
Frontiers in Public Health 01 frontiersin.org

Multimodal machine 
learning-based model for 
differentiating nontuberculous 
mycobacteria from 
mycobacterium tuberculosis
Hong-ling Li *, Ri-zeng Zhi , Hua-sheng Liu , Mei Wang  and 
Si-jie Yu 

Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 
Zhejiang, China

Objective: To develop and evaluate the effectiveness of multimodal machine 
learning approach for the differentiation of NTM from MTB.

Methods: The clinical data and CT images of 175 patients were retrospectively 
obtained. We  established clinical data-based model, radiomics-based model, 
and multimodal (clinical plus radiomics) model gradually using 5 machine 
learning algorithms (Logistic, XGBoost, AdaBoost, RandomForest, and 
LightGBM). Optimal algorithm in each model was selected after evaluating 
the differentiation performance both in training and validation sets. The model 
performance was further verified using external new MTB and NTM patient data. 
Performance was also compared with the existing approaches and model.

Results: The clinical data-based model contained age, gender, and IL-6, and 
the RandomForest algorithm achieved the optimal learning model. Two key 
radiomics features of CT images were identified and then used to establish the 
radiomics model, finding that model from Logistic algorithm was the optimal. 
The multimodal model contained age, IL-6, and the 2 radiomics features, and 
the optimal model was from LightGBM algorithm. The optimal multimodal 
model had the highest AUC value, accuracy, sensitivity, and negative predictive 
value compared with the optimal clinical or radiomics models, and its’ favorable 
performance was also verified in the external test dataset (accuracy = 0.745, 
sensitivity = 0.900). Additionally, the performance of multimodal model was 
better than that of the radiologist, NGS detection, and existing machine learning 
model, with an increased accuracy of 26, 4, and 6%, respectively.

Conclusion: This is the first study to establish multimodal model to distinguish 
NTM from MTB and it performs well in differentiating them, which has the 
potential to aid clinical decision-making for experienced radiologists.

KEYWORDS

nontuberculous mycobacterium, mycobacterium tuberculosis, deep learning, CT 
images, multimodal model

OPEN ACCESS

EDITED BY

Hosna Salmani,  
Iran University of Medical Sciences, Iran

REVIEWED BY

Vijaya Bhaskar Sadu,  
Jawaharlal Nehru Technological University, 
Kakinada, India
Yasser Khalafaoui,  
CY Cergy Paris Université, France
Samta Rani,  
Sharda University, Greater Noida, India

*CORRESPONDENCE

Hong-ling Li  
 20618113@163.com

RECEIVED 25 July 2024
ACCEPTED 06 February 2025
PUBLISHED 17 February 2025

CITATION

Li H-l, Zhi R-z, Liu H-s, Wang M and Yu S-j 
(2025) Multimodal machine learning-based 
model for differentiating nontuberculous 
mycobacteria from mycobacterium 
tuberculosis.
Front. Public Health 13:1470072.
doi: 10.3389/fpubh.2025.1470072

COPYRIGHT

© 2025 Li, Zhi, Liu, Wang and Yu. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 17 February 2025
DOI 10.3389/fpubh.2025.1470072

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2025.1470072&domain=pdf&date_stamp=2025-02-17
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1470072/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1470072/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1470072/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1470072/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1470072/full
mailto:20618113@163.com
https://doi.org/10.3389/fpubh.2025.1470072
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2025.1470072


Li et al. 10.3389/fpubh.2025.1470072

Frontiers in Public Health 02 frontiersin.org

1 Introduction

Tuberculosis is a chronic infectious disease caused by 
mycobacterium tuberculosis (MTB). MTB can invade all organs of the 
body, especially lung. Tuberculosis caused by MTB is one of the most 
serious public health problems in the world (1). The tuberculosis 
burden in China is only lower than in India and Indonesia, ranking 
third (2). With the increasing number of patients with human 
immunodeficiency virus (HIV) year by year and the massive use of 
immunosuppressants, the incidence of opportunistic infections and 
disease burden caused by non-tuberculous mycobacteria (NTM) are 
rising globally (3, 4). NTM is a major cause of morbidity and mortality 
in progressive lung diseases. However, the clinical manifestations of 
MTB and NTM are similar in symptoms such as low fever, cough, and 
reduced body weight (5), making it difficult to distinguish them. 
Therefore, choosing a fast, accurate, and clinically applicable method 
for distinguishing NTM and MTB is of great significance.

The bacteria culture is the “gold” reference standard and takes 2 
to 6 weeks to produce diagnostic results. However, due to the different 
treatment plans between the two types of diseases, NTM patients will 
miss the best treatment opportunity due to the long time consumption, 
leading to disease progression (6). In addition, bacterial culture shows 
low sensitivity. Other methods (7) including GeneXpert MTB/RIF 
Ultra, chest X-ray, and tuberculosis loop-mediated isothermal 
amplification fail to distinguish between NTM and MTB. Recently, 
next-generation sequencing (NGS) based technology has been 
successfully applied for the routine characterization of tuberculosis 
(8, 9). Therefore, it is extremely necessary to combine multiple 
methods for the differentiation between NTM and MTB.

Although chest computed tomography (CT) examination also 
faced a similar predicament of difficulty in identification, there are still 
subtle differences in imaging performance between the two diseases 
(10). This indicates that CT signs may play an important role in disease 
differentiation and it is necessary to mine more useful information 
behind CT images. In recent years, radiomics has shown great 
potential in the diagnosis and differential diagnosis of lung diseases 
through high-throughput extraction and mining of data features 
(11, 12), which may provide a feasible method for distinguishing NTM 
from MTB. Radiomics is a non-invasive and objective image analysis 
tool, that uses computer algorithms to mine deep information in 
images such as CT, Magnetic Resonance Imaging (MRI), and positron 
emission tomography (PET), thereby reflecting the heterogeneity of 
the lesion area. However, the discriminating model based on these 
imaging pictures showed different differentiation performances. For 
example, the previous study quantifies bronchiectasis regions in CT 
images and explored a machine learning approach, finding that the 
model achieved an area under the curve (AUC) of 0.84 and an 
accuracy of 0.85 (13). However, the other research reported an 
accuracy of 0.74 (14). It followed that the performance difference 
between different machine learning models was the key point when 
applying these models for distinguishing lung diseases.

Machine learning (ML) is a technique, which can automatically 
extract useful models from large-scale heterogeneous datasets based on 
complex algorithms. These models can then be utilized for outcome 

prediction (15). ML has enhanced the integration of computer science 
and statistics with medical problems, and it is now extensively employed 
in disease diagnosis, cancer treatment, and other medical research areas 
(16–18). In tuberculosis research, ML is also widely applied for the 
diagnosis, treatment and differential diagnosis of tuberculosis. Yao et al. 
(19) combined plasma proteins with ML to establish seven models for 
the diagnosis of active tuberculosis. Among them, the support vector 
machine (SVM) model demonstrated the best performance, achieving 
an AUC exceeding 0.89. In addition, ML in conjunction with histological 
information can diagnose latent tuberculosis (20). Research has shown 
that the ML fusion model based on longitudinal CT scan image 
histology performs well in predicting the poor prognosis of TB 
treatment, with internally validated AUC and externally validated AUC 
of 0.767–0.802 and 0.831–0.857, respectively, enabling early preventive 
measures against unfavorable prognoses (21). Although some 
researchers have also built models to differentiate between NTM and 
MTB by combining urinary metabolomics or CT imaging information 
with ML (22, 23), these models are limited in their clinical interpretability 
due to the only utilization of single laboratory or CT imaging parameter. 
Currently, limited researches performed machine learning to distinguish 
NTM from MTB, especially from aspect of multidimensions (clinical 
characteristics, laboratory test, CT/MRI images, etc.).

In this study, we conducted five machine learning algorithms and 
established an optimal multimodal model containing clinical, 
laboratory test, and radiomics data of CT images for distinguishing 
NTM from MTB. We compared its differentiation performance with 
single clinical or radiomics based models. We  also verified its 
differentiation performance in the external new dataset, and then 
compared its’ differentiation ability model with the existing 
approaches and machine learning model. The contributions of our 
study were as follows: (1) at present, few study was performed for 
distinguishing them using machine learning models. Our study aimed 
to establish a machine learning model for differentiating NTM from 
MTB, which can promote the application of new technologies, thereby 
advancing research progress in this fields. (2) Currently, most of 
studies were based on the one dimension, such as only CT or X-ray 
images. This is the first study to consider multidimensions (clinical 
characteristics, laboratory test, CT images) and use multimodal model 
to distinguish them. Our research provides a new perspective and 
strategy for differentiating NTM from MTB, which is of great 
significance for doctors to choose appropriate treatment plans.

2 Methods

2.1 Data source

This study retrospectively enrolled patients with pulmonary 
infection who were admitted to our hospital between April 2020 and 
December 2023. All the patients underwent a CT examination.

The diagnostic criteria were presented as follows. NTM was 
diagnosed according to the Euro-American 2020 edition (24). MTB 
was diagnosed according to the rapid tuberculosis diagnostic criteria 
with 2023 World Health Organization edition (25). To differentiate the 
NTM and MTB, we conducted the T-SPOT test using a testing kit 
produced by DEAOU (Guangzhou) according to the kit instructions. 
Next-generation sequencing (NGS) of alveolar lavage fluid and 
bacteria culture were also performed to differentiate the NTM and 

Abbreviations: NTM, nontuberculous mycobacteria; MTB, mycobacterium 

tuberculosis; AUC, area under curve; NGS, next-generation sequencing.

https://doi.org/10.3389/fpubh.2025.1470072
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Li et al. 10.3389/fpubh.2025.1470072

Frontiers in Public Health 03 frontiersin.org

MTB. The collection of alveolar lavage fluid and next-generation 
sequencing information including sample processing and DNA 
extraction, and library generation and sequencing can be found in the 
previous study (26). Integrating the results of multiple tests, the NTM 
and MTB patients were classified.

The inclusion criteria included (1) age ranged from 18 to 80 years; 
(2) diagnosed with NTM or MTB infection; (3) had bacterial culture 
results; (4) had NGS test results; (5) had T-SPOT test results; (6) with 
at least 2 set of lung CT images available. We excluded these patients 
with lung cancer, fungal infection, pneumoconiosis, and mixed 
infections of TB and NTM. The process of patient screening and 
enrolling was presented in Figure 1. After screening, 99 MTB patients 
and 76 NTM patients were enrolled in the final analyses.

It should be noted that there was a data imbalance regarding the 
MTB and NTM patient number, which may cause the potential for 
producing overfitting problems. Due to the requirements of periodical 
for follow-up after diagnosis, at least 2 images of NTM/MTB patients 
were taken. Considering the slow rate of radiological abnormal 
changes in NTM, longer follow-up time was required. Hence, more 
CT images of one NTM patient were collected than MTB. Therefore, 

although there was unbalance in the proportion of patients, CT 
images were as balanced as possible.

2.2 Machine learning (ML) approach

This study aimed to construct 3 models (clinical model, radiomics 
model, multimodal model) for differentiating NTM from MTB using 
5 machine learning algorithms (Logistic, XGBoost, AdaBoost, 
RandomForest, and LightGBM), and to explore which algorithms was 
more suitable. The purpose of classified multi-model method was to 
select the best model, rather than directly modeling to get the final 
model. In this study, we used the training/verification mechanism of 
5-fold cross-validation to summarize the performance of each model 
in many trainings, focusing on the overall performance of each model. 
The overall workflow of the models’ development, validation, and 
comparison was presented in Figure 2.

Logistic regression models are more traditional single-model 
classification algorithms that aim to identify the connection between 
features and the likelihood of a specific (binary) outcome. It is widely 

FIGURE 1

The process of patient screening and enrolling.
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employed by medical professionals for its ability to calculate odds 
ratio (27).

Models such as RandomForest, XGBoost, LightGBM, and 
AdaBoost are ensemble models based on decision trees. These 
ensemble models can get a strong model through taking the strengths 
of all single models. This strong classifier achieves a relative 
best performance.

RandomForest algorithm is the embodiment of group intelligence, 
which creates different training sets by randomly sampling rows 
(bagging) and columns (feature bagging) from the dataset. The 
decision tree of RandomForest algorithm is grown by bootstrap. 
RandomForest reduces training variance and improves model 
generalization and integration. And it can be  utilized without 
parameter tuning, offering variable importance information for 
classification and high predictive accuracy (28).

Conversely, XGBoost, LightGBM, and AdaBoost are based on the 
idea of gradient boosting. XGBoost performs a second-order Taylor 
expansion of the loss function and employs various techniques to 
minimize overfitting. It utilizes the structure score (gain) of the tree 
to determine split points, improving tree quality, and implements 
parallel and distributed computation for increased efficiency. For 
detailed algorithm information, consult the literature (29).

The LightGBM algorithm employs a histogram approximation 
algorithm to generate a histogram that discretises continuous features. 
It splits trees at leaf nodes with the largest lift. And using the GOSS 

technique, the samples with larger gradient are preferred, so the 
optimal split can be  found faster and the training efficiency is 
improved (30, 31).

AdaBoost is a relatively new nonlinear ML algorithm that 
builds a tree by adjusting sample weights and combines multiple 
trees to become a strong classifier. It does not require feature 
screening, can perform automatic feature selection, and has a low 
risk of overfitting. For specific steps, refer to the relevant 
literature (32).

2.3 Key clinical features identification

We collected the clinical data of patients including the age (years), 
gender, white blood cell (WBC, 109/L), erythrocyte sedimentation rate 
(ESR, mm/h), C-reactive protein (CRP, mg/L), Interleukin-6 (IL-6, 
pg./mL), and procalcitonin (PCT, ng/mL). The difference in these 
variables between NTM and MTB groups was first compared to 
identify the differential variables. These differential variables were 
then enrolled in Logistic regression analysis to determine the 
independent factor associated with the disease types. Then Receiver 
Operating Characteristic (ROC) analysis and area under curve (AUC) 
were used to assess the discriminating performance of these 
independent factors. Decision Curve Analysis (DCA) was used to 
evaluate their obtained clinical net benefit for discriminating disease.

FIGURE 2

Overall workflow of the models’ development, validation, and comparison.
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2.4 Differentiation model construction 
based on the key clinical features

Based on the independent clinical factors, a clinical features-based 
model for discriminating NTM from MTB was first constructed and 
validated using 5-fold cross-validation. The cross-validation can partially 
resolve the overfitting problem. In addition, we added L2 penalty to 
control the complexity of the model to prevent it from being too 
complicated. We also applied early stop-ping, learning rate adjustments, 
and drop-out to prevent overfitting. The detailed parameters of the 
Logistic algorithm were as follows: C = 1.0; max-iter = 100; penalty = l2; 
tol = 0.0001. The parameters of the XGBoost algorithm were as follows: 
learning-rate = None; max-depth = None; min child-weight = None; 
reg-lambda = None. The parameters of the AdaBoost algorithm were as 
follows: learning-rate = 1.0; n-estimators = 50. The parameters of the 
RandomForest algorithm were as follows: criterion = gini; 
max-depth = None; min impurity-decrease = 0.0; n-estimators = 20. The 
parameters of the LightGBM algorithm were as follows: boosting 
type = gbdt; learning rate = 0.1; max depth = −1; n-estimators = 100; 
num-leaves = 31. The discriminating performance of models from 5 
algorithms was evaluated by ROC and DCA analyses.

2.5 CT images and radiomics features 
extraction

The CT images of all patients were also obtained. CT scans were 
performed using 64-slice CT scanners with the following parameters: 
tube voltage 120 kV; automatic tube current modulation 300 mA; 
detector collimation 64 × 0.625 mm; thread pitch 0.993; section 
thickness 2 mm; section interval 2 mm. The scanning area ranged 
from the apex pulmonic to the bottom of the lung.

All CT images were assessed by two radiologists with 5 years of 
diagnostic experience in CT, respectively. They were blinded to the 
histopathological and clinical data of patients. The 2 radiologists 
manually segmented the region of interest (ROI) of CT images by 
using 3D slicer software, and the intraclass correlation coefficient 
(ICC) between the 2 radiologists indicated the consistency of extracted 
features. ICC > 8 suggested a good consistency between observers.

For feature extraction, all images and ROIs were batched into 3D 
slicer software. The extracted radiomics features included 162 first-order 
features, 216 gray-level co-occurrence matrix (GLCM) features, 126 gray-
level dependence matrix (GLDM) features, 144 gray-level run-length 
matrix (GLRLM) features, 144 gray-level size zone matrix (GLSZM) 
features, and 45 neighboring gray-tone difference matrix (NGTDM) 
features.

2.6 Differentiation model construction 
based on radiomics features of CT images

A total of 837 radiomics features were extracted. We then used the 
Least absolute shrinkage and selection operator (LASSO) analysis to 
remove the redundant features. By introducing a penalty coefficient (λ), 
the coefficients of most features will be compressed to 0. The retained 
features in the final optimal LASSO model were selected for further 
analysis. LASSO analysis is a regularization method for regression 
analysis. By introducing L1 regularization into the regression model, the 
coefficients of some features are reduced to zero, thus realizing variable 

selection. LAASO can reduce the complexity of the model, and improve 
the prediction performance of the model. Therefore, application of 
LASSO analysis can partially resolve the overfitting problem. Then, the 
differences of the retained features after LASSO analysis between NTM 
and MTB groups were compared. The differential features between the 
2 groups were enrolled in the logistic regression analysis to explore the 
independent factors. The clinical value of independent factors in disease 
discrimination was assessed by ROC and DCA analysis.

Based on the independent features, a radiomics features-based 
differentiation model was constructed in a training set using 5 machine 
learning algorithms including Logistic, XGBoost, AdaBoost, 
RandomForest, and LightGBM. Their performance was also verified in 
the validation set by ROC and DCA analyses. Detailed information for 
the model construction and validation can be found in the Methods 
2.3 section.

2.7 Multimodal differentiation model 
construction

The key clinical and radiomics features, that are independently 
related to the disease types, have been identified in the above analyses. 
Then these various indicators were enrolled in logistic regression 
analysis to further determine the independent variables. Based on the 
key clinical and radiomics features, a multimodal differentiation 
model was constructed using 5 machine learning algorithms. Their 
performance was also verified in the validation set by ROC and DCA 
analyses. Detailed information for the model construction and 
validation can be found in the Methods 2.3 section. Especially, the 
importance ranking of features within the multimodal model was 
explored using 3 optimal algorithms.

2.8 Differentiation performance 
comparison and verification

Then, the differentiation performance of the 3 models (clinical-
based, radiomics-based, multimodal-based) was compared from aspects 
of AUC, cutoff, accuracy, sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and Kappa values. Although 
we have collected data for 4 years to establish and evaluate our models, 
there was limit to accurately assessing their performance due to the lack 
of test data, especially for NTM. Therefore, it was necessary to obtain a 
new external dataset from public data or data from other institutions. 
Unfortunately, we failed to obtain the test data from other institutions 
due to some reasons. Currently, no publica data on NTM was provided.

Therefore, another external dataset containing NTM and MTB 
cases who met the diagnostic criteria were retrospectively found. From 
January 2024 to December 2024, totally 59 patients (20 NTM and 39 
MTB patients) were collected. These data differed from the patient 
data used when constructing the learning model, and were the newly 
generated data after performing learning model. Only one image was 
collected per patient in the new external dataset. We also validated the 
performance of our models for differentiating NTM and MTB using 
the new external test dataset. The differentiation performances of 3 
models were also compared in the new external test dataset.

In addition, we  compared the differentiation performance of 
multimodal model in the new external test dataset with other 
measures including NGS detection method, radiologist assessment 
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with 5-year experiences, and existing machine learning model. In 
terms of radiologist assessment, one radiologist identified the 
pathogen that infected the patients in the testing dataset by only 
scanning CT images without any other reminding. The radiologist 
was informed that the patients were only infected by one type of 
pathogen, either NTM or MTB. The existing machine learning model 
was searched from the published articles. Currently, few studies 
reported the machine learning model for the differentiation of NTM 
from MTB. Finally, a deep learning model based on CT images by 
Wang et al. was selected for the performance comparison (33). For 
the differentiation performance comparison among different 
methods, AUC, accuracy, sensitivity, specificity, MTB-precision, and 
NTM-precision were set as the indicators.

2.9 Statistical analysis

The continuous variables were presented as median and quartiles 
as they did not confirm to the normal distribution, and their differences 
between the 2 groups were compared with the Mann–Whitney U test. 
The categorical variables were expressed as frequency and percent, and 
their distribution difference between the 2 groups was analyzed by χ2 
test. Univariable and multivariable logistic regression analyses were 
used to explore the association between variables and disease types. 
ROC and DCA were used to assess the discriminating performance. 
p < 0.05 was considered statistical significance.

3 Results

3.1 Characteristics of patients

In this study, we enrolled 175 patients infected by NMT or MTB 
to our analysis the median age was 63 [51, 70] years old, with average 
age of 58 years old. The median white blood cell was 5.6 [4.7, 7.2] 
(109/L). The median CRP was 4.4 [1.3, 21.0] (mg/L). The median ESR 
was 32.0 [12.5, 59.5] (mg/L). The median IL-6 was 26.65 [4.38, 56.22] 
(pg/mL). Male patients accounted for 54% of all patients. Of the 76 
patients diagnosed with NTM, 35 patients (46.1%), 23 patients 
(30.2%), 15 patients (19.7%), and 3 patients (4.0%) were infected by 
M. avium, M. intracellulare, M. abscessus, and M. kansasii strains of 
NTM, respectively.

The baseline characteristics of MTB (N = 99) and NTM (N = 76) 
patients are presented in Table 1. It followed that age (p < 0.001), 
gender (p  = 0.002), and IL-6 level (p  < 0.001) showed significant 
differences between MTB and NTM groups. NTM group had higher 
median age (66 vs. 57), but lower WBC (5.4 vs. 5.9), CRP (4.4 vs. 5.0), 
ESR (27 vs. 32), and IL-6 (15.6 vs. 39.5) levels than MTB group.

3.2 Clinical feature-based differentiation 
model

Based on 3 significant baseline characteristics, we next explored their 
association with the disease types. The univariable logistic regression 
presented their significant association (Figure 3A, all p < 0.05), and the 
multivariable regression analysis further displayed their independent 
association (Figure 3B, all p < 0.05). Their differential performance of TB 
and NTM was then assessed by ROC analysis (Figure 3C), finding that 
age had the highest AUC value (0.672), followed by IL-6 (0.667). DCA 
analysis showed that the 3 clinical features obtained similar clinical net 
benefits for discriminating TB and NTM (Figure 3D).

Subsequently, we  aimed to construct a clinical feature-based 
differentiation model. Before model construction, all patients were 
assigned to training and validation sets. The 3 clinical feature-based 
differentiation models were first constructed in the training set using 
5 deep learning algorithms, and then the differentiation performance 
of the model was verified in the validation set. The results showed that 
XGBoost and RandomForest had the most favorable differentiation 
performance in the training set (Figure 4A). In the validation set, the 
RandomForest algorithm achieved the highest AUC value (Figure 4B). 
Integrating the results of the training set and validation set, XGBoost 
algorithm may show the overfitting and RandomForest algorithm had 
more stable differentiation performance. Hence, 3 clinical feature-
based models by the RandomForest algorithm were regarded as the 
optimal deep learning model.

3.3 Radiomics features-based 
differentiation model

Besides the key clinical features, the CT images can also provide 
some valuable information for disease differentiation. To reveal the 
potential value of CT images, we  explored significant radiomics 

TABLE 1 The baseline characteristics of patients grouped by infection types.

MTB (n = 99) NTM (n = 76) p

Age (years) 57 [38, 69] 66 [59, 72] <0.001

WBC (109/L) 5.9 [4.8, 7.3] 5.4 [4.5, 6.8] 0.109

CRP (mg/L) 5.0 [1.7, 24.7] 4.4 [1.3, 15.9] 0.323

ESR (mm/h) 32 [15, 62] 27 [12, 57] 0.779

IL-6 (pg/mL) 39.5 [16.0, 60.8] 15.6 [2.5, 45.9] <0.001

Gender Male 64 (64.646) 31 (40.789) 0.002

Female 35 (35.354) 45 (59.211)

PCT (ng/mL) <0.01 7 (7.071) 10 (13.158) 0.178

≥0.01 92 (92.929) 66 (86.842)

WBC, white blood cell; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; PCT, procalcitonin.
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FIGURE 3

The differentiation value assessment on the significant clinical indicators. (A) Univariable and (B) multivariable logistic regression analyses. (C) ROC 
analysis was conducted to assess the discriminating performance of TB and NTM. (D) DCA analysis was used to assess the clinical net benefit.

FIGURE 4

The machine learning model construction and validation based on 3 clinical indicators including age, IL-6, and gender. (A) Training set. (B) Validation 
set.
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features contributing to disease differentiation behind the CT images. 
A total of 837 radiomics features were extracted. To identify the most 
valuable features among 837 features, we  performed the LASSO 
analysis to remove the redundant features by compressing their 
coefficients to 0. The optimal LASSO model (Figures  5A,B) was 
obtained when the standard error of minimum distance presented the 
λ = 0.067, containing 7 non-zero radiomics features. The detailed 
information on these 7 radiomics features is shown in Table 2.

Among 7 features, X709 (GLSZM-Gray Level Non-Uniformity 
Normalized) showed no difference between the 2 groups (Table 2). 
The remaining 6 features were further found to correlate with the 

disease type in univariable logistic regression analysis (Table 3, all 
p < 0.05), and multivariable regression analysis showed that X75 
(GLSZM, Gray Level Variance), X210 (GLCM, Correlation), and X751 
(FIRSTORDER, Maximum) were independent factors of disease type 
(all p < 0.05). It should be stated that the confidence interval of X210 
was significantly abnormal, hence X210 was removed from our 
analysis. Finally, only X75 and X751 features were entered into our 
further analyses.

ROC analysis showed that X75 had a higher AUC value for 
discriminating the disease than the X751 (Figure 6A, P for Delong 
test<0.001), with a sensitivity of 0.713 and specificity of 0.591. The 

FIGURE 5

The key radiomics features selection. (A) The LASSO analysis was conducted to filter the redundant features among all radiomics features. (B) The 
optimal LASSO model was obtained when the standard error of minimum distance presented the λ = 0.067.

TABLE 2 The differences of 7 radiomics features between 2 groups.

Features Image 
type

Feature class Feature name TB (n = 99) NTM (n = 76) p

X75 Original GLSZM Gray Level Variance 5.617 ± 1.260 5.047 ± 1.300 0.007

X210 wavelet-HLL GLCM Correlation 0.121 [0.066, 0.195] 0.200 [0.122, 0.282] <0.001

X387 wavelet-HLH FIRSTORDER Skewness −0.182 [−0.390, 

−0.014]

−0.303 [−0.466, 

−0.124]
0.014

X539 wavelet-HLH GLSZM GrayLevelNonUniformityNormalized 0.516 [0.504, 0.541] 0.523 [0.510, 0.565] 0.046

X640 wavelet-HLH GLSZM SizeZoneNonUniformityNormalized 0.460 [0.424, 0.561] 0.430 [0.394, 0.505] 0.006

X709 wavelet-HLH GLSZM GrayLevelNonUniformityNormalized 0.500 [0.500, 0.500] 0.500 [0.500, 0.500] 0.097

X751 wavelet-LLL FIRSTORDER Maximum 745.900 [735.390, 

765.304]

755.041 [744.533, 

767.961]
0.022

TABLE 3 The association of related radiomics features with disease type.

Univariable Multivariable

Features OR (95%CI) p OR (95%CI) p

X75 0.704 [0.542, 0.915] 0.009 0.636 [0.446, 0.886] 0.009

X210 168.781 [6.789,4195.777] 0.002 114.373 [2.273, 7595.81] 0.021

X387 0.357 [0.142, 0.899] 0.029 0.499 [0.180, 1.169] 0.137

X539 11.532 [9.205, 14.447] 0.015 6.157 [0.138, 13.969] 0.113

X640 0.013 [0.001, 0.250] 0.004 0.048 [0.001, 1.670] 0.110

X751 1.019 [1.003, 1.035] 0.020 1.035 [1.014, 1.060] 0.003

The features information can be found in Table 2.
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obtained clinical net benefit of X75 was also superior to that of X751 
(Figure 6B). Based on X75 and X751, a 2 radiomics features-based 
differentiation model was constructed using 5 deep learning 
algorithms in our training set, and the differentiation performance 
of the model was verified in the validation set. In the training set, 
XGBoost and RandomForest algorithms achieved the highest AUC 
values, while they achieved the lowest differentiation performance 
in the validation set (Figure  6C). It followed that the Logistic 
algorithm achieved a relatively stable performance both in training 
and validation set. Hence, 2 radiomics features-based model from 
the Logistic algorithm was regarded as the optimal deep 
learning model.

3.4 Construction of multimodal 
differentiation model

The above results have demonstrated the importance of 3 clinical 
features (age, gender, IL-6 level) and 2 radiomics features (X75, X751) 
in the differentiation of lung disease, respectively. We  further 
combined these 5 features and confirmed their independent role in 
the disease types. The multivariable regression analysis showed that 
age, IL-6, X75, and X751 were all independently related to the disease 
types (Figure  7A). Further, we  constructed a multimodal 

differentiation model based on the 4 features in the training set, 
followed by verification in the validation set. Considering the model 
performance in training and validation sets, the LightGBM algorithm 
achieved a relatively favorable and stable differentiation performance 
(Table  4). Therefore, the multimodal model constructed by the 
LightGBM algorithm was regarded as the optimal model.

Our results showed that the best 3 clinical features-based models, 
2 radiomics features-based models, and the multimodal model were 
from RandomForest algorithm, Logistic algorithm, and LightGBM 
algorithm, respectively. Therefore, we next used the 3 algorithms to 
rank the importance of 4 features within the multimodal model. The 
results showed (Figure 7B) that age and X75 were the top 2 features 
among the 3 algorithms.

3.5 The performance comparisons of 
different models for differentiating NTM 
from MTB

Finally, we compared the differentiation performance of 3 optimal 
models constructed by corresponding algorithms only in the 
validation set due to the stability consideration. The optimal 
multimodal model from the LightGBM algorithm (Figure 8A) had the 
highest AUC value (0.804) compared with the optimal clinical model 

FIGURE 6

Machine learning model construction based on 2 radiomics features including X75 and X751. (A) ROC analysis was conducted to assess the 
discriminating performance of single radiomics features. (B) DCA analysis was used to assess the clinical net benefit of 2 radiomics features for 
discriminating disease. (C) Machine learning model construction and validation based on 2 radiomics features. X75: Gray Level Variance (GLSZM); X751: 
Maximum (FIRSTORDER).
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(0.756) and radiomic model (0.718). In addition, the optimal 
multimodal model (Table  5) had the highest accuracy (0.724), 
sensitivity (0.875), and NPV (0.738). However, the multimodal model 
had the lowest specificity (0.693). The PPV values of the optimal 
multimodal model was in between the clinical model and the 
radiomics model. The clinical net benefit of 3 models seemed to 
be similar (Figure 8B). To better visualize the net benefit, we next 
performed the DCA analysis only based on the Logistic regression 
(Figure 8C) among the whole population, finding that the multimodal 
model had better clinical net benefit.

3.6 Performance verification and 
comparison using the external testing 
dataset

We further verified the prediction performance among 3 
clinical data based-model, 2 radiomics based-model, and 
multimodal model for differentiating NTM from MTB using a new 
external testing dataset. There were 36 male and 23 female patients 
in the new external testing dataset. The median age, IL-6, X75, and 
X751 were 61 [52, 67] years old, 10.9 [6.4, 33.2] (pg/mL), 4.77 [3.68, 
5.42], and 766 [751, 771], respectively. The comparison results 
showed that the multimodal model had the highest AUC, accuracy, 
sensitivity, and NPV, but had the lowest specificity (Table 6). These 
results were similar to those from the validation set, which 
suggested the stability of our findings.

We also compared the differentiation performance of our 
multimodal model with the only NGS detection method, only 
radiologist assessment, and existing machine learning model 
constructed by Wang et  al. (33) for differentiating NTM from 

MTB. The results (Table 7; Figure 9) showed that our multimodal 
model had the highest AUC, accuracy, and sensitivity. The NGS 
detection also had favorable sensitivity. Radiologist assessment had 
the highest specificity and favorable accuracy. The published model by 
Wang et  al. using CT images only had the highest precision for 
identifying NTM (yes vs. no). Our multimodal model improved 
accuracy than NGS, radiologist, and existing machine learning model, 
with an increased accuracy of 26, 4, and 6%, respectively. It also 
significantly improved sensitivity than radiologist and existing 
machine learning model, with an increased sensitivity of 4.5 and 15%, 
respectively, but was similar with that of NGS detection. These results 
highlighted the superiority of our multimodal model for differentiating 
NTM from MTB compared with existing approaches or existing 
machine learning model. Our model significantly improved the 
differentiation performance and accuracy, and provided favorable 
sensitivity at the same time.

4 Discussion

In this study, we initially established an optimal 3 clinical features-
based differentiation model. We  also constructed an optimal 2 
radiomics features-based differentiation model. The differentiation 
performance of the clinical model was superior to the radiomics 
model. Finally, we developed an optimal multimodal differentiation 
model containing clinical and radiomics data. After analysis, our 
multimodal differentiation model showed more favorable 
differentiation performance compared with the single clinical or 
radiomics model. Our study suggested the necessity of the 
combination of clinical data and radiomics data in 
disease differentiation.

FIGURE 7

The features selection for constructing the multimodal model construction. (A) Multivariable logistic regression analysis on 3 clinical and 2 radiomics 
features was conducted to identify the proper indicators for constructing the multimodal model. (B) The importance ranking of features within the 
multimodal model.
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In our multimodal differentiation model, 4 key features were 
contained including age, IL-6, and 2 radiomics features. Spatial 
epidemiologic analysis showed that a higher risk for NTM infection 
was associated with older age, rurality, and more flooding (34). The 
previous study showed that females were 1.4 times more likely to 
infect NTM than males, clustering persons with age ≥ 65 years (35). 
We found that the NTM patients had a larger age compared with MTB 
patients and the median age of NTM patients was 66 years old, which 
was consistent with the previous findings. NTM infections have 
become a neglected and emerging problem in geriatric patients, and 
the older adult population is more susceptible to NTM and 
experiences increased morbidities (36). Our study and other findings 
(33, 37, 38) all suggested that NTM was more common in older adult 
people, which may be  because NTM was a type of opportunistic 
pathogen, and patients infected with NTM often developed symptoms 
due to their aging and weakened immune system. However, we found 
no difference in gender distribution between the NTM and MTB 
groups, although our results were consistent with the previous study 
(33). It follows that patient characteristics alone are insufficient in 
differentiating between NTM and MTB.

It should be stated that NTM-infected old mice had significant 
dysrhythmia, cardiac hypertrophy, cardiac fibrosis, and elevated 
CD45+ leukocyte levels and expression of inflammatory genes in heart 
tissue (39). It follows that NTM infections may contribute to cardiac 
dysfunction in the older adult population, which is a cause for 
concern. Besides the involvement of elevated age in the NTM 
infection, this study also found a decreased IL-6 level in the NTM 
group. The previous study (40) also reported that the production of 
IL-6 in the NTM infection group occurred to a significantly lesser 
extent, and p38 and extracellular regulated protein kinases (ERK1/2) 
played essential roles in the production of IL-6 during NTM infection. 
The impaired induction of p38 and ERK1/2 expression in response to 
NTM may contribute to host susceptibility to NTM lung disease. In 
addition, the level of IL-6 in macrophages infected with NTM can also 
be regulated by XLOC_002383/miR-146a-5p/TRAF6 axis (TRAF6, 
TNF receptor associated factor 6) (41). IL-6 has been regarded as a 
biomarker for discriminating NTM and other lung disease.

In addition, we also obtained 2 important radiomics features for 
discriminating lung disease. Especially, the importance of GLSZM 
[Gray Level Variance] (X75) was highlighted. Currently, there is no 
study reporting the role of GLSZM [Gray Level Variance] in the 
discrimination of NTM lung disease. The texture features represented 
by GLSZM mainly reflected the variability (heterogeneity of image 
texture) in the measurement area, and lower values indicated that the 
regions in the image are more homogeneous (42). Gray Level Variance 
is a regional-scale heterogeneity indices derived from GLSZM. In this 
study, NTM group had higher Gray Level Variance value, suggesting 
the higher heterogeneity in NTM than in MTB. In addition, Gray 
Level Variance value had favorable performance for differentiating 
NTM from NTM. The results suggested that distinctive textural 
features between NTM and MTB could be better captured by regional-
scale lesion heterogeneity. Imaged heterogeneity may be due to the 
regional differences in cellularity, proliferation, hypoxia, angiogenesis, 
and necrosis (43). The previous study indicated that decreased lung 
tissue oxygenation may contribute to the development of NTM disease 
(44), and the level of hypoxia in NTM lesions in mice was more severe 
than that observed in the setting of tuberculosis. It followed that the 
hypoxia level presented regional differences between NTM and TB. In T
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FIGURE 8

The performance comparisons on 3 types of differentiation model. (A) The AUC value and (B) clinical net benefit comparisons of 3 models constructed 
by 5 algorithms in the validation set. The red font implied the optimal model. (C) The obtained clinical net benefit of 3 differentiation models based on 
Logistic regression analysis among whole populations.

TABLE 5 The comparisons among different differentiation model.

3 Clinical data model 
(RandomForest)

2 Radiomics model (Logistic) Multimodal model (LightGBM)

Training Validation Training Validation Training Validation

AUC 1.000 0.756 0.660 0.718 0.954 0.804

Cutoff 0.500 0.500 0.442 0.442 0.522 0.522

Accuracy 0.981 0.712 0.652 0.677 0.895 0.724

Sensitivity 1.000 0.690 0.615 0.708 0.857 0.875

Specificity 0.993 0.767 0.693 0.733 0.943 0.698

PPV 1.000 0.728 0.589 0.633 0.926 0.673

NPV 0.966 0.707 0.699 0.719 0.872 0.738

kappa 0.961 0.425 0.288 0.353 0.786 0.409

NPV, negative predictive value; PPV, positive predictive value.
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TABLE 6 The performance comparison of different models for differentiating NTM and MTB in the external testing dataset.

3 Clinical data model (RandomForest) 2 Radiomics model 
(Logistic)

Multimodal model 
(LightGBM)

AUC 0.657 0.766 0.858

cutoff 0.550 0.310 0.204

Accuracy 0.583 0.744 0.745

Sensitivity 0.200 0.833 0.900

Specificity 0.857 0.710 0.667

PPV 0.500 0.526 0.581

NPV 0.600 0.917 0.929

AUC, area under curve; NPV, negative predictive value; PPV, positive predictive value.

TABLE 7 The performance comparison between the multimodal model and other approaches for differentiating NTM from MTB in the external testing 
dataset.

Our model Only NGS detection Only radiologist Published model by 
Wang et al.

Details Multimodal constructed DNA sequencing 5-year experience Only CT images

AUC 0.86 0.59 0.65 0.78

Accuracy 0.75 0.49 0.71 0.69

Sensitivity 0.90 0.90 0.45 0.75

Specificity 0.67 0.28 0.85 0.63

MTB-Precision 0.93 0.85 0.75 0.71

NTM-Precision 0.58 0.39 0.60 0.67

AUC, area under curve; NGS, Next-generation sequencing.

FIGURE 9

Confusion matrix on the test between the constructed multimodal model and other approaches for differentiating NTM from MTB in the external 
testing dataset. (A) Our multimodal model. (B) Only Next-generation sequencing (NGS) detection in this study. (C) Only radiologist assessment in this 
study. (D) A deep learning model (published by Want et al.) using CT images.
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addition, NTM and TB also showed the difference in hematological 
profiles. A pilot study found that TB patients had higher basophils and 
platelets levels, but lower eosinophils level than NTM patients (45). 
Moreover, MTB-infected cells had lower level of phagosome-lysosome 
fusion and apoptosis than NTM-infected cells (46). We speculated that 
the final selection of GLSZM [Gray Level Variance] as key features 
may be related to the heterogeneity in hypoxia, blood, etc. between 
NTM and MTB. NTM infections are common but are often cofounded 
with TB because of the similarity of symptoms, therefore, it is 
necessary to find more heterogeneity between them.

The previous study (13) also established a machine learning-
based differentiation of NTM and MTB using CT images, finding 
that feature extracting from bronchiectasis was relatively more 
informative than that from a cavity or the combination 
(bronchiectasis+ cavity). This study highlighted the effectiveness 
difference of different regions (cavities, bronchiectasis, and their 
combination). In addition, chest X-rays from suspects of 
mycobacterial lung disease were also used to distinguish between 
TB or NTM patients by artificial intelligence, finding that deep 
neural networks had a better performance than pulmonologists on 
classifying patients (47). It follows that the deep learning model 
may achieve favorable differentiation performance, and a more 
effective model needs to be investigated.

Finally, several limitations should be  stated. In this study, the 
construction of the multimodal model depended on high-quality CT 
imaging, and the sample size was not sufficiently large, which may 
influence the generalizability and application of the models. The DCA 
was used to evaluate the clinical net benefit of 3 models, but it was only 
based on Logistic regression and we failed to use more methods to 
validate the clinical net benefit difference due to different algorithms. 
In addition, we just verified the model performance by an external 
testing dataset from our hospital and the external dataset lacks diversity, 
which may have a selection bias and limit the generalizability of our 
findings. Another limitation is the absence of comparison with existing 
clinical methods or diagnostic tools. Without this comparison, it is 
difficult to assess the added value of the proposed approach. The model 
validation and comparison are the other key research topic in the future.

5 Conclusion

This study developed a multimodal learning model to classify NTM 
from MTB, with greater accuracy, sensitivity, and negative predictive 
value than the single clinical or radiomics based models. Our multimodal 
model improved accuracy than NGS, radiologist, and existing machine 
learning model. It also significantly improved sensitivity than radiologist 
and existing machine learning model. These results highlighted the 
superiority of our multimodal model for differentiating NTM from MTB 
compared with existing approaches. Our study can promote the 
application of new technologies, thereby advancing research progress in 
this fields. This is the first study to consider multidimensions and use 
multimodal model to distinguish diseases, which provides a new 

perspective and strategy for differentiating NTM from MTB, and help 
doctors to choose appropriate treatment plans.
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