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Public emergencies have surged worldwide, highlighting the critical role of emergency 
logistics in disaster relief. This study evaluates the heterogeneity and spatiotemporal 
evolution characteristics of regional emergency logistics response capacity in China 
using the entropy-weighted TOPSIS method, Dagum Gini coefficient, kernel density 
estimation, and Markov chain analysis. The emergency logistics response capacities 
of 30 provinces and four major economic regions (Eastern, Central, Western, 
Northeastern) were assessed from 2012 to 2021. Key findings reveal: (1) Provincial 
emergency logistics response capacities improved significantly nationwide, yet 
regional imbalances remain pronounced. (2) Regional heterogeneity expanded, driven 
primarily by inter-regional disparities. (3) Temporal analysis shows steady growth 
across all economic regions without polarization, with the Eastern region achieving 
the highest mean capacity and growth rate. (4) Spatial evolution demonstrates 
continuity, as Markov chain analysis reveals gradual transitions between adjacent 
capacity levels but limited leapfrog development. Spatial factors exert dual effects: 
proximity to high-capacity regions facilitates upgrades for moderate-level areas, 
yet suppresses low capacity regions. These findings emphasize persistent structural 
gaps in infrastructure, resource allocation, and governance.
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1 Introduction

In recent years, there has been an observable trend toward an increased intensity and 
frequency of natural disasters and other sudden public emergencies, indicating a new normal 
(1). China, being one of the countries most severely affected by natural disasters, is 
characterized by a diverse array of disaster types, a wide geographic distribution, frequent 
occurrences, and substantial losses (2). The “2021 Global Natural Disaster Assessment Report” 
highlights that China was struck by 21 significant natural disasters in 2021 alone, affecting 107 
million people and leading to 765 fatalities and 102 missing persons, with direct economic 
losses amounting to an alarming 334.02 billion yuan (46.15 billion dollar). These public 
emergencies not only result in severe human casualties and financial losses but also pose 
formidable challenges to the disaster management and emergency response systems (3). 
Within this context, emergency logistics emerges as a pivotal element, providing essential 
support for the supply demands and personnel deployment during such crises (4). The 
effectiveness of emergency logistics is crucial for mitigating disaster impacts and ensuring the 
prompt delivery of necessary goods and services to the affected regions (5). Accordingly, this 
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aspect of emergency management has attracted considerable attention 
from academic circles, governmental bodies, and the public at large.

Numerous scholars have investigated the assessment of 
emergency logistics response capacity employing methodologies such 
as the Analytic Hierarchy Process (AHP) and Fuzzy Comprehensive 
Evaluation (FCE) (6–9). However, these existing methodologies 
exhibit limitations due to the subjectivity and randomness in selecting 
indicator weights, compromising the scientific validity and reliability 
of the evaluations. Despite these challenges, some researchers have 
applied case study methods to delve into emergency logistics in 
specific contexts (10–12), focusing predominantly on particular 
disasters or locales from a micro perspective, thus limiting broader 
regional evaluations of emergency logistics.

Additionally, the comprehensive nature of emergency logistics 
response capacity (Hereinafter referred to as ELRC) remains 
underexplored in the literature, further complicated by significant 
regional disparities in China’s logistics development (13), which 
have led to evident regional heterogeneity in ELRC. Recent 
initiatives in China have included the introduction of coordinated 
regional logistics development plans, which have significantly 
influenced the landscape of regional logistics development of 
regional logistics development patterns. However, existing research 
has yet to adequately address the dynamic characteristics of ELRC, 
thus leaving a gap in the literature regarding its evolving nature.

The objectives of this study are threefold: First, it aims to develop a 
comprehensive indicator system to evaluate ELRC, enabling the 
scientific and objective measurement across different regions in China. 
Second, the study analyzes regional heterogeneities in China’s 
ELRC. Third, it investigates the spatiotemporal evolution of these 
capacities. This research offers a novel perspective and theoretical 
foundation, enhancing the understanding of China’s regional ELRC. The 
findings are intended to provide valuable insights for crafting more 
scientifically robust and rational emergency logistics policies. This study 
adopts a regional perspective, broadening the scope of existing literature 
by providing an in-depth analysis of the factors constituting ELRC and 
establishing an integrative index system. The entropy-weighted TOPSIS 
method is employed for measurement, enhancing the rigor and 
credibility of the results. The use of the Dagum Gini coefficient for 
heterogeneity analysis introduces a novel approach for understanding 
inter-regional disparities. Furthermore, the spatiotemporal evolution 
analysis enhances the understanding of the changing patterns and 
characteristics of emergency logistics. The paper is organized as follows: 
Section 2 provides a literature review. Section 3 describes the research 
methodology and data sources. Section 4 outlines the components and 
measurement results of ELRC. Section 5 discusses the heterogeneity and 
origins of regional differences in ELRC within China. Section 6 
examines the spatiotemporal evolution of these capacities. Section 7 
discusses the study’s novelty, significance, limitations, and directions for 
future research. Section 8 concludes with the study’s implications and 
recommendations for policy.

2 Literature review

In the field of emergency logistics, contemporary research has 
primarily focused on three distinct areas: the concept and connotation, 
the various patterns and models, and the methods of evaluation.

2.1 Concept and connotation of 
emergency logistics

Emergency logistics, internationally recognized as a well-
established discipline, is defined as the urgent logistical activities 
designed to ensure efficient transportation and allocation of relief 
materials, equipment, and personnel in response to unforeseen 
events such as public health emergencies and natural disasters. Its 
core objective lies in delivering critical resources to disaster-
stricken areas within the shortest possible timeframe to minimize 
losses and preserve lives (14). Key characteristics of this field 
include its unpredictability and exceptionality (15, 16), stochastic 
demand and selectivity (17, 18), uneven flow distribution (19, 20), 
time-critical constraints, and the imperative to prioritize social 
welfare (21). Due to the inherent unpredictability of such events, 
emergency logistics frequently encounters challenges stemming 
from the scarcity of historical planning data (22). Nevertheless, it 
has evolved into an indispensable component of disaster mitigation 
strategies, playing a pivotal role in managing crises effectively and 
delivering humanitarian aid (23).

Distinct from conventional social logistics, which aims to sustain 
societal operations and enhance quality of life (24), emergency 
logistics prioritizes time-efficiency optimization and loss minimization 
(25). Despite this divergence, scholars have identified shared 
foundational components between the two systems, including carriers, 
flow direction, flow, and flow rate (14). Consequently, evaluations of 
ELRC must be grounded in these intrinsic characteristics. Given the 
resource scarcity inherent to emergency logistics and its frequent 
deviation from full decision-maker control (26), a robust material 
foundation—encompassing infrastructure, transportation assets, and 
skilled personnel—is critical to ensure timely support for affected 
populations through coordinated material, human, informational, and 
service flows (27, 28).

Functionally, emergency logistics encompasses three primary 
tasks: (1) delivering relief supplies, (2) evacuating and relocating 
affected populations, and (3) transporting casualties to medical 
facilities to ensure safety in disaster zones (29). This necessitates 
enhanced resource allocation capabilities, operationalized through 
metrics such as freight volume and turnover rates, to guarantee 
both scale and efficiency in material distribution. Simultaneously, 
logistics velocity and operational efficacy significantly influence 
overall responsiveness. First, response capacity correlates closely 
with roadway hierarchy and transportation network density, which 
determine flow velocity and directly impact timeliness. Second, the 
ratio of logistics output to resource input serves as a critical 
indicator of utilization efficiency, reflecting the operational 
effectiveness of response systems—a particularly vital consideration 
in resource-constrained emergency contexts.

It is noteworthy that while transportation metrics such as freight 
volume and road network density are conventionally employed to 
gauge industrial development levels, extant research demonstrates their 
critical role in reflecting system redundancy and response resilience 
within emergency logistics contexts (27). For instance, Sheu (27) 
empirically validated through case studies that the spatial density of 
road freight volume exhibits a significant positive correlation with 
disaster relief allocation efficiency. Further building on this, Zhang 
et al. (30) concluded that the proportion of high-grade roadway has a 
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direct impact on supply chain reliability under extreme conditions, and 
thus the proportion of high-grade roadway can be identified as a key 
predictor of emergency logistics timeliness. Thus, this study contends 
that transportation metrics in ELRC assessments transcend mere 
industrial scale representation, instead deriving their analytical value 
from context-specific explanatory power in crisis scenarios.

Beyond these foundational components, emergency logistics—
serving as a pivotal support framework and critical safeguard 
mechanism for public emergencies—necessitates integration with 
real-world contextual factors, particularly governmental coordination 
mechanisms and digitalization initiatives, to address the complexities 
inherent in contemporary crisis management.

2.2 Patterns and models of emergency 
logistics

In the domain of emergency logistics, researchers have 
innovatively developed various efficient logistics and resource 
allocation patterns by incorporating advanced technologies such 
as cloud platforms, artificial intelligence, and blockchain (31–33). 
Concurrently, Banomyong and Sopadang enhanced the 
emergency logistics response model by applying the Monte Carlo 
simulation technique (10). Similarly, Liu et al. (34) developed 
data-driven models for optimizing emergency logistics networks, 
while Wang et al. (35) and Chen et al. (36) utilized simulation 
techniques to evaluate and enhance the reliability and design of 
these networks.

Further expanding the scope of this research, scholars both 
domestically and internationally have devoted considerable effort to 
refining models for emergency logistics facility location selection 
(37–40), transportation route planning for rescue materials (41–44), 
and integrated location-path planning (45–47). In addition, models 
focusing on emergency logistics decision planning (47–49) and 
regional emergency dispatch (50, 51) have also received significant 
scholarly attention and discussion.

2.3 Evaluation of emergency logistics

In the field of emergency logistics evaluation research, scholars 
have extensively explored aspects related to reliability, performance, 
and capability. Initially, Chen et al. (6) introduced the concept of 
emergency logistics supply chain reliability and evaluated it using 
the Analytic Hierarchy Process (AHP). Subsequently, Gong et al. 
(52) conducted a case study to assess the reliability of the emergency 
logistics system, employing the Fuzzy Entropy Clustering Method 
for their evaluation. Xu et al. (7) further developed an emergency 
supply chain reliability evaluation model incorporating assurance 
mechanisms and information systems, utilizing the AHP and 
Entropy Weight Method (EWM). They validated the effectiveness 
and applicability of this model through practical examples. 
Additionally, Zhang et  al. (53) explored the essence of urban 
emergency logistics system reliability, integrating practical cases and 
applying the Fuzzy Comprehensive Evaluation (FCE) to assess 
its reliability.

Regarding performance evaluation, Liu et al. (54) utilized the fuzzy 
entropy-weighted TOPSIS method with Multi-Granularity Linguistic 

Assessment1 (MGLA) information to assess emergency logistics 
performance in five severely affected areas during the Wenchuan 
earthquake. Ji and Zhang (55) proposed a performance evaluation 
method based on the extensible matter-element model, which resolved 
incompatibility and contradictions among evaluation indicators, 
ensuring objectivity and scientificity in performance assessments. Zhang 
et al. (56) developed an evidence-based emergency logistics performance 
evaluation model using a specific evaluation method, validated through 
an instance involving the distribution of emergency resources for flood 
control along the Jingjiang River. Li et al. (57) adopted multiple methods, 
including the Delphi Method, AHP, Grey System Theory, and Fuzzy 
Evaluation, to achieve the most rational performance evaluation results 
at different stages of the emergency logistics system.

In the domain of capability evaluation, Deng et al. (9) constructed 
an evaluation index system for ELRC, assessing it using the Fuzzy Grey 
Comprehensive Evaluation method. Zhang et al. (58) established a 
dynamic evaluation model of emergency logistics capability based on 
the evaluation index system for COVID-19 and combined it with a BP 
neural network. Yang et al. (59) adopted a multi-attribute decision-
making technique grounded in probabilistic linguistic terminology for 
the evaluation of ELRC. Lin et al. (8) developed an evaluation index 
system for natural disaster emergency logistics capabilities and used the 
Analytic Network Process (ANP) and multi-level grey evaluation 
method for the assessment. Sun et al. (60) applied the Fuzzy-AHP to 
evaluate the ELRC during the Wenchuan, Qinghai, and Lushan 
earthquakes. Chen and Ke (61) effectively evaluated emergency 
capabilities comprehensively for five emergency logistics decision-
making units using the FCE method based on data envelopment analysis.

Upon systematically summarizing existing research achievements, 
it is apparent that both domestic and international scholars have 
explored the concept and connotation of emergency logistics, leading 
to the establishment of a well-defined theoretical structure and 
research system. However, the existing relevant research results 
predominantly focus on qualitative research and have not been further 
applied to quantitative analysis of ELRC. Regarding research on 
emergency logistics patterns and model optimization, many studies 
approach the topic from the mathematical model construction or 
simulation perspective, focusing mainly on micro-level emergency 
logistics decision-making and scheduling aspects. Nevertheless, there 
is a lack of emphasis on identifying regional ELRC. The ultimate 
objective of both emergency logistics decision-making and scheduling 
is to enhance ELRC. However, without effectively discerning the 
current state and spatiotemporal evolution characteristics of ELRC in 
different regions, both site selection and decision-making in 
emergency logistics would eventually lack a solid foundation.

Currently, in emergency logistics evaluation research, scholars 
have discussed various perspectives, such as reliability, performance, 
and capabilities. However, the existing evaluation methods chosen for 
study often lean toward subjective approaches, such as the AHP and 
FCE. Relying on subjective factors to select evaluation indicators may 
lead to potential inadequacies and a lack of comprehensiveness in the 

1  Multi-Granularity Linguistic Assessment (MGLA) is a method used in 

decision-making processes that involves evaluating and synthesizing 

information based on linguistic terms of different granularity levels, allowing 

for more nuanced and flexible analysis of subjective data.

https://doi.org/10.3389/fpubh.2025.1461354
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Chen et al.� 10.3389/fpubh.2025.1461354

Frontiers in Public Health 04 frontiersin.org

design of evaluation systems. Consequently, the scientificity and 
accuracy of evaluation results may be  undermined. Furthermore, 
most studies adopt case study methods, focusing primarily on specific 
locations or particular natural disasters from a micro-level perspective, 
lacking exploration of a macro-regional view. Moreover, emergency 
logistics is a complex and multifaceted system, and ELRC is a 
comprehensive capability. The existing research frequently fails to 
reflect all the constituent factors involved fully.

Based on existing domestic and international research, this study 
conducts several extensions. Firstly, it analyzes the constituent factors 
contributing to ELRC and develops a comprehensive index system. 
Then, the index system is utilized with the entropy-weighted TOPSIS 
method to measure the ELRC of 30 provincial administrative regions 
and four major economic regions in China from 2012 to 2021. 
Secondly, the study explores the regional heterogeneity of China’s 
ELRC and its sources using the Dagum Gini coefficient. Thirdly, the 
study utilizes kernel density estimation and Markov chain analysis 
methods to examine the spatiotemporal evolution process and 
characteristics of China’s regional ELRC.

3 Research methods and data

3.1 Research methods

3.1.1 Entropy-weighted TOPSIS method
In prior research on logistics evaluation, the Multi-Criteria Decision 

Making (MCDM) method has been extensively employed to address 
decision-making scenarios involving multiple criteria or attributes. 
Notable MCDM techniques such as the Analytic Hierarchy Process 
(AHP) (62), Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) (63, 64), and Multi-objective Linear Programming 
(65) have been frequently utilized. However, the AHP often involves 
complex calculations and its criteria selection can introduce subjectivity. 
Conversely, Multi-objective Linear Programming is limited to linear 
problem contexts. TOPSIS, which evaluates options by considering both 
the negative-ideal and ideal solutions, offers a comprehensive and 
intuitive assessment, thus its widespread adoption. Nonetheless, the 
method’s reliance on subjective judgment when establishing weights 
could potentially impact the final decision outcomes.

In response to these limitations, the Entropy Weight Method, which 
derives weights from the inherent variability of the data, provides a more 
objective alternative. The entropy-weighted TOPSIS (Technique for 
Order Preference by Similarity to Ideal Solution) method combines the 
entropy weight method and TOPSIS to objectively evaluate 
multidimensional decision-making problems. First, entropy weight 
method calculates indicator weights rooted in data dispersion, 
minimizing subjective bias by assigning higher weights to indicators with 
greater information utility. Subsequently, TOPSIS ranks alternatives by 
measuring their Euclidean distances to the negative and positive ideal 
solutions, ensuring a comprehensive assessment of relative performance. 
This approach offers three key advantages: (1) objectivity in weight 
determination through data-driven entropy values, (2) robustness in 
handling heterogeneous or conflicting criteria, and (3) interpretability 
via clear proximity scores (0–1), which quantify the gap between 
observed and optimal performance. In this study, it effectively captures 
the complexity of emergency logistics systems while avoiding arbitrary 
assumptions in traditional methods (e.g., AHP). This research therefore 

adopts the entropy-weighted TOPSIS for evaluation purposes. The initial 
step involves assigning weights to various measurement indicators using 
the Entropy Weight Method. Subsequently, TOPSIS is applied to 
quantitatively rank the ELRC of different provinces. The specific 
calculation steps are outlined as follows:

	 1.	 Standardized processing of raw data

In order to compare indicators across various provinces and years, 
this study utilized the Min-Max Scaling technique to normalize the 
data, thereby removing its dimensionality.

	 2.	 Weight calculation

Based on the entropy weighting method, this paper establishes the 
following weighting equations (Equations 1–3):
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In Equations 4, 5, ijzθ  represents the weighted decision score, and Z 
is the weighted decision matrix composed of all weighted decision scores.

	 4.	 Calculate Euclidean distance
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In Equations 6, 7, jd + and jd − respectively represent the positive 
and negative ideal solutions. iDθ

+ and iDθ
− represent the Euclidean 

distances between the actual level of ELRC for each province and the 
positive and negative ideal solutions, respectively.

	 5.	 Calculate the ELRC iCθ  for each province:

	

i
i

i i

DC
D D

θ
θ

θ θ

−

+ −=
+ 	

(8)

In Equation 8, [ ]0, 1iCθ ∈ . The closer the value of iCθ  is to 1, the 
higher the ELRC of that region.

3.1.2 Dagum Gini coefficient
The Dagum Gini coefficient differs from the traditional Gini 

coefficient, coefficient of variation, and Theil index by factoring 
in the distribution of sub-samples. It considers issues like cross-
overlap between samples (66). Consequently, the Dagum Gin 
coefficient effectively addresses the source of regional disparities, 
making it highly advantageous in analyzing spatial imbalances 
(67). It is commonly used to describe the issue of regional 
development imbalance, particularly in research related to 
disparities in residents’ income and economic development across 
regions (58, 68). Additionally, in this study, it serves as a crucial 
tool to explore the heterogeneity of ELRC across different regions 
in China. The formula for calculating the Dagum Gini coefficient 
is shown in Equation 9:

	

1 1 1 1
22
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j h i r
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=
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(9)

Among these, G represents the overall Gini coefficient, n is the 
number of provinces, and k is the number of regions. i and r represent 
the number of provinces within each region. nj (nh) represents the 
number of provinces in the j (h) region. yji (yhr) represents the ELRC 
value of the i (r) province in the j (h) region. μ represents the mean of 
ELRC for each province. Additionally, the Dagum Gini coefficient, 
using the subgroup decomposition method, allows for further 
breakdown of the overall Gini coefficient (G) into three distinct 
components: hypervariance density (Gt), inter-regional heterogeneity 
(Gnb), and intra-regional heterogeneity (Gw) (Equation 10):

	 w nb tG G G G= + + 	 (10)

3.1.3 Kernel density estimation
Kernel density estimation is a widely used non-parametric 

method for studying the uneven distribution of samples (69). It 
enables the estimation of the probability density of random 
variables and describes the dynamic evolution trend of their 
distribution through continuous density curves. In this study, 
kernel density estimation is used to reveal the dynamic 
evolutionary trends of regional ELRC in China under the 
time dimension.

In this research, the density function of regional ELRC is 
represented by f (x). And the probability density estimate at point x is 
shown in Equation 11:

	 ( )
1

1 )n
i
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x xf x k
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 

∑ 	
(11)

In the above equation, h represents the bandwidth, N denotes the 
number of observed values, and ( )•k  represents the kernel density 
function. xi represents independently and identically distributed 
observed values, while x represents the mean. This study selects the 
most commonly used Gaussian kernel function to investigate the 
dynamic evolution of China’s regional ELRC distribution. The 
expression is shown in Equation 12:
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3.1.4 Markov chain
The Markov chain is a stochastic process ( ){ },X t t T∈ , where its 

index set T corresponds to different periods, and the finite types 
correspond to the number of types of random variables. Therefore, for 
all periods t and all types i and j, the Equation 13 should hold:
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Indeed, the Markov chain is commonly utilized for discretizing 
continuous attribute values of geographical phenomena in different 
periods. And, it can effectively avoid the impact of data non-temporality 
on prediction accuracy (70). Thus, in this research, the construction of a 
Markov chain is used to explore the probabilities and rules of relative 
transitions in China’s regional ELRC. The Markov chain typically uses 
data categorization to divide it into k different types. The distribution of 
a certain type at time t is represented using a 1 × k state probability vector 

1, 2, ,, , ,t t t k tE E E E= …   . The entire process of state transition of the 
object can be represented using a Markov probability transition matrix 
of size k × k, with probability value Mij. Mij denotes the probability value 
of a spatial unit of type i at time t transitioning to type j at time t + 1. The 
specific formula is shown in Equation 14:

	 /ij ij iM n n= 	 (14)

Among these, nij represents the cumulative count of spatial units 
transitioning from type i at time t to type j at time t + 1. ni represents 
the total count of spatial units of type i across all time steps during the 
research period.

3.2 Research data

Given the availability and scientific validity of the data, this study 
focuses on 30 provincial administrative regions, including Beijing, 

https://doi.org/10.3389/fpubh.2025.1461354
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Chen et al.� 10.3389/fpubh.2025.1461354

Frontiers in Public Health 06 frontiersin.org

Shaanxi, Henan, Shandong, etc. (excluding the Hong Kong, Tibet 
Autonomous Region, Taiwan, and Macau).

The regional heterogeneity of ELRC can be  categorized from 
multiple dimensions, such as disaster types, disaster frequency, 
transportation hub types, emergency evacuation functions, and 
economic factors. This paper conducts a regional heterogeneity analysis 
based on the division of China’s four major economic regions for several 
reasons: First, the ELRC is highly dependent on long-term infrastructure 
investments and technological upgrades, while economic levels directly 
impact regional fiscal capacity and resource allocation priorities. 
Economically developed regions have higher fiscal budgets and can 
systematically build high-grade highways, among other infrastructure. 
Second, the division of China’s four economic regions is itself embedded 
in national strategie, and the allocation of policy resources directly 
shapes regional emergency capabilities. The Eastern region attracts 
global logistics companies through free trade zone policies, forming an 
emergency network of public-private cooperation, while the western 
region relies on central government transfer payments, with the 
efficiency of fund use constrained by local governance capabilities. 
Third, ELRC must address complex disasters (e.g., the COVID-19 
pandemic combined with extreme weather), and economic strength 
determines the region’s system resilience under multiple shocks. A 
single disaster-oriented classification cannot capture such complex 
resilience mechanisms. Finally, the division of economic regions is 
highly compatible with the official statistical system, making it easier for 
monitoring and assessment. Economic region data is standardized, 
continuous, and policy-intervenable, which is more conducive to 
building dynamic evaluation models. In contrast, disaster types or 
transportation hub classifications often require cross-departmental data 
integration, which may present inconsistencies in scope and timeliness 
risks. The advantages and disadvantages of specific classification 
methods are shown in Table 1. In summary, this paper adopts economic 
regions as the basis for classification.

Simultaneously, China categorizes the entirety of its territories 
into four primary economic regions based on local natural conditions, 
economic foundations, development levels, and degrees of external 
openness: Eastern, Central, Western, and Northeastern. This 
classification aims to foster coordinated regional development. To 
comprehensively understand the evolving dynamics of regional ELRC, 
this paper refers to the economic regional classifications provided by 
the National Bureau of Statistics, as depicted in Figure 1. Besides, 2012 

was designated as the baseline year, as it corresponds with the 
introduction of China’s first policy aimed at developing the emergency 
industry, titled “Opinions on Accelerating the Development of the 
Emergency Industry,” issued by the General Office of the State 
Council. Additionally, in 2018, the Ministry of Emergency 
Management was established in China, and corresponding emergency 
management departments were set up in various provinces. Due to 
the lag in provincial data, it is relatively difficult to obtain data after 
2021. Additionally, the period from 2011 to 2021 aligns with China’s 
12th and 13th Five-Year Plans, during which emergency logistics 
policies remained relatively stable. Extending the analysis to 2023 
would introduce noise from post-pandemic policy adjustments. 
Therefore, this study leverages observational metrics systematically 
documented over a ten-year continuum, commencing in 2012 and 
concluding in 2021. Drawing from previous research experience, a 
10-year period is deemed an appropriate timeframe for analyzing the 
cyclical fluctuations of a subject, as it captures long-term trends and 
cycles while ensuring data relevance and timeliness. All original data 
required for this study are sourced from the website of National 
Bureau of Statistics2 and the respective year’s “China Statistical 
Yearbook.” And some indicators are derived through calculations 
based on the original data, an example is the ratio of fixed asset 
investment in the logistics industry to the overall investment in fixed 
assets. For the rare cases of missing data, the mean imputation was 
utilized, whereby missing values were replaced by the average 
observed value of the respective variable.

4 Components and measurement of 
regional emergency logistics response 
capacity in China

4.1 Components and measurement 
indicators

Similar to regular logistics, emergency logistics consists of several 
key components such as flow direction, carriers, flow rate, and flow 

2  www.stats.gov.cn

TABLE 1  Comparison table of classification methods.

Classification method Advantages Limitations (for ELRC research)

Disaster type classification Reflects regional risk exposure differences

1. Cannot explain capability gaps within the same risk zone;

2. Ignores the decisive role of economic foundation in disaster reduction 

resources;

3. Dynamic changes in disaster types (such as new risks from climate change), 

resulting in insufficient classification stability.

Transportation hub classification Identifies key logistics nodes

1. Ignores the support of the economic hinterland for the hub functions;

2. Difficult to quantify the emergency collaboration potential of non-hub 

areas;

3. Node importance changes dynamically with supply chain restructuring.

Economic region classification

1. Reveals structural differences in resource 

allocation;

2. Aligns with policy tools;

3. Captures comprehensive resilience mechanisms.

Needs to combine subgroup analysis (such as disaster types, hub levels) to 

refine heterogeneity.
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(71). There is a consensus among scholars who study logistics capacity 
and, specifically, ELRC, on the measurement indicators for carrier 
capacity, flow rate, and velocity in logistics systems. Building on these 
elements, this study adopts the analytical framework for evaluating 
ELRC proposed by Xi (72), selecting metrics such as emergency 
logistics flow response capacity, emergency logistics carrier carrying 
capacity, emergency logistics flow velocity response capacity, regional 
informatization response capacity, and emergency logistics flow 
efficiency response capacity to identify the constitutive components 
of ELRC.

Furthermore, failure to incorporate contextual factors into the 
metric implementation of regional ELRC risks hindering capacity 
enhancement. As a pivotal support framework and critical safeguard 
mechanism for public emergencies, emergency logistics thus 
necessitates integrating practical considerations—particularly those 
arising in real-world crisis scenarios—to optimize its operational 
efficacy. Building on this rationale, this study posits that ensuring the 
availability of public medical resources during emergencies constitutes 
a governmental obligation across administrative tiers, while managing 
and coordinating emergency logistics necessitates multi-tiered 
governmental coordination (73–76). To operationalize this 
framework, Li (31) introduced social emergency security capacity as 
a critical dimension of ELRC. Furthermore, empirical studies identify 
regional informatization response capacity as a pivotal determinant of 
adaptation rates in logistical response systems (77). Consequently, 
societal emergency safeguard capacity and regional digitalization 
capacity are integrated as core components of ELRC. The specific 
composition of the indicator system is detailed in Table 2.

4.2 Analysis of measurement results

Based on the indicator system mentioned above, this study 
employed Stata17 software and applied the entropy-weighted 
TOPSIS method to calculate the ELRC of 30 provincial 
administrative regions in China from 2012 to 2021. And the 
results are presented in Table  3. Firstly, upon comparing the 
measurement values of each province during the period 2012–
2021, a significant improvement in the ELRC is evident across all 
provinces in China. Secondly, from the provincial average values, 
it is clear that Qinghai Province exhibits the weakest ELRC, with 
an average value of only 0.0552. Conversely, Guangdong Province 
demonstrates the strongest ELRC, with a notably high average 
value of 0.4696. This indicates a significant disparity in ELRC 
among the various provinces in China. Finally, upon observing 
the numerical distribution of ELRC, it is evident that provinces 
with stronger ELRC are primarily concentrated in the Eastern 
region. However, provinces in the Western region display 
relatively weaker ELRC. This observation highlights the clear 
regional imbalance in China’s ELRC.

After measuring and analyzing the ELRC of the four major 
economic regions and the entire country, the results are presented 
in Table 4. From a national perspective, China’s regional ELRC has 
significantly improved during the observation period. The average 
across the nation increased from 0.1577 in 2012 to 0.2370 in 2021, 
representing a remarkable growth rate of 50.29%. The highest 
growth rate was observed between 2017 and 2018. It can 
be attributed to the establishment of the Emergency Management 

FIGURE 1

Distribution of four major economic regions in China.
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Department in 2018 and the subsequent release of corresponding 
plans. The plans emphasized the prioritization of the construction 
and comprehensive deployment of emergency logistics as a critical 
project, leading to a rapid enhancement of China’s ELRC. On the 
regional level, China’s Central, Eastern, Western, and Northeastern 
regions all have displayed a steady upward trend in ELRC. Among 
them, the Eastern region exhibited the strongest ELRC, followed by 
the Central and Northeastern regions, while the Western region 
displayed a relatively weaker capacity. Both the Eastern and Central 
regions surpassed the national average in ELRC. However, the 
Western and Northeastern regions exhibited comparatively lower 
capacities, falling below the national average. Moreover, from the 
degree of improvement in ELRC, the Eastern region had an average 

growth rate as high as 6.12%. The Western region experienced a 
growth rate of 4.18%, the Central region had a growth rate of 3.41%, 
and the Northeastern region had a growth rate of 1.86%. This shows 
that China’s ELRC improvement exhibits significant 
regional heterogeneity.

The main reasons for the disparity in regional ELRC in China 
can be  attributed to the following factors: firstly, China’s vast 
territory, diverse geographical conditions, and complex climate 
create significant variations in natural conditions among the 
Western, Eastern, Central, and Northeastern regions. Consequently, 
these regions face different frequencies, types, and severity levels of 
public emergencies. Rooted in the frequency of public emergencies 
in China, the Eastern region experiences the most emergencies, 

TABLE 2  The index system of regional emergency logistics response capacity.

First-level indicators Second-level indicators Third-level indicators Weight coefficient

Emergency logistics carrier carrying 

capacity

Logistics infrastructure Transport network density 3.60%

Logistics transportation equipment 

ownership

Civil vehicle ownership 3.69%

Ownership of road-operated vehicles 2.79%

Logistics carrier capacity Express business volume 15.90%

Logistics industry practitioners

Number of employments in railway, 

road, aviation, handing and other 

transportation, warehousing, and postal 

services

2.33%

Emergency logistics flow response 

capacity

Freight volume
Road freight volume 3.03%

Railway freight volume 8.29%

Freight turnover
Railway freight turnover 8.16%

Road freight turnover 5.02%

Emergency logistics flow velocity 

response capacity
Proportion of classified roads

Proportion of expressways 0.77%

Proportion of first-class roads 4.27%

Proportion of second-class roads 1.28%

Emergency logistics flow efficiency 

response capacity

Completed logistics volume per unit 

manpower

Ratio of freight volume to employed 

personnel
2.59%

Ratio of freight turnover to employed 

personnel
1.91%

Completed logistics volume per unit 

capital investment

Ratio of freight volume to logistics 

industry capital investment
3.18%

Freight turnover relative to logistics 

industry capital investment
6.80%

Regional informatization response 

capacity

Telecommunication business volume
Total postal and telecommunications 

business volume
8.20%

Network infrastructure Optical fiber line length 3.62%

Regional communication level

Number of mobile phone users 3.01%

Number of internet broadband access 

ports
3.78%

Social emergency security capacity

Rescue support foundation

Number of beds in health institutions 2.60%

Number of health technicians 2.51%

Number of disease prevention and 

control centers
1.90%

Regional policy support
Proportion of local fiscal transportation 

expenditure in total expenditure
0.78%
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TABLE 3  Calculation results of emergency logistics response capacities of provinces in China.

Province 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Mean

Beijing 0.1938 0.2029 0.2033 0.2029 0.2126 0.2186 0.2252 0.2280 0.2451 0.2525 0.2185

Hebei 0.2388 0.2533 0.2656 0.2637 0.2758 0.2981 0.3211 0.3317 0.3542 0.3722 0.2975

Tianjin 0.1425 0.1299 0.1333 0.1282 0.1301 0.1340 0.1368 0.1418 0.1433 0.1435 0.1363

Shanxi 0.1793 0.1882 0.1967 0.1922 0.1941 0.2322 0.2462 0.2518 0.2579 0.2703 0.2209

Inner Mongolia 0.1908 0.1835 0.1878 0.1791 0.1834 0.2108 0.2330 0.2216 0.2180 0.2222 0.2030

Liaoning 0.2176 0.2210 0.2249 0.2258 0.2489 0.2614 0.2815 0.2705 0.2579 0.2637 0.2473

Jilin 0.1017 0.0982 0.0985 0.0951 0.0979 0.1051 0.1101 0.1128 0.1197 0.1222 0.1061

Heilongjiang 0.1348 0.1383 0.1363 0.1321 0.1359 0.1441 0.1430 0.1481 0.1465 0.1481 0.1407

Shanghai 0.2206 0.2406 0.2663 0.2540 0.2570 0.2807 0.2916 0.3220 0.3406 0.3600 0.2833

Jiangsu 0.2158 0.2487 0.2612 0.2730 0.2840 0.3066 0.3320 0.3686 0.3960 0.4274 0.3113

Zhejiang 0.1893 0.1991 0.2145 0.2348 0.2498 0.2740 0.3011 0.3354 0.3800 0.4147 0.2793

Fujian 0.1194 0.1358 0.1403 0.1470 0.1497 0.1643 0.1806 0.1892 0.1971 0.2100 0.1633

Anhui 0.2178 0.2223 0.2271 0.1980 0.2025 0.2169 0.2354 0.2270 0.2380 0.2412 0.2226

Jiangxi 0.1269 0.1359 0.1361 0.1326 0.1362 0.1561 0.1670 0.1567 0.1655 0.1714 0.1484

Shandong 0.2811 0.2795 0.2837 0.2898 0.3110 0.3250 0.3509 0.3686 0.3958 0.4133 0.3299

Henan 0.2895 0.2725 0.2858 0.2879 0.3017 0.3174 0.3380 0.3433 0.3634 0.3741 0.3174

Hubei 0.1306 0.1482 0.1566 0.1654 0.1709 0.1803 0.1939 0.1926 0.1929 0.2027 0.1734

Hunan 0.1472 0.1497 0.1576 0.1591 0.1650 0.1783 0.1901 0.1879 0.2010 0.2091 0.1745

Guangxi 0.1346 0.1397 0.1438 0.1445 0.1490 0.1609 0.1741 0.1764 0.1932 0.2022 0.1618

Guangdong 0.2887 0.3699 0.3875 0.4058 0.4310 0.4755 0.5357 0.5531 0.5954 0.6532 0.4696

Hainan 0.0683 0.0444 0.0538 0.0531 0.0516 0.0508 0.0536 0.0687 0.0855 0.0896 0.0619

Chongqing 0.0799 0.0897 0.0926 0.0960 0.0989 0.1067 0.1123 0.1141 0.1181 0.1241 0.1032

Sichuan 0.1555 0.1866 0.1964 0.2035 0.2119 0.2229 0.2486 0.2513 0.2672 0.2863 0.2230

Guizhou 0.0759 0.0849 0.0915 0.0944 0.0978 0.1045 0.1160 0.1168 0.1228 0.1305 0.1035

Yunnan 0.0993 0.1223 0.1234 0.1270 0.1305 0.1402 0.1476 0.1530 0.1612 0.1716 0.1376

Shaanxi 0.1413 0.1531 0.1656 0.1621 0.1700 0.1801 0.1901 0.1934 0.2056 0.2156 0.1777

Gansu 0.0892 0.0931 0.0931 0.0927 0.0944 0.1014 0.1120 0.1113 0.1127 0.1161 0.1016

Qinghai 0.0490 0.0482 0.0513 0.0548 0.0533 0.0520 0.0587 0.0591 0.0619 0.0638 0.0552

Ningxia 0.0981 0.0836 0.0794 0.0791 0.0798 0.0808 0.0833 0.0925 0.0991 0.0995 0.0875

Xinjiang 0.1152 0.1192 0.1199 0.1174 0.1186 0.1228 0.1408 0.1379 0.1359 0.1389 0.1267

TABLE 4  Calculation results of emergency logistics response capacities for different regions in China.

Year Eastern region Central region Western region Northeastern region Countrywide

2012 0.1958 0.1819 0.1117 0.1514 0.1577

2013 0.2104 0.1861 0.1185 0.1525 0.1661

2014 0.2209 0.1933 0.1222 0.1532 0.1725

2015 0.2252 0.1892 0.1228 0.1510 0.1730

2016 0.2353 0.1951 0.1262 0.1609 0.1798

2017 0.2528 0.2135 0.1348 0.1702 0.1934

2018 0.2729 0.2284 0.1470 0.1782 0.2083

2019 0.2907 0.2266 0.1479 0.1771 0.2142

2020 0.3133 0.2364 0.1542 0.1747 0.2257

2021 0.3336 0.2448 0.1610 0.1780 0.2370

Mean 0.2551 0.2095 0.1346 0.1647 0.1928
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followed by the Central and Western regions, while the 
Northeastern region faces the least incidents. Due to such 
differences in public emergency frequency, the accumulated 
emergency management experience in dealing with the incidents 
varies significantly across regions. Consequently, the effectiveness 
of emergency logistics contingency plans formulated by different 
regions also differs, leading to disparities in their respective 
ELRC. Furthermore, the lack of an established emergency 
information data-sharing platform and an incomplete sharing 
system among relevant departments contribute to n inadequate 
system for allocating emergency supplies across regions. Thus, the 
Emergency Management Department, the National Food and 
Strategic Reserves Administration, and other relevant departments 
are temporarily unable to leverage their respective strengths fully. 
And then, the limitation hinders the collaborative progress of 
different regional ELRC. Additionally, there are regional disparities 
in logistics infrastructure across China. The varying accessibility of 
emergency logistics transportation routes in different areas leads to 
differences in their ELRC. Lastly, differences in the scale and quality 
of disease control centers, the scale of medical resources, and the 
level of local government investment in emergency logistics 
collectively result in variations in social emergency security 
capacity among different regions. As a result, disparities in China’s 
regional ELRC emerge.

Additionally, further examination of the indicator weights can 
reveal that despite leading in overall ELRC, certain provinces (e.g., 
Hainan) in Eastern region exhibit underperformance in “Social 
Emergency Security Capacity,” primarily due to limited healthcare 
resources and fiscal expenditure allocation. The Western region 
showed low scores in “Transport Network Density” and “Optical 
Fiber Line Length” reflect infrastructure gaps, exacerbated by 
geographic barriers and sparse population distribution. Besides, it 
is a fact that moderate “Logistics Carrier Capacity” masks 
disparities in “Regional Informatization,” where Central region 
(e.g., Henan) lag in digital connectivity compared to 
coastal counterparts.

5 Analysis of regional heterogeneity in 
China’s emergency logistics response 
capacity

In this research, the Dagum Gini coefficient and its subgroup 
decomposition method were utilized to further analyze the overall 
heterogeneity of China’s ELRC.

5.1 Analysis of overall heterogeneity

The overall heterogeneity can be  divided into inter-regional 
heterogeneity, intra-regional heterogeneity, and hypervariance density. 
The specific calculation results are presented in Table 5.

Over the observation period, China’s ELRC Gini coefficient grew 
from 0.2347 in 2012 to 0.2875 in 2021. It indicates a growing trend in the 
overall heterogeneity of China’s ELRC. From the decomposition terms, 
both intra-regional heterogeneity and inter-regional heterogeneity 
demonstrated an increasing trend over the years. However, hypervariance 
density initially increased and then decreased. Hypervariance density 
and Intra-regional heterogeneity exhibited smaller values, whereas inter-
regional heterogeneity was markedly greater. This phenomenon may 
be attributed to the distinct differences in economic development and 
logistics infrastructure across various regions in China. Despite the 
issuance of emergency plans and relevant policies for emergency logistics 
in each region, the inter-regional heterogeneity in ELRC continuously 
increases due to the above differences. And it contributes to further 
amplifying the overall heterogeneity.

5.2 Analysis of intra-regional heterogeneity

Calculating the intra-regional heterogeneity of ELRC in each 
economic region of China, the results are shown in Table  6. It is 
evident that from 2012 to 2021, intra-regional heterogeneity within 
various regions of China exhibited continuous fluctuations. 
Additionally, in certain years, intra-regional heterogeneity also 
displayed a cross phenomenon. Specifically, the Eastern region showed 
the highest level of intra-regional heterogeneity, closely followed by 
the Western and Northeastern regions. And the Central region 
exhibited the lowest level of intra-regional heterogeneity. Furthermore, 
both the Eastern and Western regions demonstrated overall stable 
intra-regional heterogeneity with a similar upward fluctuation trend, 
indicating a continuous increasing intra-regional heterogeneity in 
these regions. The intra-regional heterogeneity within the Central 
region remained consistently below 0.2, indicating a fluctuating 
downward trend. Over the period from 2012 to 2021, it declined 
approximately 0.0273. Conversely, the intra-regional heterogeneity 
within the Northeastern region exhibited three distinct phases. In the 
first phase, spanning from 2012 to 2015, there were continuous 
increases in intra-regional heterogeneity, though none surpassed 0.2. 
During the second phase, from 2016 to 2018, there were fluctuating 
increases in intra-regional heterogeneity, all exceeding 0.2. However, 
the third phase, covering 2019 to 2021, witnessed a trend of 

TABLE 5  Overall Gini coefficient and decomposition terms of China’s emergency logistics response capacities from 2012 to 2021.

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Intra-regional 

heterogeneity
0.0542 0.0588 0.0593 0.0596 0.0615 0.0629 0.0649 0.0644 0.0650 0.0671

Overall Gini 

coefficient
0.2347 0.2473 0.2510 0.2540 0.2618 0.2656 0.2696 0.2746 0.2798 0.2875

Inter-regional 

heterogeneity
0.1262 0.1304 0.1352 0.1391 0.1419 0.1433 0.1422 0.1556 0.1649 0.1701

Hypervariance 

density
0.0543 0.0581 0.0565 0.0553 0.0584 0.0594 0.0625 0.0545 0.0499 0.0503
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diminishing intra-regional heterogeneity, with all values decreasing 
below 0.2. As a result, compared to other regions, the ELRC in the 
Northeastern region tends to be more prone to instability.

The main reason for the changes in these three phases may be that 
the Northeastern region, comprising the provinces of Liaoning, 
Heilongjiang and Jilin, serves as a significant industrial base in China. 
Between 2012 and 2015, China’s market economy’s rapid global 
development and continuous reforms might have instigated the 
relocation or shutdown of numerous traditional industrial enterprises, 
especially in Jilin and Heilongjiang. However, Liaoning province, 
benefiting from its advantageous coastal location, likely attracted 
greater foreign investment and the establishment of modern industries. 
As a derivative of the industrial sector, the logistics sector experienced 
an expansion in discrepancies as the industrial differences widened. 
Meanwhile, compared to the coastal logistics of Liaoning, Jilin and 
Heilongjiang rely more on their relatively underdeveloped railway 
network. As a result, the ELRC in Liaoning exhibited substantial 
variation compared to the other two provinces, leading to a persistent 
rise in intra-regional heterogeneity within the Northeastern region. In 
2016–2018, China further propelled its supply-side structural reforms. 
High-energy-consuming and pollutant-intensive traditional industries 
faced additional constraints, causing the logistics demand in Jilin and 
Heilongjiang to contract further. In contrast, modern service sectors 
and high-tech industries received consistent encouragement and 
support, with logistics demands in Liaoning experiencing sustained 
growth. Such shifts might have intensified the disparity between 
Liaoning and the other two provinces, thereby elevating intra-regional 
heterogeneity. From 2019 to 2021, the nation actively promoted 
industrial upgrades and transformations to revitalize the Northeastern 
region. This signifies that all three Northeastern provinces received 
new investments and industry inflows, leading to increased logistics 
demands. Consequently, the ELRC across the provinces improved, 
indicating a trend toward reduced regional discrepancies.

5.3 Analysis of inter-regional heterogeneity

The inter-regional heterogeneity of China’s ELRC was calculated. 
And the results are presented in Table  7. During the observation 
period, the highest level of heterogeneity existed between the Western 
and Eastern regions. However, the lowest level existed between the 
Northeastern and Central regions. The heterogeneity between other 
regions appeared between these two extremes, exhibiting a crossover 
phenomenon. Specifically, from 2012 to 2021, the heterogeneity 
between the Western and Eastern regions exceeded 0.3, indicating 
significant disparities between these regions. In opposition, the 
heterogeneity between the Central and Northeastern regions fluctuated 
around 0.2, reflecting relatively more minor differences. Likewise, the 
heterogeneity between the Western and Central regions and between 
the Northeastern and Western regions showed comparable levels, 
hovering around 0.25 and 0.22, respectively. Notably, the heterogeneity 
between the Eastern and other regions exhibited an upward trend over 
time. This may be directly attributed to the Eastern region’s developed 
economic conditions and advanced logistics infrastructure. However, 
it also highlights the evident unevenness in the ELRC across China’s 
Northeastern, Western, Central, and Eastern regions.

5.4 Analysis of the sources of regional 
heterogeneity

The impact levels of the Dagum Gini coefficient’s 
decomposition terms were calculated. Figure 2 displays the results, 
with the average contribution rate of inter-regional heterogeneity 
being the highest, at 55.08%. The average contribution levels of 
intra-regional heterogeneity is 23.52%. In comparison, the mean 
contribution rate of hypervariance density is the lowest, at only 
21.40%. This shows that the overall heterogeneity in ELRC mainly 

TABLE 6  Intra-regional heterogeneity of China’s ELRC from 2012 to 2021.

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Eastern region 0.1896 0.2258 0.2227 0.2281 0.2359 0.2420 0.2526 0.2468 0.2480 0.2571

Central region 0.1690 0.1408 0.1436 0.1351 0.1372 0.1307 0.1295 0.1421 0.1435 0.1417

Western region 0.1952 0.1988 0.2047 0.1996 0.2055 0.2154 0.2180 0.2105 0.2112 0.2155

Northeastern 

region
0.1702 0.1789 0.1833 0.1923 0.2085 0.2041 0.2137 0.1978 0.1758 0.1766

TABLE 7  Inter-regional heterogeneity of China’s emergency logistics response capacity from 2012 to 2021.

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Eastern-Central 0.1934 0.2084 0.2096 0.2206 0.2302 0.2257 0.2316 0.2461 0.2550 0.2660

Eastern-Western 0.3152 0.3389 0.3431 0.3491 0.3588 0.3650 0.3649 0.3789 0.3883 0.3976

Eastern-

Northeastern
0.2225 0.2609 0.2717 0.2853 0.2867 0.2954 0.3106 0.3260 0.3467 0.3634

Central-Western 0.2677 0.2489 0.2546 0.2415 0.2448 0.2528 0.2484 0.2448 0.2464 0.2450

Central-

Northeastern
0.1911 0.1861 0.1967 0.2043 0.2133 0.2123 0.2260 0.2150 0.2135 0.2185

Western-

Northeastern
0.2226 0.2203 0.2212 0.2192 0.2367 0.2366 0.2381 0.2235 0.2077 0.2100
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stems from inter-regional heterogeneity. However, intra-regional 
heterogeneity and hypervariance density have similar and relatively 
lower contribution rates, exerting little influence on the overall 
heterogeneity. The specific reasons may lie in the differences in 
regional resource endowments and resource allocation. Developed 
Eastern region enjoys distinct locational advantages and possesses 
higher levels of economic development and infrastructure. By 
contrast, other regions lag in various production factors. 
Consequently, capital investment is more inclined to flow into the 
Eastern region, significantly boosting its ELRC. Regarding the 
trends, the contribution rate of hypervariance density fluctuated 
up and down from 2012 to 2018 but declined from 2019 to 2021. 
In contrast, both intra-regional and inter-regional heterogeneity 
contribution rates showed an increasing trend annually.

6 Spatiotemporal evolution 
characteristics of China’s regional 
emergency logistics response capacity

6.1 Dynamic evolution characteristics in 
the time dimension

This study utilized kernel density estimation to depict the time-
based changes in China’s regional ELRC.

6.1.1 Dynamic evolution characteristics at the 
national level

The dynamic evolution characteristics of ELRC under the time 
dimension at the national level are presented in Figure  3. From 
observing the distribution positions, the overall centre of the ELRC 
distribution curve gradually shifted to the right during the observation 
period, indicating effective improvement in China’s ELRC. Regarding 
the distribution shape, there was only one peak during the observation 
period. And the values were mainly concentrated between 0 and 0.2. 
This seems that China’s ELRC remained relatively stable during the 
observation period without significant polarization. Additionally, the 
main peak’s height gradually decreased, and its width became wider. 

This implies that the measured values of ELRC showed a trend of 
gradual dispersion during the observation period. In other words, the 
disparities between different regions’ ELRC have been gradually 
widening. The stretching of the curve shows that, as the years 
progressed, the right-tail phenomenon of the kernel density curve 
decreased. Especially in 2020 and 2021, the kernel density curve 
showed an upward trend and data aggregation at certain high-level 
positions. This could be  attributed to the widespread outbreak of 
COVID-19 and the frequent occurrence of severe autumn floods in 
the middle and lower reaches of the Yellow River, hail disasters in the 
Eastern region, and snow disasters in the northern part of China. The 
capability of governments at all levels to respond to and dispatch 
resources during emergencies has been continually enhanced, 
subsequently elevating the regional ELRC.

6.1.2 Dynamic evolution characteristics at the 
economic region level

Through the kernel density curve analysis of the ELRC in four 
major economic regions of China, the results are plotted in Figure 4. 
The kernel density curves of every region displayed a shift to the right 
throughout the observation period. This indicates significant 
improvements in the ELRC of the Eastern, Northeastern, Western, 
and Central regions. Specifically, the highest ELRC show up in Eastern 
region, with the peak values of the curve clustering around 0.3. The 
Central and Northeastern regions followed, with peak values gathering 
around 0.2 and 0.15, respectively. Lastly, the Western region had the 
lowest ELRC, with the peak of the kernel density curve ranging 
between 0.1 and 0.15. Furthermore, both the Western and Eastern 
regions’ distribution curves showed a gradual decrease in the heights 
of the main peaks, and their widths became wider. This indicates that 
the internal differences in ELRC within the Eastern and Western 
regions have been expanding, which corresponds to the conclusions 
taken from the Dagum Gini coefficient. Moreover, from the 
perspective of curve ductility, the right-tail phenomenon of the kernel 
density curves for the Western and Eastern regions showed a 
decreasing trend with reduced convergence. This indicates a 
significant growth trend in these two regions’ ELRC, which is 
consistent with the analysis presented earlier.

FIGURE 2

Sources of disparity in China’s emergency logistics response capacity from 2012 to 2021.
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6.2 Evolution characteristics in the spatial 
dimension

In order to better reveal the evolving trends and particular 
transfer characteristics of China’s ELRC, this paper used the Markov 
transition probability matrix to analysis. Considering the distinctive 
features of the research area, the observed ELRC during the sample 
period was classified into four types using the standard quartile 
method: poor-level type (I), moderate-level type (II), good-level type 
(III), and excellent-level type (IV). MATLAB R2021a software was 
utilized to calculate both the conventional and spatial Markov chain 
transition probability matrices. The results are presented in Tables 8, 9.

6.2.1 Traditional Markov chain analysis
According to the traditional Markov chain transition 

probability matrix exhibited in Table 8, from 2012 to 2021, the 
retention probabilities for the four types of China’s regional ELRC 
(i.e., poor-level region, moderate-level region, good-level region, 
and excellent-level region) were 92.9, 91.2, 88.2, and 100%, 
respectively. These results indicate that China’s regional ELRC 
maintained stability in its original state during the observation 
period. Particularly, the excellent-level region had a retention 
probability of 100%, demonstrating strong stability in its ELRC, 
consistently maintaining an excellent-level performance. Moreover, 
the ranking of retention probabilities from highest to lowest is as 
follows: excellent-level region, poor-level region, moderate-level 
region, and good-level region. This suggests that China’s overall 
ELRC is transitioning from a poor-level to a better level, with a 
trend of continuous improvement. However, the regions with 
poorer capacity are more likely to remain in their original states, 
and regions with better capacity tend to maintain their existing 

ELRC levels. This exhibits specific characteristics of the Matthew 
effect, likely due to the imperfect logistics infrastructure and 
emergency event management systems in regions with lower 
capacity. From the perspective of transition probabilities, there is 
a 7.1% probability of the ELRC in the poor-level region 
transitioning to the moderate-level. The moderate-level region has 
an 8.8% probability of transitioning to the good-level, while the 
good-level region has an 11.8% probability of transitioning to the 
excellent-level. It can be observed that the improvement of ELRC 
occurs only between adjacent levels. And there is no cross-level 
transition. This appears that the enhancement of China’s ELRC is 
continuous, and achieving a significant leap in a short period 
is challenging.

6.2.2 Spatial Markov chain analysis
Based on the traditional Markov chain, this study introduced a 

spatial weight matrix to incorporate the “spatial lag” factor, thus 
establishing a spatial Markov chain. By analyzing the spatial Markov 
chain transition probability matrix presented in Table  9, several 
inferences can be drawn.

Firstly, the transfer probability matrices differed across various 
spatial lag types. This indicates that, in the context of heterogeneous 
ELRC among neighbouring provinces, the probability of ELRC 
undergoing transfer varies accordingly within this province. It further 
suggests that spatial factors exert a certain influence on 
ELRC. Furthermore, the transfer probability matrices exhibit an 
inclination trend in the upper-right triangular region, revealing a 
rising pattern of China’s ELRC in the spatial dimension.

Secondly, when the ELRC of the local region is at a moderate-level 
and neighbouring regions is at a poor-level, the probability of 
transitioning from the moderate-level to the good-level is 20%. It is 

FIGURE 3

Dynamic evolution of China’s emergency logistics response capacity from 2012 to 2021.
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significantly higher than the traditional Markov chain’s 8.8%. This 
suggests that, in the spatial dimension, when adjacent regions have 
poorer levels, the local region is more inclined to undergo a better-
level leap. This might be attributed to the local region’s ability to attract 
specific emergency logistics resources from neighbouring lower-level 
areas, thereby elevating its capacity.

Thirdly, when the local regional ELRC reaches an excellent-level, 
it remains at the excellent-level, irrespective of the level of the adjacent 
areas. This demonstrates that provinces with excellent ELRC exhibit 

strong stability. And they are not easily affected by the spatial 
correlation effects from neighbouring provinces with relatively 
lower ELRC.

Fourthly, when the ELRC in an adjacent region remains at a poor-
level, regions at poor-level, moderate-level, and good-level will exert 
a more evident absorptive effect on it. For instance, when the ELRC 
in neighbouring regions is at a poor-level, and the local region also 
operates at a poor-level, the rate of the local region transitioning from 
a poor-level to a moderate-level is 14.3%. It significantly exceeds the 

FIGURE 4 (Continued)
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conventional Markov chain’s probability of 7.1%. This indicates a 
substantial increase in the likelihood of transitioning from a poor-
level region to a moderate-level region. This may be because regions 
with relatively better or comparable ELRC tend to attract resources 
from regions operating at a poor-level. Thereby, it exerts positive 
spatial effects on their own ELRC development. Similarly, when the 
ELRC in adjacent regions reaches a good-level, the rate of the local 

region transitioning from a poor-level to a moderate-level is 13.3%. It 
also far surpasses the conventional Markov chain’s probability of 7.1%. 
This can be attributed to the implementation of supportive emergency 
logistics policies by local governments and the directed allocation of 
resources toward regions with relatively poorer ELRC. These measures 
act as positive driving forces for enhancing the ELRC of areas 
operating at a poor-level.

FIGURE 4

(A) Dynamic evolution of emergency logistics response capacity in China’s four major economic regions from 2012 to 2021-Eastern region. 
(B) Dynamic evolution of emergency logistics response capacity in China’s four major economic regions from 2012 to 2021-Central region. 
(C) Dynamic evolution of emergency logistics response capacity in China’s four major economic regions from 2012 to 2021-Western region. 
(D) Dynamic evolution of emergency logistics response capacity in China’s four major economic regions from 2012 to 2021-Northeastern region.
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Fifthly, when the ELRC in adjacent regions reaches an excellent-
level, the percentage of the local region transitioning from a poor-
level to a moderate-level is 0%. It is significantly lower than the 
traditional Markov chain’s probability of 7.1%. This appears that the 
excellent-level ELRC in neighbouring regions negatively impacts 
regions operating at a poor-level, making it challenging for them to 
achieve rapid improvements in their ELRC. Meanwhile, the 
percentage of the local region transitioning from a moderate-level 
to a good-level is 18.2%, higher than the traditional Markov chain’s 
probability of 8.8%. Similarly, the percentage of the local region 
advancing from a good-level to an excellent-level is 18.2%, also 
surpassing the traditional Markov chain’s probability of 11.8%. This 
reveals that, under the circumstance of adjacent regions with an 
excellent-level ELRC, regions operating at a moderate-level and a 
good-level are positively influenced, making it easier for them to 
undergo transformative upgrades. This could be attributed to the 
weaker foundations in regions with poor-level ELRC, such as 
information technology and emergency logistics facilities. 
Consequently, the radiative driving effect from neighbouring regions 
with excellent-level capacity is restricted, leading to an increase in 
spatial disparities in ELRC. In contrast, areas with a certain level of 
foundation at moderate and good levels are more susceptible to the 
radiative driving effect from neighbouring regions with excellent-
level capacity. This makes it easier for their ELRC to achieve 
transformative upgrades.

Lastly, even when neighbouring excellent-level regions, the rate of 
transitioning from a poor-level region to a good-level region remains 
at 0. And the rate of a transition from a moderate-level region to an 
excellent-level region also remains at 0. This seems that transitions 
only occur between adjacent levels of ELRC. A likely explanation is 
that building emergency logistics infrastructure and enhancing 
management systems are gradual processes, making significant 
improvements difficult in a short time. Therefore, such a gradual 
progression hinders the rapid transformative upgrades of 
regional ELRC.

7 Discussion

This study systematically evaluates the heterogeneity and 
spatiotemporal evolution of regional ELRC in China through a 
multidimensional index system and advanced analytical methods. The 
findings yield critical theoretical and practical implications, while also 
addressing gaps in existing literature on emergency logistics 
governance. Below, we synthesize the core insights, contextualize them 
within broader academic debates, and outline pathways for future 
research. The central findings can be distilled into three core insights: 
persistent expansion of regional heterogeneity, gradual progression 
coupled with stability in spatiotemporal evolution, and dual effects 
inherent to spatial interdependence.

TABLE 8  Traditional Markov chain transition probability matrix of China’s emergency logistics response capacities from 2012 to 2021.

Type I II III IV Observation value

I 0.929 0.071 0.000 0.000 70

II 0.000 0.912 0.088 0.000 68

III 0.000 0.000 0.882 0.118 68

IV 0.000 0.000 0.000 1.000 64

TABLE 9  Spatial Markov chain transition probability matrix of China’s emergency logistics response capacities from 2012 to 2021.

Domain type Type I II III IV Observation value

I

I 0.857 0.143 0.000 0.000 7

II 0.000 0.800 0.200 0.000 5

III 0.000 0.000 1.000 0.000 5

IV 0.000 0.000 0.000 1.000 2

II

I 0.949 0.051 0.000 0.000 39

II 0.000 0.962 0.038 0.000 26

III 0.000 0.000 0.875 0.125 8

IV 0.000 0.000 0.000 1.000 9

III

I 0.867 0.133 0.000 0.000 15

II 0.000 0.923 0.077 0.000 26

III 0.000 0.000 0.886 0.114 44

IV 0.000 0.000 0.000 1.000 24

IV

I 1.000 0.000 0.000 0.000 9

II 0.000 0.818 0.182 0.000 11

III 0.000 0.000 0.818 0.182 11

IV 0.000 0.000 0.000 1.000 29
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7.1 Key contributions to theory and 
practice

First, our analysis reveals a persistent and widening spatial disparity 
in ELRC across China, characterized by a pronounced “East–West 
gradient.” The Dagum Gini coefficient decomposition demonstrates that 
inter-regional heterogeneity (contributing 55.08% to overall inequality) 
dominates this pattern, particularly between the economically advanced 
Eastern region and underdeveloped Western provinces. This aligns with 
the “core-periphery” theory in regional economics (78), where resource 
concentration in core areas exacerbates spatial imbalances.

Second, unlike prior studies focusing on static evaluations (27, 
29), our spatiotemporal approach uncovers the self-reinforcing nature 
of regional disparities: high-capacity regions (e.g., Guangdong) exhibit 
strong stability (100% retention probability), while low-capacity 
regions (e.g., Qinghai) face structural barriers to improvement, 
reflecting a “Matthew effect” in emergency resource allocation.

Third, the study identifies dual spatial spillover effects shaping 
ELRC evolution. Spatial Markov chain analysis highlights that 
proximity to high-capacity regions can both facilitate and hinder local 
capacity development. For instance, moderate-capacity regions 
adjacent to high-capacity neighbors show an 18.2% probability of 
upgrading (vs. 8.8% in isolation), suggesting technology diffusion and 
policy emulation. Conversely, low-capacity regions bordering high-
capacity areas experience suppressed upgrading probabilities (0% for 
low to moderate transitions), likely due to resource siphon effects. This 
duality echoes debates on “trickle-down” versus “polarization” effects 
in regional development (79), offering empirical evidence specific to 
emergency logistics systems.

7.2 Heterogeneity and influencing factors

The heterogeneity in China’s regional ELRC is not only a reflection 
of spatial disparities but also a product of multifaceted influencing 
factors. Our analysis reveals that resource endowments, governance 
capacity, and spatial spillovers collectively shape the uneven 
distribution of ELRC across regions.

First, this study conjects that the resource endowment gap 
between the Eastern and Western regions is a primary driver of 
heterogeneity. The Eastern region benefits from advanced logistics 
infrastructure (e.g., high-grade highways, dense railway networks) 
and robust digital connectivity (e.g., fiber-optic coverage), which are 
critical for rapid disaster response. In contrast, the Western region’s 
rugged terrain and underdeveloped transportation networks hinder 
the efficient allocation of emergency resources. This aligns with the 
findings of Chen et al. (13), who highlighted the role of geographical 
constraints in exacerbating regional imbalances in 
logistics development.

Second, governance capacity plays a pivotal role in shaping 
ELRC. Provinces with higher fiscal expenditure on transportation and 
healthcare (e.g., Guangdong, Jiangsu) demonstrate stronger 
emergency preparedness and response capabilities. This is consistent 
with the literature on disaster management (75), which emphasizes 
the importance of institutional frameworks in enhancing resilience. 
However, our study extends this perspective by revealing that policy 
implementation gaps—such as uneven enforcement of emergency 
plans and limited interdepartmental coordination—further amplify 
regional disparities.

Finally, socioeconomic factors such as population density, 
industrial structure, and climate risks also contribute to heterogeneity. 
For example, the Eastern region’s high population density and 
exposure to frequent disasters (e.g., typhoons, floods) have driven 
investments in resilient infrastructure and emergency management 
systems. In contrast, the Northeastern region’s reliance on traditional 
industries and aging population has limited its capacity to adapt to 
emerging challenges. These findings echo the work of Zhou et al. (2), 
who identified socioeconomic vulnerabilities as key determinants of 
disaster resilience.

7.3 Limitations and future research 
directions

While providing novel insights, this study has limitations that 
warrant further exploration:

	 1.	 Due to time difficulties and constraints in data acquisition, the 
2012–2021 dataset predates recent mega-disasters (e.g., 2023 
Henan floods), limiting insights into post-pandemic resilience 
dynamics. Future work should incorporate real-time disaster 
response data to validate the index system’s predictive validity.

	 2.	 It has not delved into the exploration of influencing factors on 
ELRC, especially the role of factors such as resource 
endowments, geographical landscapes, logistics infrastructure, 
and climate. Therefore, future research can consider 
incorporating the study and analysis of the influencing 
mechanisms on regional ELRC to provide theoretical support 
and decision-making references for enhancing ELRC.

	 3.	 China’s centralized governance model may limit the 
transferability of findings to decentralized systems. 
Comparative studies across political regimes (e.g., U.S. federal 
vs. EU supranational models) could identify context-specific 
optimization strategies.

Future research should prioritize two avenues:

	 1.	 Integrating Geographic Information Systems (GIS) and 
machine learning algorithms to analyze the impacts of dynamic 
factors—such as climate change and population mobility—on 
ELRC. For example, simulate resource flows under stochastic 
disaster scenarios to stress-test regional coordination protocols. 
Or, embed climate risk projections into ELRC assessments to 
address escalating environmental uncertainties.

	 2.	 Explore synergies between emergency logistics networks and 
sustainable development goals (SDGs), particularly SDG 9 
(infrastructure) and SDG 11 (resilient cities).

8 Conclusions and implications

8.1 Research conclusions

The research constructed a comprehensive index system for 
regional ELRC and applied the entropy-weighted TOPSIS method to 
measure the ELRC of 30 provincial-level administrative regions in 
China from 2012 to 2021. Subsequently, the Dagum Gini coefficient, 
its subgroup decomposition, Markov chain and kernel density 
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estimation, analysis were used to conduct heterogeneity and 
spatiotemporal evolution analyzes. The conclusions achieved are 
as follows.

From 2012 to 2021, the ELRC of various provinces in China have 
shown significant improvement. Particularly, provinces with better 
ELRC are mainly concentrated in the Eastern regions. In contrast, 
provinces in the western regions exhibit relatively poorer levels 
of ELRC.

The overall Gini coefficient for China’s ELRC presents a 
continuous expansion trend, and the heterogeneity of ELRC is mainly 
derived from inter-regional heterogeneity. Moreover, the ELRC in the 
Central, Eastern, Western, and Northeastern regions have been 
steadily improved. No polarization phenomenon was observed, and 
the performance appeared relatively stable. However, the regional 
disparities have gradually expanded over time. The analysis using the 
Markov chain reveals that China’s ELRC is undergoing a gradual 
transition from a poorer level to a better level, showing a continuous 
upward trend. However, at the same time, it exhibits specific 
characteristics of the Matthew effect.

8.2 Policy implications

Drawing from the research conclusions above, this paper offers 
the following policy recommendations:

The first is targeted infrastructure investment. For the Western 
region, prioritize high-grade highway construction (e.g., Sichuan-
Qinghai corridors) and subsidize rural optical fiber deployment to 
bridge digital divides. Modernize railway freight networks in 
Northeastern region and incentivize public-private partnerships to 
upgrade aging transport fleets. Fully harness market resources, refine 
the mainline transportation and regional distribution systems of 
emergency logistics and augment the ELRC to various 
unexpected incidents.

The second is inter-regional collaborative mechanism development. 
Establish East–West Resource Redistribution Platforms, such as 
leveraging Guangdong’s advanced ELRC to mentor western provinces 
(e.g., Qinghai) by sharing emergency reserves and conducting joint 
training programs. Besides, construct a unified data-sharing platform 
for the visualization, dissemination, and coordinated command of 
emergency logistics information. Especially in the Central region, 
develop cross-provincial data hubs (e.g., Wuhan-Xi’an) to enhance real-
time information sharing during multi-hazard events.

The third is dynamic performance monitoring framework. 
Implement a tiered evaluation system to track ELRC advancements. 
Provinces achieving tier transitions (e.g., low-to-medium) should 
receive fiscal incentives, while underperforming regions must 
be mandated to develop corrective action plans. Concurrently, instate 
inter-regional technological exchange and collaboration platforms, 
promoting the sharing and dissemination of best practices. Encourage 
enterprises and institutions in the Eastern region to foster 

technological collaboration and exchanges with their Western 
counterparts. Furthermore, the government should incentivize 
logistics enterprises to invest and expand in the Western region 
through tax incentives or fiscal subsidies.
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