Skip to main content

ORIGINAL RESEARCH article

Front. Public Health

Sec. Public Mental Health

Volume 13 - 2025 | doi: 10.3389/fpubh.2025.1494583

Exploring predictors of insomnia severity in shift workers using machine learning model

Provisionally accepted
  • 1 Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
  • 2 Gachon University, Seongnam, Gyeonggi, Republic of Korea
  • 3 Korea University, Seoul, Republic of Korea
  • 4 Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea

The final, formatted version of the article will be published soon.

    Insomnia in shift workers has distinctive features due to circadian rhythm disruption caused by reversed or unstable sleep-wake cycle work schedules. While previous studies have primarily focused on a limited number of predictors for insomnia severity in shift workers, there is a need to further explore key predictors, and develop a data-driven prediction model for insomnia in shift workers. This study aims to identify potential predictors of insomnia severity in shift workers using a machine learning (ML) approach and evaluate the accuracy of the resulting prediction model. We assessed the predictors of insomnia severity in large samples of individuals (4,572 shift workers and 2,093 non-shift workers). The general linear model with the least absolute shrinkage and selection operator (LASSO) was used to determine an ML-based prediction model. Additional analyses were conducted to assess the interaction effects depending on the shift work schedule.The ML algorithms identified 41 key predictors from 281 variables: 1 demographic, 7 physical health, 13 job characteristics, and 20 mental health factors. Compared to the non-shift workers, the shift workers showed a stronger association between insomnia severity and five predicting variables: passiveness at work, authoritarian work atmosphere, easiness to wake up, family and interpersonal stress, and medication. The prediction model demonstrated good performance with high accuracy and specificity overall despite a limited F1 score (classification effectiveness) and recall (sensitivity). Specifically, a prediction model for shift workers showed better balance in F1 scores and recall compared to that for non-shift workers. This ML algorithm provides an effective method for identifying key factors that predict insomnia severity in shift workers. Our findings align with the traditional insomnia model while also reflecting the distinctive features of shift work such as workplace conditions. Although the potential for immediate clinical application is limited, this study can serve as guidance for future research in improving a prediction model for shift workers. Constructing comprehensive ML-based prediction models that include our key predictors could be a crucial approach for clinical purposes.

    Keywords: Shift worker, Sleep, insomnia, machine learning, risk prediction

    Received: 11 Sep 2024; Accepted: 26 Feb 2025.

    Copyright: © 2025 Yeo, Jang, Kim, Jeon, Hwang, Kang and Kim. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Seog Ju Kim, Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more