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Up to now, tuberculosis (TB) remains a global public health problem, posing a 
serious threat to human health. Traditional methods for analyzing time-varying 
trends, such as age and period, tend to ignore the poor impact of birth cohorts, 
which is an important factor in the development of TB. The age-period-cohort 
(APC) model, a statistical method widely used in recent decades in economics, 
sociology, and epidemiology, can quantitatively estimate the efficacy of different 
age, period, and birth cohort groups for TB by separating the effects of these three 
dimensions and controlling for confounding factors among the time variables. 
The purpose of this paper is to briefly review the model, focus on the application 
of the existing APC model in the field of TB, and explain its advantages and 
disadvantages. This study will help to provides a theoretical basis and reference 
for using the APC model in TB analysis and prediction.
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Introduction

According to the Global Tuberculosis Report 2023, tuberculosis (TB) is the second leading 
cause of death worldwide from a single source of infection, with an estimated 10.6 million TB 
cases by 2022. TB remains a serious public health challenge (1). In addition to traditional risk 
factors, such as age, sex, comorbidities like HIV or diabetes, and malnutrition, period and 
birth cohorts have also been found to be associated with TB-related incidence (2–6). In 1939, 
Frost first isolated three time-varying factors affecting the disease in TB research: age, period, 
and birth cohort (7). Over the years, the concept and implementation method of age-period-
cohort (APC) model has gradually matured and improved, and have been widely used in fields 
such as epidemiology and sociology (8). In TB research, APC modeling analyzes TB dynamics 
cross-sectionally and longitudinally by examining morbidity and mortality in populations of 
various regions at different ages, during different periods, and in birth cohorts. Due to 
differences in individual conditions at various ages, such as physical development in youth and 
physiological decline in older age; environmental changes at specific periods, such as the 
improvement of the healthcare system or the implementation of public health policies; and 
differences in birth cohort exposure to certain epidemics, the APC model can quantitatively 
assess the impact of age, period, and cohort factors on TB in different regions. This allows for 
more accurate identification, interpretation, and prediction of time trends and development 
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patterns related to TB (9, 10). Although the model suffers from 
unidentifiability problems due to covariance between variables, it can 
provide a unique perspective for understanding the long-term trend 
of TB and offers basic information for long-term public health 
surveillance as the model is gradually optimized (8, 11). In the fields 
of other infectious diseases, such as influenza, HIV/AIDS, and measles 
(12–15), the APC model has been widely applied to identify the risk 
factor in different age groups. However, the potential function of the 
APC model in tuberculosis has not yet been fully summarized. In this 
study, we searched databases such as Web of Science, Pubmed, and 
CNKI for tuberculosis-related studies based on age-period-cohort 
models with the end time of 19 February 2024. The purpose of this 
article is to provide a brief overview of the APC model and summarizes 
its application, development, and limitations in the field of TB.

Overview of the APC model

Concepts and methods

The APC model is a statistical analysis tool used to reveal and 
understand potential effects across periods and ages (10, 16). Age, 
period, and birth cohort are all time-varying factors in a broadest 
sense, and although they are expressed differently, they collectively 
contribute to the occurrence of fluctuating phenomena such as 
epidemicsoutbreaks. The purpose of fitting the APC model is to 
explore and accurately define the independent impact of various types 
of time-varying factors on the incidence of events (17, 18). In this 
model, “age” refers to the biological age, which representing different 
life stages and physiological states of individuals or groups, such as 
changes in physical health, income level, and exposure risk from 
adolescence to old age (9, 19). “Period” refers to the time of study or 
observation, and the main manifestation of this variable is to reflect 
the situation or general trend at a given time, such as an infectious 
disease pandemic, famine, economic crisis, changes in healthcare 
policies, and the launch of specific drugs (20). “Cohort” reflects the 
variation among people born in different years, representing the 
intersection of individual early experiences and the macro-social 
environment (21, 22). These factors enable the analysis and 
interpretation of the patterns, trends, and possible effects of the 
phenomenon under study.

The classical APC model assumes an additive relationship 
between the dependent variable and “age, period, and cohort,” with 
these three as independent variables and the “incidence of a 
phenomenon” in a certain period of time or population as the 
dependent variable. This relationship is assumed to follow a 
generalized linear model (GLM) with a certain probability distribution 
(10, 18). The general form of the model can be expressed as:
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In Equation 1, i (i=1,2, … …,I), j (j=1,2, … …,J), and k  (k=1,2, 
…,K) represent age, period, and cohort variables, respectively. ijY  is 
the model-dependent variable that represents the logarithmic 
morbidity or mortality rate of the population in age group i during 
period j. ijR̂  is the expectation of the morbidity or mortality rate ijR  

for the population of age group i during period j. Assuming followed 
a Poisson distribution, ijÔ  is the expectation of the number of 
morbidities or deaths ijO  during period j for the population in age 
group i and ijN  is the number of exposed person-years in period j for 
the population in age group i. µ  is the model intercept, which 
represents the logarithmic morbidity or mortality rate for the baseline 
age, period, and cohort group. iα , jβ , and kγ  are the effects of age 
group i, period j, and cohort k , respectively. In this formula, ijε  
represents the random error term, accounting for unexplained 
variance in the model (18). In the result parameter, the RR (relative 
risk) value is the ratio of age-specific rates in group p relative to 
reference group p0. The net drift value refers to the APC analogue of 
the estimated annual percentage change (EAPC) in the 
age-standardized rate (ASR), and the local drift represents the 
estimated annual percentage change over time specific to age group 
i (10, 23).

The core idea of the APC model is to quantify the values of 
parameter changes in the incidence of target events from one age 
group to the next, from one period to another, and from one birth 
cohort to the next. This involves fitting the regression relationship 
between the target event incidence rate and the three factors of age, 
period, and birth cohort. So as to explore their independent effects of 
the three dimensions of age, period and birth cohort on the target 
event (24).

Advantages

When analyzing the incidence or trend of a certain phenomenon 
or event, traditional temporal trend research tends to highlights the 
limitations that may result from time-varying factors closely related 
to age in the data. It can be challenging to control for or eliminate 
overlapping relationships between age, period, and birth cohort, 
resulting in distorted trends in age or period (16). The APC model has 
unique advantages compared to traditional epidemiological methods 
like descriptive temporal trend analysis, cross-sectional studies, and 
longitudinal studies. Its better controls for confounding between 
variables and quantitatively estimates the phenomenon of groups of 
different ages, periods, and birth cohorts. Therefore, the APC model 
has been widely used by economists, sociologists, and public health 
researchers to address important issues, such as life-cycle income 
patterns, wage dynamics, social change, fertility rate, population 
aging, and the causes and incidence of life-threatening diseases 
(18, 25).

Age, period, and cohort effects in 
tuberculosis

Age effect

Age is globally recognized as one of the most significant risk factors 
for TB, and the age effect on TB, as determined by the APC model, varies 
widely between countries and regions (26, 27). Detailed information on 
the available studies is shown in Supplementary Table S1-1.

Age effects in some areas have shown that children aged 
0–14 years are a special population for TB. For instance, data from 
1996 to 2016 on TB incidence in the United States and from 1961 to 
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1990 on TB mortality rate in Taiwan, China, showed that this age 
group was at high risk (28, 29). As population of children enter public 
places, such as schools, the relative concentration of people increases 
their risk of exposure (30). However, this age group was considered 
low-risk in studies based on TB mortality in the United States from 
1900 to 1950 (28).

Individuals aged 15–64 years are also a high-risk group in some 
countries and regions, such as some developed countries 
(United States, Russia, Japan, Netherlands, Italy, New Zealand) and 
countries in Africa such as Cameroon (CAM), 
Central African Republic (CAR), Chad, and the Democratic Republic 
of the Congo (DRC). Meanwhile, risk effects within this age group 
have also been observed in morbidity and mortality studies in 204 
countries and territories worldwide and some regions of China (2, 4, 
9, 25, 28, 31–42).

In the vast majority of countries and regions, APC for TB-related 
studies indicates risk effects in people over 65 years old, including 
mortality from alcohol consumption in 204 countries and territories 
worldwide, as well as morbidity and mortality in the United States, 
India, South Africa, and some regions of China (9, 29, 31, 33, 35, 38, 
39, 41–43). Older people are at a higher risk of morbidity and 
mortality than other age groups due to their age, decreased immune 
and cognitive performance, inadequate social and family support, 
poor nutritional status, and various comorbidities (5, 6).

The tuberculosis burden was varied across nearly all age groups in 
distinct area and countries, which may be attributed to the difference 
in socioeconomic background and environmental deviation, dynamic 
changes in immune level of the whole group, and the historical context 
of local epidemics as well. Thus, it is hard to generalize the study 
results to other areas or contexts. For example, some regions showed 
a higher risk in young group like “0–14” age group is generally 
paralleled with poor public health conditions, low BCG coverage and 
malnutrition (28, 29). In addition, the older adults aged 65 and above 
was being the focus of tuberculosis control in developing countries, 
which was due to the high historical epidemic levels and ageing along 
with malnutrition and chronic diseases (5, 6).

Period effect

Period-effect studies on TB date back to the mid-20th century 
and extend to 2020. Overall, the period effect of TB-related 
morbidity and mortality has been declining globally. Three studies 
based on 204 countries and territories around the world show an 
overall downward trend in TB incidence and mortality due to 
tobacco, alcohol, or high fasting plasma glucose (HFPG) between 
1990 and 2019 (2–4). Additionally, regional studies have shown that 
most countries, including developed countries (the United States, 
several European countries, Japan, South Korea, etc.) and developing 
countries (such as India, Cameroon, Central Africa, China, etc.) 
have shown a similar downward trend over time (9, 21, 25, 28, 30, 
32, 34, 35, 37–48). Notably, some studies reported a brief increase 
over a specific period, followed by a steady decline. A study in the 
United States showed a rebound in the reported TB incidence from 
1986 to 1992 compared to the total study period of 1953–2000 (49). 
Similarly, a study in China found a brief increase in the period of 
2004 to 2005, followed by a downward trend (35). In addition, 
studies conducted in the United States, Japan, and the Netherlands 

showed an upward trend in TB mortality during the Spanish 
influenza epidemic (1918–1919), followed by a sharp decline (36). 
In summary, since the 20th century, the global TB epidemic situation 
has been stabilizing and decreasing with the intensification of TB 
prevention and control.

The period effect mainly reflects changes in tuberculosis trends 
across different historical periods. The temporary increases or 
decreases in period effects observed in different countries and regions 
are often closely related to public health policies at the time, economic 
crises, advancements in medical technology (such as the widespread 
use of anti-tuberculosis drugs), pandemics, drug resistance issues, 
vaccination coverage, and other public health developments. Major 
events in different periods have a profound impact on the disease 
burden and provide unique perspectives for evaluation and future 
control efforts.

Cohort effect

Cohort effects based on APC models showed a decreasing trend 
in TB incidence or mortality studies due to high fasting glucose levels 
in 204 countries and territories. The highest cohort risk effect in TB 
mortality due to smoking and alcohol consumption was observed 
during 1990–1940 and 1990–1920, respectively (2–4). The global 
cohort effect of TB incidence or mortality on a country or territory 
basis has shown a downward trend, including Brazil, Russia, India, 
China and South  Africa (BRICS); England and Wales, Italy, 
New Zealand, CAM, CAR, DRC, the Netherlands, Japan, and China 
(9, 30–38, 45–47). Among these, a Japanese study found that birth 
cohort effects were higher in 1913 and 1963 than in neighboring 
cohorts (37).

Additionally, several studies in the United States have shown a 
decline in the birth cohort effect on TB (28, 33, 36, 49). In contrast, a 
study showed a U-shaped birth cohort effect on TB incidence in the 
United States, peaking in 1992 and 2017, respectively (33).

It is worth noting that while many national-level birth cohort 
effects show a general downward trend, there are some specific birth 
cohorts within, such as China. A TB incidence study across China 
found that birth cohorts from 1961 to 1965 and 2001 to 2005 were at 
higher risk than adjacent birth cohorts (9). Another study from Fudan 
University showed that the cohort effect of TB morbidity and mortality 
was no longer a risk factor for individuals born after 1978 (38). The 
results of TB morbidity and mortality studies at the provincial level in 
China include high-risk cohorts in the Yunnan Province for 1962–
1970 and 2001–2010, Taiwan for 1891–1921, Hong Kong for 1906, and 
Jiangsu Province for 1940–1950 for males and 1990 for females (21, 
39, 40, 48). Although these effects were slightly different in birth 
cohorts that were higher than in neighboring cohorts, they all showed 
an overall downward trend, consistent with the trend on a global scale.

The cohort effect reflects the impact of the intersection between 
the early experiences of individuals born in different time periods and 
the broader social environment on tuberculosis. It is likely closely 
related to changes in the health status, lifestyle, tuberculosis exposure 
risks, treatment, and socioeconomic background of specific 
populations throughout their lives. Different historical exposures and 
intergenerationally identified high-risk cohorts can be  used to 
anticipate future tuberculosis challenges through, for example, the 
impact of persistence.
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Application limitations and model 
optimization

Theoretically, the APC model can provide independent 
decomposition effects of the three dimensions of age, period, and 
birth cohort. However, in practice, there is a complete collinearity 
relationship between these factors expressed as “period−age = birth 
cohort,” leading the system to un-identifiability. Additionally, there is 
uncertainty regarding how to explain the parameter bias (10, 23). 
Traditional regression models are unable to obtain a unique solution 
for the model parameters, and this problem has been emphasized and 
discussed since 1973. Researchers have proposed various methods to 
address this issue, including two-factor models, constrained 
generalized linear models (CGLIM), nonlinear models, estimate 
function methods, penalty function approaches, individual records 
approaches, autoregressive age-period-cohort models, intrinsic 
estimators (IE), smoothing cohort models, sequential methods, and 
canonical parameterization approaches (17, 18, 23, 50, 51). 
Additionally, there is an overlap between birth cohorts calculated by 
grouping in the APC model, and most studies ignore this overlap by 
taking the median value of the birth cohort grouping (9, 52). In 
conclusion, with the wide application of the APC model in 
epidemiology, economics, and other fields, problems such as 
“identification” have been gradually addressed and optimized.

Currently, the most dominant APC modeling approaches in 
TB-related research are the estimable function and the IE approaches. The 
estimable function method proposed by Holford in 1983 estimates the 
model parameters by calculating the bias and curvature (52). In 2014, the 
US National Cancer Institute implemented estimable functions and Wald’s 
test in R. The sham design data followed a Poisson distribution, and 
statistical analyses were performed using the weighted least-squares 
method. They developed an easily accessible web tool for this method, and 
Shareen A. Iqbal applied it to tuberculosis research for the first time in 2018 
(23, 25). The IE method based on estimating functions and matrix singular 
value decomposition was proposed by Fu in 2000 despite controversy due 
to the problem that the actual significance of the parameter estimates is not 
intuitive. However, the IE method is effective at estimating the independent 
effects of age, period, and cohort groups and has been used to evaluate the 
age, period, and birth cohort effects of TB morbidity and mortality (17, 53). 
Based on the findings from APC, more intensive tuberculosis interventions 
like supplementary vaccination and regular screening could 
be strengthened for specific age groups and birth cohort with high risk. 
Moreover, In the future, it will still be necessary to explore new perspectives 
and mechanisms to deepen the application of APC.

Conclusion

The APC model decomposes age, period, and cohort effects by 
analyzing data from different age groups, periods, and birth cohorts. 
This approach provides insights into the characteristics of TB 
epidemics and develops appropriate preventive and control measures. 
With continuous optimization and improvement of statistical 
methods, as well as addressing “identification” problems, the 
application prospects of the APC model in the field of TB are more 
promising. In the future, establishing an APC model and continuously 
updating data will allow for the prediction and trend analysis of TB 
morbidity and mortality. Determining the effects of different age 

groups, periods, and birth cohorts will help identify relevant risk 
factors for TB and monitor trends over time. In addition, the results 
of the model can be used to assess the effectiveness of interventions 
and inform policy development. It is worth noting that, as a statistical 
analysis tool, the results of the APC model can be used as a reference 
for TB prevention and control rather than as a standard. The result of 
the analysis should be  combined with the actual situation of the 
region and multifaceted research and judgment, followed by the 
adjustment of policy priorities, resource allocation, and the 
implementation of targeted interventions.
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