
VOC (142). As a result, future vaccines may also need to address 
presenting multiple epitopes beyond the Spike protein, as N and 
M-specific T-cell responses dominate in non-hospitalized and mild 
cases. Interestingly, in contrast, spike-specific T-cell responses are 
associated with more severe infection (143). Moving forward, when 
designing next-generation SARS-CoV-2 vaccines, many more factors 
must be considered. These considerations include dosing schedule, 
antigen presentation, and immunization route (144, 145). 
Nevertheless, regardless of possible improvements, the United States 

vaccination program is estimated to have prevented more than 
235,000 deaths in the first 10 months (Dec 2020–Sep 2021) (146). On 
a global scale, this estimate increased to 19.8 million deaths prevented 
due to SARS-CoV-2 vaccines by December 8, 2021 (147).

6 Prevention

SARS-CoV-2 is transmitted by asymptomatic, pre-symptomatic, and 
symptomatically infected individuals (148). The transmission of SARS-
CoV-2 proceeds from susceptible individuals to exposed individuals; 
exposed individuals can either remain asymptomatic and recover or 
become presymptomatic and infected. The infection then results in either 
recovery or mortality (Figure  5A) (148). Pre-symptomatic persons 
transmit 40–60% of new infections, and asymptomatic persons transmit 
<10% (148). This presymptomatic transmission is demonstrated by the 
median time between infection and symptom onset being 5.7–7 days (43, 
94, 149). Furthermore, between 17.9 and 33.3% of patients infected with 
SARS-CoV-2 will remain asymptomatic (2). Otherwise, high 
transmission occurs ~2.5 days before symptom onset (148), which 

FIGURE 5

COVID-19 epidemiological model of SARS-CoV-2 transmission and prevention. This figure represents a combination of epidemiological models used 
to demonstrate the progression of the COVID-19 disease and the transmission of SARS-CoV-2. (A) The transmission cycle begins with a susceptible 
individual (S) who is exposed to the virus by a pre-symptomatic (P), asymptomatic (A), infected/symptomatic (IS), or deceased (D) individual. Once 
infected, the susceptible individual (S) will progress to the exposed (E) stage and become either asymptomatic or pre-symptomatic. If pre-
symptomatic, the individual will proceed to the infected/symptomatic stage and will either recover (R) or die (D). If asymptomatic, the individual will 
recover and become recovered (R). Recovered individuals may re-enter the cycle as susceptible (S). Solid lines represent the stages of COVID-19 
progression, while dashed lines represent the transmission of SARS-CoV-2. (B) The Swiss Cheese Model of pandemic defense exemplifies the response 
to the rapid spread of SARS-CoV2. This model includes both personal (crimson) and communal (orange) measures to limit the spread of the virus.
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means that people who have not sought medical care or a diagnostic test 
can still transmit the virus. So much so that even vaccinated persons can 
shed and transmit the virus, which has been particularly prevalent with 
variants (113, 150–153). SARS-CoV-2 has a variable reproductive 
number (R0) from 0.52–5.08 that changes with new variant strains (154–
156). The secondary attack rate was 16.6% in late 2020 but escalated to 
19.4% with the Delta VOC and 25.1% with the Omicron VOC (157, 
158). The case fatality rate began at 3.71% in March 2020 but decreased 
to 1.13% by July 2022 and is higher in areas with a low vaccination rate 
(155, 159).

Containment strategies were also implemented, including 
government-issued stay-at-home orders and travel restrictions. The 
pandemic defense was centered around overlapping responses that 
generate multiple layers of protection—known as the Swiss cheese 
model (Figure  5B) (160). This comprehensive model relies upon 
personal and communal measures to prevent the spread and 
transmission of the virus. Individual defense measures include 
physical distancing, staying at home, hygiene, etiquette, mask-
wearing, contact avoidance, and limiting time in crowds. In parallel, 
communal measures include rapid testing, tracing, air filtration, 
government messaging, financial assistance, mandatory quarantining, 
and vaccines. Together, these responses served as the pandemic 
defense and public policy response for nearly two and a half years until 
the CDC lifted restrictions on masks in early 2022 (161).

7 Conclusion

The rapid spread of COVID-19 worldwide has vastly changed 
hospitals and treatments since the pandemic began in late 2019. This 
dynamic included many drugs and treatments once in use that have 
since been revoked due to ineffectiveness and a fluid dynamic 
facilitated by the evolving variants of SARS-CoV-2. This review aims 
to provide a complete summary of the present status of COVID-19. 
This collection signifies historical and present status in a constantly 
changing and active field.

The subjects covered herein must be continually reassessed 
and reflected upon as further evidence emerges globally. 
Reassessing and reflecting on these topics can improve pandemic 
response plans, refine treatment plans, and develop a more robust 
vaccine policy. To maintain the highest level of care, current 
treatments need to be monitored for maintained effectiveness, and 
treatment successes of other countries should be  explored. To 
exemplify this, understanding how patients react during 
hospitalization can point to the success of hypnotics as used in 
China (12). By evaluating the current pandemic response plans, 
we  can allow for response implementation sooner in future 
COVID-19 waves or other pandemics. Such a response will include 
masking, distancing, stay-at-home orders, and other components 
of the Swiss-cheese model. To develop a more robust vaccine 
policy and design future SARS-CoV-2 vaccines, we  must 
continually monitor the viral evolution and incorporate the viral 
changes into our vaccines to maintain effectiveness and identify 
the correlates of protection necessary for an appropriate and long-
lasting response. This vaccine evaluation should include evaluating 
multiple SARS-CoV-2 proteins in the vaccines and adjuvants that 
can produce the response needed for long-term protection and 
identifying algorithms for determining the emergence of variants 
such as flu vaccines (97). The persistent evaluation of these aspects 

facilitates optimal control and preparedness for COVID-19 and 
other potential pandemics.
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