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Introduction: Ovarian Cancer (OC) is one of the leading causes of cancer 
deaths among women. Despite recent advances in the medical field, such as 
surgery, chemotherapy, and radiotherapy interventions, there are only marginal 
improvements in the diagnosis of OC using clinical parameters, as the symptoms 
are very non-specific at the early stage. Owing to advances in computational 
algorithms, such as ensemble machine learning, it is now possible to identify 
complex patterns in clinical parameters. However, these complex patterns do 
not provide deeper insights into prediction and diagnosis. Explainable artificial 
intelligence (XAI) models, such as LIME and SHAP Kernels, can provide insights 
into the decision-making process of ensemble models, thus increasing their 
applicability.

Methods: The main aim of this study is to design a computer-aided diagnostic 
system that accurately classifies and detects ovarian cancer. To achieve this 
objective, a three-stage ensemble model and a game-theoretic approach based 
on SHAP values were built to evaluate and visualize the results, thus analyzing 
the important features responsible for prediction.

Results and Discussion: The results demonstrate the efficacy of the proposed 
model with an accuracy of 98.66%. The proposed model’s consistency and 
advantages are compared with single classifiers. The SHAP values of the proposed 
model are validated using conventional statistical methods such as the p-test 
and Cohen’s d-test to highlight the efficacy of the proposed method. To further 
validate the ranking of the features, we compared the p-values and Cohen’s d-
values of the top five and bottom five features. The study proposed and validated 
an AI-based method for the detection, diagnosis, and prognosis of OC using 
multi-modal real-life data, which mimics the move of a clinician approach with a 
demonstration of high performance. The proposed strategy can lead to reliable, 
accurate, and consistent AI solutions for the detection and management of OC 
with higher patient experience and outcomes at low cost, low morbidity, and 
low mortality. This can be beneficial for millions of women living in resource-
constrained and challenging economies.
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1 Introduction

Ovarian cancer (OC) is one of the most fatal gynecological 
cancers in women. With delayed detection and complexity of disease 
progression being the main challenges in the treatment of OC, it 
continues to be a considerable health concern. In 2023, ovarian cancer 
stands as the most prominent cause of death among gynecological 
cancers in the United States and is the second most common type of 
gynecological cancer. Approximately 19,000 new ovarian cancer cases 
are expected to be diagnosed in the United States annually, with a 
projected 13,000 casualties (1). Approximately 300,000 new cases are 
diagnosed annually worldwide (2). Approximately 80% of patients 
face a recurrence of the disease although they would have undergone 
initial treatment (3). These facts emphasize the imperative need for 
developments in early detection and treatment strategies, which is an 
ongoing research field.

Diagnosis in the initial stages and its precise classification is 
crucial for cancer diagnosis and the development of personalized 
treatment plans. Yet, traditional diagnostic methods often fall short of 
the required accuracy and transparency, restricting their efficacy in 
clinical practice.

The use of the latest developments in the fields of machine 
learning (ML) and artificial intelligence (AI) could result in promising 
improvements in the diagnostic process. These technologies can aid 
in creating sophisticated models that can analyze large datasets and 
identify the complex patterns of different cancer types. Ensemble 
models, which combine the predictive capabilities of multiple 
classifiers, have exhibited better performance in classification tasks 
than single classifiers. Regardless of their effectiveness, these models 
encounter challenges with transparency and interpretability when 
applied in clinical settings.

The current study intends to focus on these challenges by 
incorporating an explainable AI (XAI) approach to the interpretation 
and classification of OC using an ensemble of machine learning 
models. The key objectives are to utilize the advantages of ensemble 
learning while applying explainable AI techniques and verify that the 
model’s decision-making process is transparent and comprehensible 
to clinicians.

The following are the main contributions to this study:

 • A three-stage ensemble model is proposed for 
accurate classification.

 • Explainable AI methods (LIME and SHAP) are applied to gain a 
deeper understanding of the decision-making process of the 
proposed model.

 • The results of the proposed model are validated using the p-test 
and Cohen’s d-test.

 • The feature importance provided by the proposed model is 
validated using the Wilcoxon signed-rank test (4).

The structure of the paper is organized as follows: Section 2 
reviews related studies involving single classifiers, ensemble models, 
and deep learning approaches. Section 3 details the methodology, 
including an in-depth description of the datasets and the architectural 
framework. Section 4 presents the results obtained from the study, and 
the discussion section provides a detailed comparative study with the 
existing related studies. Finally, Section 5 concludes with potential 
directions for future research.

By integrating explainable AI with ensemble learning, this study 
seeks to bridge the gap between advanced machine learning 
methodologies and their practical implementation in medical 
diagnostics. This approach aims to enhance the detection and 
treatment of ovarian cancer by combining the predictive accuracy of 
ensemble models with the interpretability provided by explainable 
AI techniques.

2 Related studies

Machine learning (ML) and deep learning (DL) have 
revolutionized various fields, and their impact on medicine is 
particularly profound. These technologies leverage vast amounts of 
data and sophisticated algorithms to enhance diagnostic accuracy, 
personalize treatment, predict disease outbreaks, and streamline 
administrative processes. This section provides an overview of how 
the ML and DL methods have transformed medical practices 
and research.

2.1 Related studies using single classifiers

Nopour et al. (5) used a logistic regression (LR) model and an 
eXtreme Gradient Boosting (XGBoost) model for OC prediction and 
reported that XGBoost exhibited better accuracy than the regression 
model. Li et al. (6) adopted a logistic regression (LR)-based radiomics 
model out of other omics models (support vector machine (SVM), 
K-nearest neighbors (KNNs), Random Forest (RF), and XGBoost) and 
achieved an accuracy of 84.8%. Kori et  al. (7) built a model using 
principal component analysis and ML algorithms that showed 96.7% 
sensitivity and 100% specificity. Klein et al. (8) built a model using 
MALDI imaging and ML algorithms such as linear discriminant 
analysis (LDA), SVM-lin, and SVM-rbf for epithelial ovarian cancer 
(EOC) histotype classification, yielding a mean accuracy of 80% for 
LDA, 80% for SVM-lin, and 74% for SVM-rbf. Chao et al. (9) designed 
an LR model for OC prediction and obtained the area under the curve 
(AUC), sensitivity, and specificity values of 0.903, 89.2, and 82.3% in the 
training dataset and 0.891, 88.9, and 76.75% in the test dataset, 
respectively. Schilling et  al. (10) used ML models using K-means 
clustering, Naive Bayes, logistic regression, and SVM for disease 
prediction and revealed that the LR model performed the best with a 
0.89 f1 score. Hong et al. (11) built a radiomics model based on LASSO 
Cox regression and reported good discrimination in both training and 
validation sets with C-indexes of 0.694 (95% confidence interval [CI]: 
0.613–0.775) and 0.709 (95% CI: 0.517–0.901), respectively. Bahado-
Singh et al. (12) worked with ML algorithms (SVM, LDA, prediction 
analysis for microarrays (PAMs), and generalized linear model (GLM)) 
and obtained optimal results of AUC value (95% CI) 1.00 (0.9000–1.0) 
with SVM and AUC (95% CI) 0.99 (0.9000–1.0) with GLM, PAMs, and 
LDA, along with achieving an AUC value (95% CI) 1.00 (0.9–1.0) with 
SVM models for CpG analysis. Sheela Lavanya et al. (13) applied ML 
techniques (KNNs, SVM, DTs) alongside explainable AI to aid the early 
detection of OC and demonstrated that SVM performed with 85% base 
model accuracy. Feng Zhan et al. (14) designed the LR radiomic model 
to predict lymphocyte-specific protein tyrosine kinase (LCK) expression 
and overall survival in high-grade serous ovarian cancer (HGSOC) 
patients and achieved AUC values of 0.879 and 0.834, respectively. A.D 
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Coles et al. (15) performed a comparative analysis of the RF and LR 
models for retrospective detection of OC recurrences from 
chemotherapy data and revealed that RF achieved the highest F1 score 
among the two. Alexander Laios et al. (16) performed ML-based risk 
prediction using the KNN and LDA techniques and QDA algorithms 
that achieved predictive accuracies of 0.80, 0.90, and 0.92, respectively.

2.2 Related studies based on ensemble 
models

Subsequent studies used the following ensemble models for the 
prediction of OC intrinsically: Random Forest (RF), XGBoost, 
gradient-boosted trees (GBT), and Bagging. Gong et al. (17) used nine 
supervised ML classifiers including RF and GBT, out of which RF 
performed with high stability and an accuracy of 0.60 including gut 
microbiota for chemoresistance to OC prediction using the RF model 
with an AUC value of 0.909. Ahamad et al. (18) utilized a combination 
of XGBoost, GBT, and light gradient boosting machine (LGBM) to 
build classifier models, and the predictive analysis results revealed an 
accuracy of 91%. Hamidi et al. (19) developed Boruta, a novel RF 
feature selection-based ML model, for identifying important 
biomarkers. Zhao et al. (20) used LASSO regression, ridge regression, 
XGBoost, RF, and AdaBoost to build a LASSO Cox regression model. 
By performing decision curve analysis, the resulting nomogram 
indicated that the combined model for predicting 1-year and 3-year 
survival probabilities provided an optimal net benefit compared to 
using a single indicator. Wadapurkar et al. (21) applied next-generation 
sequencing analysis to cancer driver genes and OC prediction using 
the XGBoost classification model and yielded an accuracy of 0.946. 
Abuzinadah et al. (22) used the RF model, GBM, and also ensemble 
GBM + XGB models. GBM was reported to be  the best with an 
accuracy of 87.14%, a recall of 87.53%, and a precision of 87.58%. Zeng 
et al. (23) used a new multi-omics model including all the features and 
showed the best prediction performance with an AUC value of 0.911. 
Piedimonte et al. (24) used a Random Forest model that was trained 
to predict the dichotomous outcome of optimal cytoreduction and 
obtained an AUC of 99.8%. Cheng et al. (25) used a gradient-boosting 
decision tree algorithm in which the AUC value of the signature gene 
pair was 0.9658, whereas the AUC value of the individual signature 
gene-based prediction was only 0.6823. Seri Jeong et al. (26) utilized 
the RF model for differentiating benign and malignant OC using 
combined cancer markers and achieved receiver operating 
characteristic (ROC) AUC values of 0.707, 0.680, 0.643, 0.657, and 
0.624 for the biomarkers ROMA, HE4, CA125, LD, and NLR, 
respectively. Maria et al. (27) used an XAI-based ensemble model for 
the accurate classification of ovarian cancer and achieved an accuracy 
of 83.2%. Additionally, the model proved to be highly effective in 
handling imbalanced datasets. Annarita et  al. (28) proposed a 
waterfall-based classification model for the classification of clinical 
data and ultrasound indicators and achieved an accuracy of 86.36%.

2.3 Related studies based on deep learning 
models

Wu et  al. (29) used an attention-based network by using a 
pre-trained model ResNet50 on ImageNet to obtain a C-index value 

of 0.5789 (0.5096–0.6053) and a p-value of 0.00845, while the risk 
score indicated good prediction ability in the homologous 
recombination deficiency (HRD+) subgroup. Feng et al. (30) used a 
backpropagation neural network model by using a pre-trained 
ResNet50 which outperformed the U-net-based network architecture 
by obtaining 89.11% average sensitivity and 96.37% specificity. 
Suganya et al. (31) used MALDI imaging for the EOC classification. 
Out of several ML and DL models used in the research, neural 
network and convolutional neural network (CNN) were most suitable 
for EOC classification with an accuracy of 83% for NN, 85% for CNN, 
and a sensitivity of 69–100% as well as specificity of 90–99% for both 
the models, respectively. Rahul Mishra et  al. (32) used the 
Convolutional Neural Networks with Gray Wolf Optimization 
(CNNGWO) model and reported an improved diagnostic accuracy of 
OC to 98%, while Talib et al. (33) trained a simple CNN-based DL 
model on 1798 images and achieved an accuracy of 81% and an AUC 
value of 0.89. Kasture et al. (34) used outclassed traditional CNN 
algorithms, deep CNN, and pre-trained AlexNet models, improving 
the accuracy from 70 to 89.93%. Reilly et al. (35) proposed an MIA3G 
model (deep feed-forward neural network) for OC risk assessment 
and achieved a sensitivity of 89.8%, specificity of 84.02%, positive 
predictive value (PPV) of 22.455, and negative predictive value (NPV) 
of 99.38%. David Joon Ho et  al. (36) worked with a deep multi-
magnification network model (DMMN) for OC segmentation and 
obtained 86% recall and 84% precision. Ziyambe et al. (37) built a 
CNN architecture model using the Xception network and obtained 
94.43% accuracy, 95.02% sensitivity, and 93.16% specificity, making it 
a potential tool in assisting physicians for predicting OC. Dingdu Hu 
et al. (38) conducted automatic segmentations of T2-weighted MRI 
using DL algorithms (CNN, U-Net, DeepLabv3, U-Net++, and 
PSPNet) along with transformers (TransUnet and Swin-Unet), and 
reported that U-Net++ performed the best with precision and recall 
rates of 83.8 and 88.2% in the internal test set and 82.5 and 72.5% in 
the external test set, respectively. Ravishankar et al. (39) proposed a 
fuzzy CNN-based classifier with an initial accuracy of 98.37%, which 
later achieved 100% accuracy occasionally with an increase in several 
epochs. Wang et al. (40) used two improved DL-based methods for 
predicting bevacizumab efficacy in EOC patients based on 
histopathological images and revealed that the proposed model using 
the MSH2 protein expression performed excellently with 100% 
accuracy, sensitivity, and specificity, respectively. Ju Young et al. (41) 
developed a U-Net-based DL algorithm for the characterization of 
cancer-associated thrombosis of OC and achieved outstanding results 
with an AUC value of 0.99 along with high sensitivity and specificity. 
Jeya Sundari et  al. (42) developed an intelligent black widow 
optimization on image enhancement with a DL-based ovarian tumor 
diagnosis model, which achieved a maximum contrast of 0.97, a 
contrast-to-noise ratio (CNR) of 92.74%, a weighted peak signal-to-
noise ratio (WPSNR) of 20.43, and a homogeneity of 0.94. Rui Yin 
et al. (43) worked with a multitask deep learning model for high-grade 
serous ovarian carcinoma (HGSOC) prediction using CT images of 
OC, which resulted in AUC values of 0.87 (0.83–0.89), 0.88 (0.86–
0.91), 0.86 (0.82–0.89), and 0.79 (0.75–0.82) in the training sets, 
validation sets, prospective sets, and external sets, respectively. Yang 
et al. (44) developed the Ovarian Cancer Digital Pathology Index 
(OCDPI), a graph-based DL model, for prediction and treatment 
response in OC patients using histopathological images and 
demonstrated prognostic ability for overall survival prediction in the 
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prostate, lung, colorectal, and ovarian cancer (PLCO; HR, 1.916; 95% 
CI, 1.380–2.660; log-rank test, p < 0.001) and Harbin Medical 
University Cancer hospital (HMUCH) (HR, 2.796; 95% CI, 1.404–
5.568; log-rank test, p = 0.0022) cohorts. It was observed that the 
performance of OCDPI was good in patients with low-grade tumors 
or fresh frozen slides. Laios et al. (45) developed a predictive model 
using XGBoost and the deep neural network for the prediction of 
epithelial ovarian cancer and used a SHAP technique to discuss how 
intraoperative decisions during EOC cytoreduction can integrate 
human factors along with factual knowledge to optimize the selected 
trade-off in surgical effort. Huang et al. (4) emphasized classification 
tasks and used a game-theoretic framework using Shap values for 
model development, evaluation, and result visualization. The case 
study findings highlighted the effectiveness, reliability, and benefits of 
the ML pipeline in comparison to traditional statistical methods.

3 Methodology

3.1 Data collection and description

The dataset comprises 1,500 cases of ovarian tumors, classified 
into borderline, malignant, and benign types. The authors 
meticulously transferred the data manually from medical records to 
an Excel file, following ethical medical practices under the vigilance 
of medical practitioners at the Kasturba Medical College, Karnataka, 
India. Each row represents a unique patient and the columns capture 
various clinical features pertinent to the presence or absence of 
ovarian cancer. The raw data from the records were structured into the 
following 28 columns in the Excel file: clinical parameters such as age, 
parity, family history, oral contraception, age at menarche, menopause, 
abdominal pain, menstrual abnormalities, dysmenorrhea, abdominal 
distention, loss of appetite, edema, pallor, P/V tenderness, and 
abdominal mass; ultrasound or CT parameters: bilateral, ascites, solid 
area, papillary projection, thick septa, vascularity, contrast 
enhancement, lymph nodes, and deposits; and tumor markers such as 
CA125, CA19-9, and CEA and the corresponding category or class 
label. There are three classes: 0  – benign, 1  – border, and 
2 – malignant.

Some of the feature descriptions are as follows:

 i) Parity: number of full-term pregnancies.
 ii) Oral contraception: history of using oral contraceptive pills.
 iii) Dysmenorrhea: painful menstruation.
 iv) Abdominal distention: swelling or enlargement of the abdomen.
 v) Edema: swelling caused by excess fluid trapped in body tissues.
 vi) Nodes: presence of swollen lymph nodes.
 vii) Pallor: unusual paleness of the skin.
 viii) P/V tenderness: pain during a pelvic examination.
 ix) Abdominal mass: detectable lump in the abdomen.
 x) Bilateral: side of the body where the tumor is located.
 xi) Ascites: accumulation of fluid in the peritoneal cavity.
 xii) Solid area: presence of solid regions within the tumor.
 xiii) Papillary projection: finger-like extensions seen in tumors.
 xiv) Thick septa: thickened partitions within the tumor.
 xv) Vascularity: blood supply to the tumor.
 xvi) Contrast enhancement: increase in the visibility of structures 

using contrast medium in imaging.

 xvii) Deposits: tumor spread or deposits in the abdomen.
 xviii) CA125: blood marker often elevated in ovarian cancer.

 xix) CA19-9: tumor marker used in the diagnosis of ovarian cancer.
 xx) CEA: carcinoembryonic antigen, another tumor marker.

This dataset served as a vital tool for studying the clinical features 
and diagnostic markers of ovarian tumors, aiding in advancing 
medical research and treatment strategies.

3.2 Architectural framework

Figure 1 depicts the process flow followed in the current study. 
The dataset consists of 1,500 samples, with benign, malignant, and 
border cases comprising 500 samples each. The data are stored in a 
CSV file. This is considered the Input Data file that holds the raw data. 
Further steps were performed on this data. Preprocessing steps such 
as feature scaling were performed using a standard min–max scaler. 
A standard min–max scaler was applied to rescale all features to a 
uniform range, typically [0, 1]. This ensured that features with 
different scales did not disproportionately influence the model. 
Feature Transformation using exponential transformation was used 
to address skewed data distributions; the model was enhanced to 
capture patterns in the data along with labeling instances into correct 
categories, and missing values were imputed using mean imputation, 
replacing missing entries with the mean of the respective features. This 
approach preserved the overall distribution of the data and maintained 
dataset integrity without introducing significant bias. The processed 
data were then provided as input for several machine learning 
classifier models. The ML classifiers K-nearest neighbors (KNNs), 
logistic regression (LR), support vector machine (SVM), decision trees 
(DTs), and Naive Bayes (NB) were used in the current study. For the 
ensemble classifiers, models such as Random Forest (RF), XGBoost, 
CatBoost, and GradientBoost were applied. All classifiers were 
evaluated based on their performance using evaluation metrics such 
as accuracy, AUC, and ROC. The best-performing models among all 
the models were chosen. Random Forest, XGBoost, and SVM with 
accuracies of 98.13, 97, and 97.06%, respectively, were the top three 
best-performing models and were used to design a three-stage 
ensemble architecture. These scores represent the performance of the 
models on the test data. Explainable AI methods were applied to the 
test data results and passed onto the final ensemble model. LIME and 
SHAP were used to visualize and explain the predictions made by the 
model, as they are widely used for explanation across domains.

4 Results and discussion

4.1 Statistical analysis using machine 
learning models

The results have been computed by considering the complete 
dataset of clinical parameters, tumor markers, and ultrasound 
parameters. The accuracy rates of single classifiers and ensemble 
classifiers are depicted as bar charts in Figure 2, respectively. It can 
be  observed that SVM and Random Forest exhibit the highest 
accuracy among the single classifiers and the ensemble models, 
respectively. Only SVM, Random Forest (RF), and XGBoost have an 
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accuracy of 97% or above, with 97.06, 98.13, and 97%, respectively. 
Therefore, these models were used to build the three-stage ensemble 
classifier. In Figure 3, the accuracy rates of all the models used in the 
current study have been plotted along with the proposed three-stage 
ensemble classifier.

Figure 4 shows the ROC curves for SVM, Random Forest, and the 
proposed three-stage ensemble models. Their AUC–ROC values are 
0.92, 0.95, and 0.96, respectively. It is evident from the figure that the 
proposed model exhibits the best predictive behavior. In machine 
learning, feature importance is a technique that assigns a score to 
input features based on their importance for predicting the target 
variables. Since the proposed model is a combination of Random 
Forest, SVM, and XGBoost, it naturally provides the feature 
importance scores as they are the tree-based model. The RF model 
gives the feature importance based on the entropy score for the 
classification tree and aggregates the scores of each feature across all 
the trees in the forest. Each tree’s feature importance is calculated 
based on the reduction in impurity (entropy value). Similar to RF, 
GradientBoost calculates the feature importance score using the total 
reduction in the log loss. The feature importance predicted on the 
overall dataset and only on the clinical parameters is shown in 
Figures 5A,B, respectively.

Figure  5A shows the feature importance of each feature 
contributing to ovarian malignancy. It is evident that CEA, loss of 
appetite, CA19-9, CA125, abdominal distention, family history, age of 
menarche, and age are the highest contributors and more prominently 
influence the decision of which category the particular case will fall 
into. It can be seen from Figure 5B that the top features family history, 
loss of appetite, age, abdominal distention, oral contraception, and age 
of menarche are the highest contributors among clinical parameters 
and more prominently influence the decision of which category the 
particular case will fall into. In contrast, the features such as 

dysmenorrhea, menopause, menstrual abnormalities, and abdominal 
pain are the lowest contributors clinically, however, but are of 
significance when accounted for as an isolated event.

4.2 Analysis using explainable AI

4.2.1 Lime
LIME helps in understanding how specific features of patients’ 

data influence the model prediction. As shown in Figure 6, the model 
predicted that the patients do not have a serious condition (benign). 
Out of the six features considered, ‘Abdominal Distention’, ‘Loss of 
Appetite’, ‘Family History’, and ‘CA19-9′ indicate that there is no 
serious condition (negative contribution). On the other hand, ‘CEA’ 
and ‘CA125’ indicate slight risk (positive contribution) at the very 
initial stages. The actual values for these features are as follows: 
‘Abdominal Distention’ at 0.0, ‘CEA’ at 1.59, ‘CA19-9′ at 13.26, ‘Loss of 
Appetite’ at 0.0, ‘Family History’ at 0.0, and ‘CA125’ at 25.94. Because 
‘Loss of Appetite’, ‘Abdominal Distention’, ‘Family History’, and 
‘CA19-9′ fall within safe ranges, they contribute to the model 
prediction as benign. Although CEA and CA125 values are positively 
contributing, the values are very negligible. CA125 value is 25.94, 
which is outside the safe range, but the other factors are negatively 
contributing, and thus the case can be considered benign.

Figure 7 shows a borderline case where the model predicted a 
possible risk (Class 1) of ovarian malignancy. Here, three features—
‘Abdominal Distention’, ‘Loss of Appetite’, and ‘Family History’—
indicate a higher risk (positive contribution), while ‘CEA’, ‘CA19-9’, 
and ‘CA125’ suggest a lower risk (negative contribution) as they are 
not de-ranged values. The values of these features are as follows: 
‘Abdominal Distention’ at 1.0, ‘Loss of Appetite’ at 1.0, ‘CA19-9’ at 
10.0, ‘CEA’ at 1.0, and ‘CA125’ at 16.0. Because ‘Abdominal Distention’, 

FIGURE 1

Process diagram.
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FIGURE 2

Accuracy of the single classifier (left) and ensemble classifiers (right).

FIGURE 3

Comparison of single, ensemble, and three-stage ensemble models.

FIGURE 4

ROC curves for the SVM (left), RF (middle), and three-stage ensemble architecture (right).
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‘Loss of Appetite’, and ‘Family History’ are within the concerning 
ranges, they contribute to the model prediction of possible risk, with 
the border values of CEA being yes and CA125 toward the 
border value.

Figure  8 shows that the model predicted a serious ovarian 
condition (malignant). The features—‘Loss of Appetite’, ‘CEA’, ‘CA125’, 
‘Abdominal Distention’, and ‘Age’—indicate a higher risk (positive 
contribution). The values of these features are as follows: ‘Loss of 
Appetite’ at 1.00 indicates that the person is having a loss of appetite 
issue, ‘Abdominal Distention’ at 1.0, ‘CEA’ at 23.64 is also on the higher 
side, ‘CA125’ at 143.38, ‘Age’ at 71, and ‘CA19-9’ at 1.89. Since all the 
features except CA19-9 contribute positively, the model prediction is 

revealed as malignant. The important factor to be considered in this 
case is the age which is 71; the values of other factors such as CA125, 
loss of appetite, and abdominal distention are high, leading to 
malignant prediction.

4.2.2 SHAP
SHAP values help in understanding the importance of each 

feature in the model prediction for ovarian lesions. As shown in 
Figure 9, ‘CEA’, ‘CA19-9’, ‘CA125’, ‘Loss of Appetite’, ‘Family History’, 
and ‘Abdominal Distention’ are the most important features in 
determining the model predictions; LIME also used the same features 
for predicting the cases. This indicates that these six features have the 

FIGURE 5

Feature importance (A) on the overall dataset and (B) only on clinical parameters.

FIGURE 6

LIME instance for Class 0 (benign).
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FIGURE 7

LIME instance for Class 1 (border case).

FIGURE 8

LIME instance for Class 2 (malignant case).
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most significant impact on the model predicting a benign, borderline, 
or malignant condition.

Figure  10 shows how the feature ‘CEA (Carcinoembryonic 
Antigen)’ influences the prediction of a specific patient (observation 
number 9614). With a ‘CEA’ value of 105.63, it contributes positively 
by 0.2168 points, indicating a higher risk.

In Figure 11, for another patient (observation number 892), the 
‘CEA’ value is 1, contributing negatively by −0.1211 points, suggesting 
a lower risk. These examples show that the impact of each feature can 
be  positive or negative depending on its value, helping doctors 
understand how different aspects of patient data influence the 
model prediction.

4.2.2.1 Tree SHAP
Interpreting a stacked bar plot of Tree SHAP values with mean 

SHAP values involves an understanding of how each feature 
contributes to the model’s predictions on average. This helps in 
identifying which features are the most influential and how they 
collectively affect the model output relative to the average prediction.

Figure 12A shows that ‘CEA’, ‘Loss of Appetite’, ‘CA125’, ‘CA19-9’, 
‘Abdominal Distention’, ‘Family History’, ‘Menarche’, ‘Age’, and 
‘Menstrual Abnormalities’ are the top nine features attributing to 
model prediction in cases of ovarian lesions according to the Tree 
SHAP Explainer. The bar against ‘CEA’ shows that this feature is highly 
influential in deciding ‘Class 2’ when compared to ‘Class 1’ and ‘Class 
0’. The bar against ‘Loss of Appetite’ shows that this feature is highly 
influential in deciding ‘Class 0’ and ‘Class 1’ when compared to ‘Class 
2’. The bar against ‘CA125’ shows that this feature is highly important 
for predicting ‘Class 2’ when compared to the other two classes. The 
bar against ‘Abdominal Distention’ shows that this feature is important 
for instances that belong to ‘Class 0’. Figure 12B shows that ‘Oral 
Contraception’, ‘Family History’, ‘Loss of Appetite’, ‘Abdominal 
Distention’, and ‘Menarche’ are the top five features contributing 
clinically to the model prediction according to the Tree SHAP 

explainer. The bar against ‘Family History’ shows that this feature is 
highly influential in deciding Classes 1 and 2 when compared to Class 
0. The bar against ‘Age’ shows that this feature is highly influential in 
deciding Class 2 and Class 1 when compared with Class 0. The bar 
against ‘Oral Contraception’ is highly influential in deciding Class 2 
when compared to Classes 1 and 0.

From the clinician’s point of view, these observations indicate the 
weightage of these parameters as the conditions for prediction and 
suggest positive and negative predictive roles for each of the 
contributors. CEA has the highest positive predictive value for 
malignancy. CA19-9 has the highest predictive value for borderline 
tumors, whereas CA125, being a non-specific marker, is not as 
specifically predictive as any of the categories. For example, if SHAP 
predicts a tumor as malignant based on CEA and the same mass as 
benign based on CA125, it is more likely a malignant mass because CEA 
as an independent factor has the highest reliable predictivity. In the 
prediction model that included clinical and tumor marker parameters, 
abdominal distension had more of a negative predictive value than other 
parameters, indicating that the absence of abdominal distension rules 
out malignancy and the mass is likely to be benign. However, when only 
clinical parameters were considered in the prediction model and tumor 
markers were not included, abdominal distension had the predictive 
capacity to indicate malignancy by its presence.

4.2.2.2 Sampling SHAP
Interpreting a stacked bar plot of Sampling SHAP values with 

mean SHAP values involves an understanding of how each feature 
contributes to the model predictions, considering the variability 
introduced by the sampling process. This approach helps in identifying 
influential features and their average impact on model predictions 
across different samples.

Figure 13A shows that ‘CEA’, ‘CA125’, ‘CA19-9’, ‘Loss of Appetite’, 
‘Abdominal Distention’, ‘Family History’, ‘Menarche’, ‘Age’, and 
‘Menstrual Abnormalities’ are the top nine features contributing to the 

FIGURE 9

Importance of SHAP feature.
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model prediction of ovarian lesions according to the Sampling SHAP 
Explainer. The bar against ‘CEA’ shows that this feature is highly 
influential in deciding ‘Class 2’ when compared to ‘Class 0’ and  
‘Class 1’. The bar against ‘CA125’ is highly influential in deciding  
Class 2 when compared to ‘Class 0’ and ‘Class 1’. The bar against 

‘CA19-9’ shows that this feature is highly important for predicting 
‘Class 1’ when compared to the other two classes. The bar against 
‘Abdominal Distention’ shows that this feature is important for 
instances that belong to ‘Class 0’. Sampling SHAP was used when exact 
computation (as done in Tree SHAP) was impractical due to 

FIGURE 10

Contribution of CEA for observation number 614.

FIGURE 11

Contribution of CEA for observation number 1129.
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computational constraints. It involved approximating SHAP values 
through sampling subsets of features or instances. Figure 13B shows 
that ‘Oral Contraception, ‘Family History’, ‘Loss of Appetite’, 
‘Abdominal Distention’, and ‘Menarche’ are the top five features 
contributing clinically to model prediction as per the Sampling SHAP 
Explainer. The bar against the features oral contraception, age, and 
family history shows that these features are highly influential in 
deciding ‘Class 1 and 2′ when compared to ‘Class 0′. The bar against 
the features ‘Loss of Appetite’ and ‘Abdominal Distention’ is highly 
influential in deciding ‘Class 0 and 1′ when compared to ‘Class 2′.

4.2.2.3 Kernel SHAP
Interpreting a stacked bar plot of Kernel SHAP values with mean 

SHAP values involves an understanding of how each feature 
contributes to the model prediction, considering the kernel-based 
approach used for SHAP value computation. This approach helps in 
identifying influential features and their average impact on model 
predictions across different instances or data subsets.

Figure 14A shows that ‘CEA’, ‘CA125’, ‘Abdominal Distention’, 
‘CA19-9’, ‘Loss of Appetite’, ‘Menarche’, ‘Family History’, ‘Age’, and 
‘Dysmenorrhoea’ are the top nine features contributing to the model 
prediction of ovarian lesions according to the Kernel SHAP 
Explainer. The bar against ‘CEA’ is highly influential in deciding 
between ‘Class 2’ and ‘Class 1’ when compared to ‘Class 0’. The bar 
against ‘CA19-9’ shows that this is highly important for predicting 
‘Class 1’ when compared to the other two classes. The bar against 
‘CA125’ is highly influential in deciding ‘Class 2’ when compared to 
‘Class 0 and Class 2’. The bar against ‘Abdominal Distention’ shows 
that this feature is important for instances that belong to ‘Class 0’. 
Sampling SHAP was used when exact computation (as conducted in 
Tree SHAP) was impractical due to computational constraints. This 
involved approximating SHAP values through sampling subsets of 
features or instances. Figure 14B shows the feature importance of 
clinical data as per the Kernel SHAP. The bars against the features 
‘Oral Contraception’ and ‘Family History’ are highly influential in 
deciding ‘Class 1 and 2’ when compared with ‘Class 0’.

FIGURE 12

Feature importance (A) on the overall dataset and (B) on clinical parameters.

FIGURE 13

Feature importance (A) on the overall dataset and (B) on clinical parameters.
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From Figures 12–14, it can be concluded that ‘CEA’ and ‘CA19-9’ 
are the top two features highly contributing to model prediction. 
Furthermore, it can be noted that Kernel SHAP performs the best in 
comparison with Tree and Sampling SHAP, showing consistency in 
explaining model prediction across all three classes.

Figure 15 shows the global view of the RF distribution, which 
corroborates the feature importance deduction that abdominal 
distention is one of the major contributing factors in classifying 
ovarian lesions. A mix of cases can be found in some instances that 
might not be a contributing factor but a few individual instances with 
relatively higher values could be studied further to understand the 
factors, if any, that set them apart. In conclusion, features with positive 
SHAP values for a particular instance can be indicative and helpful in 
stratifying a case. SHAP values will help in identifying the features that 
contribute to the model predictions. In Figure 16, the top nine features 
contributed to predicting particular training instances as benign cases. 
From the figure, it can be observed that while getting trained, the 
features have contributed to learning and the correct classification. It 
is also evident from the values that the features such as loss of appetite, 
abdominal distention, and family history are absent, the tumor 
markers such as CEA, CA19-19, and CA125 values are very much 
within the safe range, and the value of the most important feature Age 
is 18. This shows that SHAP has predicted the case as benign with a 
probability of 99.1%.

Figure 17 shows that the particular instance is classified as not 
non-benign, with a probability of 0.1. It is evident from the value on 
the left-hand side that the values of tumor biomarkers CEA, CA125, 
and CA19-9 are very high. The values of the clinical parameters such 
as family history, loss of appetite, and abdominal distention are all 
positive, with age being 75. From Figures 16, 17, it can be confirmed 
that the values of these features vary with huge differences.

p-value is the measure that determines the significance of the 
obtained results in the hypothesis tests. It represents the probability of 
obtaining the test results at least as extreme as the observed results. 
Cohen’s d value is often used to evaluate the practical significance of a 
model’s performance and the impact of the intervention. It can 
be observed from Table 1 that for CEA, loss of appetite, CA19-9, 
CA125, and abdominal distention, the p-value is extremely small (less 

than 0.5), indicating that the result is highly statistically significant. 
Cohen’s d values of these variables suggest a large effect size, which 
means the impact of these variables on diagnosis is very significant.

From Table 2, it can be observed that p-values are significantly 
larger and Cohen’s d values are greater than 0.2, which indicates a 
much smaller effect size when compared with the most important 
variables. The negative Cohen’s d values suggest a negative effect.

Table 3 shows the difference in ranking based on SHAP values and 
p-values, which implies that while some features have more predictive 
capabilities, it might not be  statistically as evident. Abdominal 
distention ranks higher in SHAP values than in p-values, indicating 
that it might be  more important for prediction than its statistical 
significance might indicate.

5 Discussion

In this section, we compare the results of the proposed model with 
those of the existing studies mentioned in Section 2.

After a rigorous survey of the available literature, from Table 4, 
we  found that there are not many studies in the literature that 
incorporate a combination of clinical, radiological, and serum-based 
parameters for ovarian cancer diagnosis and prognosis, which is an 
advancement in the state of the art beyond the existing literature—this 
mapping of multi-modal data onto a common subspace benefit from 
the complementary information in each modality. Therefore, 
we attempted to fill this gap in the literature, specifically patient data 
available in clinical data and radiological and tumor markers. Learning 
these data proceeds by maximizing intra-class similarities and inter-
class differences to obtain richer representations. The richer 
representations obtained from these data trained ensemble-based 
classifiers to diagnose cancer. The proposed approach also aligns with 
medical experts using information from different sources to 
corroborate and conclude their diagnosis.

Hence, the innovative component and knowledge addition in this 
study is a unique combination of specific problem definition, usage of 
more relevant and near-match parameters that clinicians follow in 
their day-to-day practice, and translation of this cognition into an AI 

FIGURE 14

Feature importance (A) on the overall dataset and (B) on clinical parameters.
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system, resulting in improved performance with reliability, 
consistency, and accuracy.

6 Conclusion and future studies

This study demonstrates the development and application of an 
ensemble classifier along with explainability to accurately predict benign, 
borderline, and malignant ovarian cancers using clinical, ultrasound, and 
tumor marker data. It has been proved experimentally that the proposed 

three-stage ensemble architecture exhibited higher performance than the 
existing models in the literature, with an accuracy of 98.66%.

As a future direction, it is envisioned that if the subcategories of 
malignant ovarian cancer and histopathological images are considered 
in the classification process, performance may be affected, leaving 
lacunae for further development in the future.

The developed classification paradigm in this study has the 
potential to bring translational changes in the ovarian cancer 
management protocols in clinics, in particular, which can help in 
lowering the cost of treatment, lowering morbidity, and reducing the 

FIGURE 15

SHAP values based on the proposed model.

FIGURE 16

Training sample of a benign case with a probability of 99.1%.
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FIGURE 17

Training sample of a benign case with a probability of 0.1, which is a malignant case.

TABLE 1 p-value and effect size (Cohen’s d) for variables (influencing diagnosis and classification of ovarian mass lesions) ranked top 5 by SHAP.

Ranking Variables p-value Cohen’s d value

1 CEA 3.7974 × 10−10 −1.4000

2 Loss of appetite 1.2299 × 10−8 3.2861

3 CA19-9 2.1076 × 10−11 −1.3615

4 CA125 0.1115 0.0883

5 Abdominal distention 1.2299 × 10−9 3.2861

TABLE 2 p-value and effect size (Cohen’s d) for variables (influencing diagnosis and classification of ovarian mass lesions) ranked bottom 5 by SHAP.

Ranking Variables p-value Cohen’s d value

16 Menstrual abnormalities 4.1922 −0.4490

17 Dysmenorrhea 4.1922 −0.4490

18 Menopause 2.4639 0.4083

19 Parity (GPLA) 5.3066 −0.3210

20 Abdominal pain 1.0 0.0

TABLE 3 Comparison of rankings generated by SHAP values and p-values.

Rank Feature SHAP value rank p-value rank

1 CEA 1 4

2 Loss of appetite 2 1

3 CA19-9 3 5

4 CA125 4 3

5 Abdominal distention 5 2

6 Family history 6 6

7 Menarche 7 8

8 Age 8 7

9 Menstrual abnormalities 9 9

10 Dysmenorrhea 10 10
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TABLE 4 Comparison with the existing relatable studies.

Literature Dataset 
used

Type/
modality of 
data

Number of 
samples 

considered

Number of 
features

No. of 
patients

Parameters used in the 
dataset

Methods used Performance 
reported

XAI methods

Nopour et al. (5) In-house Clinical data 1,473 26 1,473 Age, Family history, family cancer 

syndrome, etc.

XGBoost, SVM, KNNs, 

ANN, RF

XGBoost: AUC–

ROC = 0.93 (95% CI: 

[0.91–0.95])

Not used

Lavanya J M et al. 

(13)

Open access Clinical data 349 49 349 22 general chemical tests, 19 blood 

routine tests, and 6 tumor markers, 

including age and menopause 

information

KNNs, SVM, Decision 

Trees, Max Voting, 

Boosting, Bagging, 

Stacking

Base accuracy = 85%, 

Stacking: 89%

SHAP

Abuzinadah et al. 

(22)

Open access Clinical data 349 49 349 22 general chemical tests, 19 blood 

routine tests, and 6 tumor markers, 

including age and menopause 

information

Stacked Ensemble 

Model (Bagging + 

Boosting)

Accuracy = 96.87% SHAP

Schilling et al. (10) Open access Gene expression 4,490 9,954 585 mRNA sequencing data K-means, Naive Bayes, 

Logistic Regression, 

SVM

F1 score = 0.89 SHAP

Chao et al. (9) In-house data demographic and 

clinicopathologic 

features

6,809 67 6,809 Age, dysmenorrhea, Family 

history, CA125, Leiomyoma, etc.

Gradient-Boosting 

Decision Tree, Logistic 

Regression

LR: AUC = 0.891, 

Sensitivity = 88.9%, 

Specificity = 76.7%

Not used

Ahamad et al. (18) Open access Clinical data 349 49 349 22 general chemical tests, 19 blood 

routine tests, and 6 tumor markers, 

including age and menopause 

information

RF, SVM, DTs, 

XGBoost, LR, GBM, 

LGBM

Accuracy = 91% Not used

Chen et al. (25) Open access Gene expression 4,490 9,954 585 mRNA sequencing data Gradient Boosting 

Decision Tree

Accuracy = 96.5% Not used

Zeng et al. (23) Open access Gene expression 4,490 9,954 585 mRNA sequencing data Machine learning 

models (not specified 

explicitly)

AUC: 0.952 (BRCA1), 

0.911 (multi-omics 

model)

Risk Score 

Interpretation for 

Survival Prediction

Proposed work In-house Clinical data, 

ultrasound 

parameters, and 

Tumor markers

1,500 20 1,500 CEA, CA19-9, CA125, Loss of 

Appetite, Abdominal Distention, 

Family History, Age of Menarche, 

Age, etc.

Three-stage ensemble 

model (SVM, RF, 

XGBoost)

Accuracy = 98.66% LIME and SHAP
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risk of mortality specifically for women in resource-constrained and 
economically challenged scenarios.
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