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Objectives: The objective was to aggregate the various scenarios that occur 
during nonconventional public health emergencies (NCPHEs) and analyze the 
evolutionary patterns of NCPHEs to better avoid risks and reduce social impacts. 
The aim was to enhance strategies for handling NCPHEs.

Study design: News reports were crawled to obtain the scenario elements of 
NCPHEs and categorized into the spreading stage or derivation stage. Finally, 
the key scenario nodes and scenario evolution process were analyzed in 
combination with a corresponding emergency response assessment of each 
scenario by experts.

Methods: Dempster–Shafer (DS) theory and Bayesian networks (BNs) 
were applied for data reasoning, and a spread-derived coupled scenario–
response theoretical model of NCPHEs for major public health emergencies 
was constructed. The scenario evolution path of COVID-19 was derived by 
combining seven types of major scenario states and corresponding emergency 
response measures extracted from 952 spreading scenarios.

Results: The 26 NCPHE spread scenarios and 41 NCPHE derivation scenarios 
were summarized. Optimized and pessimistic NCPHE scenario pathways were 
generated by combining the seven major spreading scenarios to help decision 
makers predict the development of NCPHEs and take timely and effective 
emergency response measures for key scenario nodes.

Conclusion: This study provides a new approach for understanding and 
managing NCPHEs, emphasizing the need to consider the specificity and 
complexity of such emergencies when developing decision-making strategies. 
Our contextual derivation model and emergency decision-making system 
provide practical tools with which to enhance NCPHE response capabilities and 
promote public health and safety.
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1 Introduction

The COVID-19 outbreak was a major nonconventional public 
health emergency (NCPHE) with unprecedented spread, extensive 
infections, and significant challenges in prevention and control. The 
outbreak tested healthcare institutions, citizens, governments, and 
enterprises, as well as governance mechanisms at all levels in affected 
countries (1). This led to extreme tests and destructive experiments 
being carried out on various subjects, such as healthcare institutions, 
people, governments, and enterprises, as well as the governance 
mechanisms and institutions at all levels in countries in the middle of 
the outbreak (2, 3).

COVID-19 was an NCPHE that was characterized by 
suddenness, complexity, uncertainty, and broad public impact, 
alongside significant secondary derivative hazards that were both 
vast and destructive. Given the novel nature of the virus, its 
potential for mutation, and its high morbidity and mortality rates, 
Hao X and other scholars have studied COVID-19. Notably, they 
identified two distinct features on the basis of 32,583 confirmed 
cases, namely, a high level of insidiousness and a high transmission 
rate (4). Thus, a dynamic policy response is needed to effectively 
mitigate risks.

Recent NCPHE crises, including influenza A (H1N1), Zika, 
MERS, and Ebola, have been frequent, unpredictable, and destructive, 
revealing significant information gaps and data availability issues (5). 
These patterns have intensified concerns about future NCPHEs, 
highlighting the urgent need for strong policy measures to 
mitigate risks.

Three years after the onset of the COVID-19 epidemic, most 
global economies are still influenced by the adverse effects of urban 
lockdowns and economic disruptions (6). To effectively manage 
NCPHEs such as COVID-19, scenario forecasting can be used as a 
more dynamic approach than traditional methods. In this approach, 
outcomes are predicted under specific assumptions, incorporating key 
scenario factors that allow for a timely response to potential situations 
arising during a health crisis (7, 8). Uncertainties such as behavioral 
shifts, new government measures, and natural disasters are considered 
in scenario forecasting, thus enhancing our ability to plan and 
implement effective emergency responses.

In response to COVID-19, countries have adopted 
nonpharmacological interventions (NPISs), such as community 
isolation, social distancing, controlling the movement of people, 
closing schools, rapid virus testing, close contact tracing, and the 
establishment of square-cabin hospitals (9, 10). These interventions 
can be divided into two categories, namely, blocking and mitigating 
modes, which can also be  described as rigid and flexible modes, 
respectively (11). The blocking model (rigid model) requires higher 
costs in the short term due to the enforcement of interventions to 
avoid significant long-term health and economic losses. On the other 
hand, proponents of the mitigation model (flexible model) argue that 
the blocking model cannot fully eradicate COVID-19. In later stages, 
when the epidemic subsides, high-intensity interventions may lead to 
overdefense, adversely impacting both population welfare and 
economic development and ultimately reducing the effectiveness of 
subsequent interventions (12, 13).

Scenario forecasting can be used to analyze different dimensions 
of NCPHE-specific past and future scenarios simultaneously given 
the relevant NPISs. Scenario forecasting aids in controlling 

emergency response for NPISs during NCPHEs and can support 
long-term decision-making better than traditional forecasting 
methods can (14).

Therefore, the effective prediction and projection of processes in 
various NCPHE scenarios (spread, derivation, and coupling) and the 
generation of contingency plans can not only facilitate communication 
between key public health and emergency agencies but also aid in 
identifying critical issues and effective responses. This approach also 
supports the global restructuring of governance systems for 
unconventional public health emergencies.

The “scenario–response” approach has become a popular approach 
in emergency response research, especially with respect to responding 
to NCPHEs, which are difficult to predict and are characterized by a 
high degree of complexity or low probability of occurrence. The 
“scenario–response” approach was first used in the preparation of 
China’s emergency response plan; the idea is to use scenarios to express 
routine emergencies as the initial goal, the prediction of future 
scenarios as the intermediate goal, and the proposal of response 
options under specific scenarios as the final goal. The “scenario–
response” method also helps government departments carry out 
prevention and emergency preparedness work for different scenarios 
[social security (15), education (16), management (17), health (18), 
climate adaptation (19), ecosystems (20), and public health (21)] under 
the premise of risk prevention and early warning provision, with the 
aim of carrying out prevention and emergency preparedness work.

Many scholars have conducted exploratory research at the 
theoretical level and applied research at the practical level in tasks 
such as problem definition, elemental composition, and expression 
to evaluate the evolution mode of scenarios. In terms of the 
theoretical level, Kahn and Anthony defined a scenario as a collection 
of hypothetical future events constructed to elucidate possible causal 
chains of events and their decision points (22). On this basis, Durance 
and Godet argued that one needs to satisfy the requirements of 
relevance, coherence, likelihood, importance, and transparency to 
label a scenario (23). On the basis of the classification of scenarios 
into predictive, exploratory and normative categories, Börjeson et al. 
introduced the concepts of external scenarios and internal 
scenarios (24).

The commonly used scenario analysis methods include the 
scenario axis technique, with which it is possible to establish scenarios 
in which trends and key uncertainties for past events are transformed 
into a variety of plausible trends to help describe different possible 
future states of the world (25). Another method is the 2 × 2 scenario 
matrix method, in which a matrix is derived from a selection of two 
causally independent key drivers ranging from extremely positive 
(favorable) developments to extremely negative outlooks (26, 27). 
Morphological analysis spans the entire field of possibilities, and 
relevant scenarios are constructed. Notably, Johansen used 
morphological analysis to structure scenarios (28). Expert analysis 
(such as with Delphi or Renner Abacus) is used to assign probabilities 
and reduce uncertainty, and multicriteria analysis is used to identify 
and evaluate strategic options.

In summary, scenario representation for nonconventional 
emergencies can be summarized as the collection of current scenario 
element status information and the sum of development trends. The 
key to the emergency management of NCPHEs is the rationality of 
response decisions. Therefore, with respect to how to correctly 
represent the status of various scenarios, whether the composition of 
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scenario elements is reasonable, and whether the assessment approach 
is appropriate, each scenario deduction link is particularly important.

In terms of applied research at the practical level, the U.S. COVID-19 
Scenario Modeling Hub (SMH) uses scenario planning models to 
simulate changes in uncertainty in the epidemiology of COVID-19 and 
its response measures, combined with future changes under specific 
conditions (such as intervention policies), to provide long-term 
guidance (29). Oteros-Rozas et al. used participatory scenario planning 
(PSP) to study the socioecological environment. Robin B et al. proposed 
the use of participatory prospective analysis (PPA) to construct scenarios 
to increase the capacity of local communities and organizations. 
Srivastava et al. used three machine learning methods, namely, linear 
regression (LR), sequential minimal optimization (SMO) regression, 
and the M5P algorithm, to predict COVID-19 scenarios (30). Similarly, 
scenario simulations have been applied to assess natural disaster events 
under extreme climate conditions, such as rainstorms and floods, and 
during emergencies, such as those related to water pollution, oil depot 
explosions and fires, and food safety incidents (31, 32).

Most studies of NCPHE scenario simulations have focused on 
single-scenario analysis, used quantitative models to predict the short-
term trends of public health events, or analyzed scenario factors from 
a risk perspective (33–35). However, these methods seldom integrate 
relevant countermeasures or decision-making strategies.

On the basis of scenario evolution theory and the Bayesian 
network (BN) model, a scenario deduction model for NCPHEs was 
constructed. It can be  used to effectively address new “what-if ” 
problems that may arise during public health outbreaks due to 
behavioral changes or the implementation of new intervention 
measures. Compared with traditional prediction models, the scenario 
evolution model we constructed on the basis of a BN incorporates 
multiple scenario assumptions that support reasoning in cases with 
incomplete, imprecise, or uncertain information and can therefore 
meet long-term decision-making needs.

2 Methodology

A BN is a model for uncertainty knowledge representation and 
reasoning that is based on probabilistic analysis and graph theory; it 
is currently one of the most effective models used in the field of 
uncertainty knowledge representation and reasoning. BNs consist of 
nodes (variables) and directed edges (conditional dependencies). Each 
node represents a random variable, and directed edges between nodes 
represent conditional dependencies (pointing from parent to child), 
expressing the strength of the relationship in terms of conditional 
probabilities. Bayesian networks perform inference by utilizing Bayes’ 
theorem and quantify these relationships through probability  
distributions.

In a BN model, if the set of parent nodes of a particular node is 
established and given the conditional independence assumption 
inherent to BNs, then the node in question is statistically independent 
of all nondescendant nodes. Under these conditions, the joint 
probability distribution can be formulated as follows:
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To overcome the limitations of expert knowledge and the 
influence of personal preferences on the accuracy of empirical 
probability, Dempster–Shafer (DS) theory (36) is used to integrate the 
empirical probability values and uncertain information given by 
experts to reduce their subjective effects and ensure the reliability and 
rationality of node probabilities.

Based on an improved DS theory, the empirical probability values 
given by various experts are quantitatively calculated, which can 
greatly reduce the subjective effect and improve the accuracy of 
empirical probability. The improved fusion formula is as follows (37):
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f(A) = k·q(A) in the formula is the probability distribution 
function of evidence conflict; that is, the conflict degree K between 
each piece of evidence is distributed to each element in Matrix 
A. Therefore, the probability distribution formula satisfies 
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For scenario variable with parent nodes, its occurrence probability 

is determined according to the expert’s scoring (named conditional 
probability), that is, the probability values of this scenario variable 
under the occurrence and nonoccurrence of its parent scenario node. 
P(Si) represents the parent node set of the situation state node Si, and 
the corresponding formula can be expressed as follows:
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In DS theory, upper and lower boundary probabilities are used to 
solve the multivalued mapping problem and fuse multiple data sources 
or expert judgments to reduce the bias of a single source, thus solving 
problems related to the characterization and fusion of uncertain 
information. By using DS theory in conjunction with BNs, we are not 
only able to attenuate uncertainty in the absence of precise 
probabilistic information but also enhance the robustness of BN 
inference. Notably, in scenarios with conflicting evidence from 
multiple sources, we can effectively avoid inference errors due to the 
inconsistency of information. By combining these two approaches, 
our scenario evolution model for NCPHEs can maintain high 
inference accuracy and provide reliable support for decision making 
in cases with uncertainty or insufficient data.

3 Data collection

3.1 NCPHE scenario construction and 
evolutionary element data collection

For NCPHEs, the International Health Regulations (IHR 
2005), which were revised in 2005 by the World Health 
Organization (WHO), define an international public health 
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emergency as follows: “A public health emergency of international 
concern is an unusual event that poses a public health risk to other 
countries through the international spread of disease and may 
require a coordinated international response” (38). The 
U.S. Centers for Disease Control and Prevention (CDC) define an 
NCPHE as any event that may have a significant impact on the 
health of a population, such as natural disasters, disease outbreaks, 
and bioterrorist attacks (39). This definition emphasizes the 
potential impact of the event on public health and is not specific 
to an international context. Other countries, such as China, define 
an NCPHE as a health threat that exceeds the ability of 
conventional public health and medical resources to respond to it; 
such a public health event typically includes major infectious 
disease outbreaks, mass unexplained illnesses, major food and 
occupational poisonings, and other situations that seriously affect 
public health and cause serious damage to the public health of 
the community.

The scenario elements in the emergency prevention and control 
process for NCPHEs can be  systematically delineated from three 
perspectives (illustrated using a major epidemic as a case study), 
namely, disaster-affected entities [such as the government, societal 
elements such as residents and businesses, and nongovernmental 
organizations (NGOs)], disaster agents (such as viruses and epidemic-
related materials), and disaster-response entities (medical and health 
institutions, alongside public service organizations) (40). Figure 1A 
illustrates the interrelationships among these three categories of 
actors. Through media (the internet), the three types of entities engage 
in energy and information exchange. Figure 1B is a schematic diagram 
illustrating the interactions of information and energy among these 
entities. This scenario element description is used to summarize the 
various scenarios that can arise during the evolution of NCPHEs.

Second, COVID-19 served as the empirical research focus for 
collecting and analyzing data for typical NCPHE scenarios. The 
epidemic was characterized by an extensive impact, a high degree of 
concealment, a rapid transmission rate, and the involvement of 
multiple stakeholders. Traditional emergency planning procedures are 
inadequate for the timely and effective management of such events. 
Therefore, the COVID-19 outbreak exemplifies a typical 
unconventional public health emergency, providing a pertinent case 
study with which to validate the accuracy and efficacy of the model 
proposed in this study.

ThePaper is a well-known news medium in China, specializing in 
in-depth news reporting and public affairs, with content of high 
authority and credibility. The news content it publishes usually 
undergoes strict editing and review procedures to ensure the accuracy 
and authenticity of the information. Tencent News and Baidu News 
are websites that are more oriented toward news aggregations, 
providing information mainly by reproducing content from other 
news sources. The original reports of ThePaper, especially with respect 
to NCPHEs, can provide a detailed and analytical perspective for 
scenario analysis and modeling. Therefore, ThePaper was chosen as 
the news collection source. The flow of the data collection steps is 
shown in Figure 2.

Following the steps above, using the Houyi collector tool, a total 
of 9,132 records were initially retrieved. The dataset was refined by 
excluding news events prior to 2019, events unrelated to the epidemic 
scenarios and duplicate reports. After screening, 1,504 relevant cases 
of COVID-19-related news reports were identified for analysis.

Finally, drawing from disaster system theory, a disaster situation 
was determined to comprise three elements, namely, the disaster-
causing factor, the disaster carrier, and the disaster-conceiving 
environment, which can be formulated as situation = {hazard, carrier, 
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FIGURE 1

Framework diagram of the relationships among the elements of an unconventional public health emergency scenario.
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environment} (41). On the basis of whether they are directly or 
indirectly affected by epidemics, the identified scenarios were 
categorized into 26 types of spreading scenarios and 41 types of 
derived scenarios (37 types of negative scenarios and 4 types of 
positive scenarios). After thorough comparative analyses, 952 
spreading scenarios and 552 derived scenarios were identified. The 
basic descriptions of these scenarios are presented in Appendix A.

From the beginning of the epidemic to the resumption of regular 
socioeconomic activities, China’s epidemic prevention and control 
included three phases: the outbreak blocking phase, the normalized 
prevention and control exploratory phase, and the “dynamic zero” 
phase of whole-chain precision prevention and control. The time 

nodes of these three phases are defined as April 2020, August 2021, 
and November 2021, respectively; thus, the scenarios were divided 
into periods according to these three time nodes. The spreading 
scenarios and the number of occurrences in these three periods are 
shown in Figure 3.

Figure  3 clearly shows that in the initial phase, news reports 
covered primarily influenza or other viruses, which was attributed to 
the similarity of the symptoms of these viruses to those of COVID-
19. This was followed by increased coverage of the surge in infection 
rates (S2) and the scarcity of medical supplies and personnel (S3 and 
S4). In the subsequent period, the focus shifted due to the 
government’s adaptive emergency responses, which moved away 

FIGURE 2

NCPHE data collection flowchart.
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from stringent quarantine measures. During this time, the growth 
rate of S2 reports noticeably slowed, whereas reports on superspreader 
events caused by virus carriers (S12) and risks associated with virus 
transmission through food (particularly cold chain transport) (S14) 
increased.

In the final phase, the narrative continued to be dominated by 
reports on S2 and S12. However, there was a notable shift in reporting 
trends; the frequency of reports regarding individual-induced virus 
transmission (S12) surpassed that of reports regarding the surge in 
infection rates (S2). Attention also increasingly turned toward 
incidents involving inappropriate statements and rumors (S18).

3.2 Bayesian scenario network 
construction for NCPHEs

The Bayesian scenario network construction process for NCPHEs 
can be divided into three steps in general; the specific flow chart is 
shown in Figure 4.

 1. Determination of network key node variables. By analyzing the 
historical cases of NCPHEs and expert knowledge to determine 
the key nodes of an event, the results of the quantitative analysis 
can be used to establish network node variables. On the basis 
of the scenario analysis, the key element nodes were counted, 
and then the domain expert knowledge was integrated to score 
and determine the type and value range of the node variables.

The types of node variables in the model were classified into 
scenario state nodes at a certain moment and scenario disappearance 
state nodes, where the scenario state nodes indicate the results of 
scenario state evolution at a certain moment and the scenario 
disappearance nodes indicate the disappearance of the crisis state, 
which suggests that the event is developing in a positive direction.

 2. Determination of the relationships among network nodes. To 
determine the scenario node variables, the relationships among 
node variables were determined according to the historical 
timing of an event and the logical relationships among the 

node variables; additionally, directed edges were used to 
connect the causally related node variables, constituting an 
interrelated network model of the scenario states.

The scenario evolution of an NCPHE is essentially a successive 
unfolding of the BN on the basis of a certain timeline; therefore, if the 
entire NCPHE evolution process is divided into a collection of n 
scenarios at time T, then S1 represents the initial scenario in the first 
critical phase, Si represents the scenario state at time Ti, Di (the disposal 
target) represents the disposal target at time Ti, and Mi denotes the 
contingency measure (emergency measure, Mi). The variable types and 
value sets of each scenario node are shown in Table 1.

On the basis of the scenario modeling of NCPHEs (42), as shown 
in Figure 5, an SDM model is constructed with these three key nodes 
for the three evolution modes of spreading, derivation, and coupling 
to describe the BN evolution process of NCPHEs scenarios, as shown 
in Figure 6.

In Figure 5, the fundamental elements used to represent scenarios 
in emergency management. The figure shows the mechanisms by 
which scenarios evolve, including the spreading, derivation and 
coupling Mechanism.

Figure 6 illustrates how scenarios evolve and interact through 
various mechanisms, emphasizing the dynamic and interconnected 
nature of scenarios in the context of emergency management.

By combining the information in Figure 6 and Appendix A, the 
derivation diagram of NCPHE scenarios can be drawn via Cytoscape, 
as shown in Figure 7, in which a spreading scenario of NCPHEs is 
shown in the box and the derived scenarios labeled on the basis of the 
spreading scenario results are shown in the circle. In this study, 
we  focus on the scenario evolution process during the spreading 
process of NCPHEs.

 3. Determination of the probabilities of network nodes. To 
analyze the evolution of scenario states and calculate the 
occurrence probability of network node variables in each 
scenario, it is necessary to first determine the conditional 
probability of node variables with parent nodes and the prior 
probability of node variables without parent nodes in the 
network on the basis of expert knowledge.

FIGURE 3

Graph of the number of different scenarios in each period.
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4 Analysis of results

4.1 Analysis of the evolution path of major 
epidemic scenarios

Through the analysis of historical cases and data collection, 
combined with the top events reported in the news shown in Figure 3 
and the derivative diagram of NCPHEs in Figure 6, six key scenario 
nodes, namely, S2, S3, S4, S12, S14, and S18, were extracted. However, 
from the analysis of the scenario elements and nodes, the affected 
objects and disaster relief agencies in scenarios S2, S3, S4, and S12 
were all consistent and directly affected by certain objects, and the 
affected objects were all associated with the public and society. The 
disaster relief agencies were mainly medical and health institutions. 
The affected bodies in scenarios S14 and S18 also included enterprises, 
which were indirectly affected by disaster bodies. Therefore, S14 and 
S18 were not considered in the scenario evolution path in the present 

study. The affected bodies and disaster relief agencies in S5, S6, and S7 
were consistent with those in scenarios S2, S3, S4, and S12. Therefore, 
S2, S3, S4, S5, S6, S7, and S12 were set as node variables in the major 
epidemic scenario network. Combined with the development and 
evolution of the epidemic crisis at different stages, the evolution path 
of this major epidemic encompassed 7 scenario states, 7 emergency 
measures, and 7 disposal targets (see Table 2).

Owing to the emergence of a localized surge in the number of 
infected people in S2, the whole scenario chain evolved over time, 
while the corresponding emergency measures (M2, M3, M4, M5, M6, 
M7, and M12) were implemented given the regulation and 
intervention effects linked to the different disposal objectives (D2, D3, 
D4, D5, D6, D7, and D12), with the goal of scenarios evolution in a 
specific direction toward positive outcomes, reflecting the evolution 
path. The path in this case is schematically shown in Figure 8.

As shown in Figure 8, during the development of public health 
emergencies, the evolutionary path of scenarios changes due to the 
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FIGURE 4

Flowchart for the construction of a scenario network for NCPHEs.

TABLE 1 Variable types and sets of values for key scenario nodes.

Node variable name Node variable type The set of node values

Scenario state (S) Boolean variable {True (T), False (F)}

Emergency measure (M) Binary ordinal variable {Good (G), Bad (B)}

Disposal objective (D) Binary ordinal variable {Positive (P), Negative (N)}
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different implementation effects of emergency response measures. For 
example, if emergency measure D3 is implemented in scenario status 
S3, and if D3 is effective, then scenario S3 will develop toward the 
expected goal; i.e., the crisis may end, and the scenario may disappear. 
However, if the implementation of D3 is ineffective, then S3 may 
evolve into a new scenario, such as S4. For scenario S4, emergency 
measure M4 is implemented, and if the results of M4 are favorable, 
then the scenario ends.

In Figure 8, there are 11 scenario states, in which S3end, S4end, 
S7end, and S12end, which have no parent nodes, are crisis 

disappearance scenarios, and the other nodes are scenario states. In 
this scenario evolution network, the horizontal arrows indicate the 
optimal evolution path achieved under the joint effect of emergency 
measures and treatment goals, such as S2 → S3 → S3end; i.e., the 
surge in the number of infected people disappears in the case of the 
effective implementation of measures D2 (complete isolation and 
admission of virus-infected people) and D3 (active replenishment of 
medical materials, with no gap in medical material availability). The 
vertical arrows indicate the nonoptimal evolutionary paths, in which 
emergency measures are not effective and treatment objectives are not 
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NCPHE scenario evolution and network expression map.
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FIGURE 7

Derivation of NCPHE scenarios.

TABLE 2 COVID-19 scenario elements.

Scenario state (S) Disposal target (D) Emergency measure (M)

S2: The number of people infected with severe local 

epidemics has increased sharply

D2: Nucleic acid testing, centralized isolation and 

treatment of virus-infected people

M2: Temporarily close businesses, schools, shopping malls 

and other places with high exposure risk (44)

S3: Shortage of medical supplies and protective 

equipment

D3: Provinces dispatch masks and replenish 

medical supplies

M3: Increasing the production of medical supplies and 

strengthening their upstream and downstream chains

S3end: Crisis disappeared 3

S4: Medical personnel infected with the virus D4: Timely isolation of infected medical personnel M4: Enhancement of protective measures and training for 

medical personnel, while ensuring that they have adequate 

rest periods

S4end: Crisis disappeared 4

S5: Insufficient medical personnel D5: Dispatch of medical personnel from other areas 

for medical team support

M5: Remote use of the internet by off-site healthcare 

workers

S6: Insufficient hospital beds D6: Increase the number of hospital beds M6: Makeshift hospitals (MSHs) erected in Fangcang, 

Huoshenshan, and Leishenshan

S6end: Crisis disappeared 6

S7: Misdiagnosis of virus carriers D7: Improved diagnostic methods M7: Combined use of multiple diagnostic tools

S7end: Crisis disappeared 7

S12: The emergence of superspreaders D12: Controlling the movement of people M12: Home isolation measures

S12end: Crisis disappeared 12
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fully achieved, such as S3 → S4 → S5 → S12; e.g., when medical 
supply shortages occur and when medical staff are infected with the 
virus, insufficient medical staff issues and the potential for 
superspreader scenarios will exist.

4.2 Probability of a major outbreak 
scenario

In major epidemic Bayesian networks, the estimation of node 
probabilities is usually challenging because of limited access to data. 
Therefore, professionals need to assess the probability of each node 
variable on the basis of their experience and expertise.

Seven domain experts in public health and emergency 
management were invited to score each node variable, and a 
Gaussian affiliation function was used to describe the degree of 
ambiguity of each factor. The central values of occurrence and 

nonoccurrence of the affiliation function were set to 0.75 and 0.25, 
respectively (43):

 
( )2

2

x

y e
µ

σ
−

−
=  (4)

where x represents the score of each expert for each indicator, µ  
represents the central value of the function, and σ  represents the 
uncertainty or estimation error of the expert’s score. The smaller σ  is, 
the more reliable the expert’s score is.

This Gaussian affiliation function was used to determine the 
degree of affiliation of each expert with each indicator on the basis of 
the occurrence and nonoccurrence ratings, where the value of the 
affiliation function is the value in the matrix of Formula (4). The 
probabilities assigned to the seven experts were then fused with 
Formulas (4), (5), and (6) in the Appendix B. The probability for each 
node variable was calculated via Dempster’s evidence theory formula.
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Schematic diagram of the evolutionary path of the major outbreak scenario in 2020.
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The state probability of each node variable was calculated by 
Equations 1–4, via the Bayesian joint probability formula, which was 
obtained via GeNIe software, as shown in Figure 9.

Figure  9 illustrates the scenario Bayesian network which is 
established by combining the prior probabilities of each response 
variable. Using the Bayesian joint probability formula, the state 
probabilities of the response variables in each scenario stage are 
calculated. Through the report cases, the range of values, node state 
probabilities and the scenario Bayesian network for each scenario are 
determined by combining expert scores based on the understanding 
of response measures and response results.

4.3 Sensitivity analysis

Bayesian network sensitivity analysis is achieved by studying the 
effects of small changes in the numerical parameters of the model (i.e., 
prior and conditional probabilities) on the output parameters 
(posterior probabilities). This approach is useful for identifying key 
parameters and dependencies. Highly sensitive parameters have a 
more significant impact than other parameters on the model push 
results, and identifying them allows for the targeted allocation of 
work. Sensitivity analyses of Bayesian networks are critical in fields 
such as risk assessment, healthcare, and reliability engineering.

The nodes in the Bayesian network represent the individual 
scenarios that may occur in NCPHEs and various emergency response 
measures. To identify the emergency response measures that have a 
the greatest impact on each scenario, the scenario nodes S2, S3, S4, S5, 
S6, S7, and S12 are defined as target nodes. The sensitivity analysis 
results for this group of nodes are shown in Figure 10.

In this Figure 10, darker-colored nodes indicate higher sensitivity. 
Notably, the emergency response measure nodes M2, M3, M4, and M5 

exhibit particularly high sensitivity, meaning that small changes in 
these nodes can significantly influence the Bayesian-derived scenario 
network. Based on these findings, we recommend prioritizing these 
four measures in the emergency management of NCPHEs: (1) 
temporarily closing high-exposure sites, (2) improving medical 
supplies, (3) strengthening protective measures for medical personnel, 
and (4) dispatching medical personnel in a timely manner.

5 Discussion

Since evolution of major public health events is a complex 
dynamic process affected by multiple factors, each key scenario node 
along an evolution path is associated with different emergency 
measures and treatment goals; thus, different emergency measures 
taken by emergency decision makers may lead to different scenario 
evolution paths. In the actual evolution of public health events, 
owing to their uncertainty and dynamism, there are often two 
directions of event evolution, namely, expected and unexpected, and 
these two directions have states of optimism and pessimism, 
respectively. Therefore, to ensure that major public health events 
develop along the path of the optimal scenario and reduce the 
damage and disruptions caused by evolution toward secondary 
scenarios, active and effective emergency measures and treatment 
goals are essential.

During the process of a major public health event, i.e., from 
occurrence to spread, the probabilities associated with scenario states 
S2, S3, S4, S5, S6, S7, and S12 are 38.8, 51, 52.4, 33.5, 45, 69.9, and 
30.7%, respectively. The fluctuations among scenarios are obvious, 
indicating that emergency management, as well as the treatment 
objectives, have an effect on each scenario over time. In summary, the 
dynamic scenario evolution network of major epidemics basically 
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Network diagram of scenario evolution of major outbreak dynamics in 2020.
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conforms to the actual crisis spreading process, thereby confirming 
the effectiveness and feasibility of the model.

6 Conclusion

 1. In this study, typical categories of NCPHE scenarios are 
summarized. There is no consensus regarding the scenario 
elements of NCPHEs. Thus, 26 typical spreading scenarios and 
41 derivative scenarios related to public health emergencies 
were extracted from historical case information. The applied 
approach overcomes the ambiguity of scenario descriptions via 
text for public health events and provides scientific and detailed 
scenario elements for analyses.

 2. A scenario-based statistical analysis of NCPHEs was performed 
with the proposed Bayesian network method to obtain scenario 
evolution patterns. On the basis of the “scenario–response” 
model and the SDM model, a Bayesian network for major 
epidemics was constructed. This approach effectively considers 
the uncertainty in the scenario evolution process, with 
important theoretical and practical significance for emergency 
decision makers to control the development of public health 
events and implement emergency response measures in a 
timely and effective manner for key scenario nodes. This study 
also provides scientific support for emergency management by 
relevant departments.

 3. Due to the large number of subjects involved and the 
complexity of influencing factors in the emergency response 
process of a major public health event, to determine the 
conditional probability for each scenario node, we adopted 
fuzzy set theory and improved D–S evidence theory to reduce 
the subjectivity of expert scores. To reduce the risks associated 

with public health event crises, an interdisciplinary, cross-
sectoral, and multilevel strategy is needed to provide effective 
assistance. In the future, we can do this by creating a database 
of scenarios of major public health events, encompassing both 
historical incident scenarios and frequently occurring 
scenarios. Moreover, to improve the autonomous learning 
capability of the proposed model, the Bayesian network can 
be  automatically updated when new scenario data 
are generated.

Although combining the scenario approach and the Bayesian 
network model allowed us to obtain useful predictions given changes 
in public health event dynamics, the most important elements of a 
complex system of public health outbreaks are the multiple and 
interacting drivers of the disease itself; these drivers are difficult to 
predict, such as the characteristics of the ever-mutating pathogens and 
the behavior of the human population in relation to resistance to 
the disease.

Therefore, two important topics will be explored in future studies. 
The first concerns the optimization of the Bayesian network. We plan 
to integrate real-time data streams from public health surveillance 
systems, social media, and other real-time data sources to compose 
new datasets. To improve the model’s adaptability, we  propose 
incorporating temporal elements into the framework, enabling the 
model to track changes in scenario states over time. Dynamic Bayesian 
networks (DBNs) can be  applied to assess temporal sequences of 
events and forecast how scenarios evolve in future time steps. We also 
propose embedding machine learning algorithms in the framework 
to enable DBNs to learn from new data and automatically adjust their 
probabilistic assumptions. The second optimization goal is to combine 
GIS systems with DBNs. Localized patterns of scenario evolution are 
simulated by adding spatially diverse environmental factors (climate, 
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Schematic diagram of the Bayesian network sensitivity analysis for NCPHEs.
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air quality, etc.) and demographic information to predict how 
interventions may have different impacts in specific regions.
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