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Background: Epidemiological evidence on the effects of air pollution on 
infectious diseases remains inconsistent, highlighting the need for further 
research and analysis. We  aimed to investigate the relationship between 
exposure to fine particulate matter (PM2.5) and ozone (O3) and the risk of national 
notifiable infectious diseases in Shanghai, a megacity in China.

Methods: A double-pollutant model was used for each air pollutant, utilizing 
time-series analysis to separately apply single and distributed lag models (DLMs) 
to assess the exposure-lag-response relationship for 43 national notifiable 
infectious diseases (NNIDs) from 2013 to 2019. The model was adjusted for 
seasonality, long-term trends, mean temperature, relative humidity, and other air 
pollutants. Analysis was further conducted for seven NNID categories (vaccine-
preventable; bacterial; gastrointestinal and enterovirus; sexually transmitted and 
bloodborne; vector-borne; zoonotic; and quarantinable diseases) as well as 
specific diseases.

Results: The study included 661,267 NNID cases and found that PM2.5 and O3 
exposures were associated with increased NNID risks, although not within the 
same categories. A 10 μg/m3 increase in O3 was associated with a higher risk of 
total NNIDs (relative risk [RR] at lag 1 month: 1.29, 95% confidence interval [CI]: 
1.02–1.65), vaccine-preventable diseases (RR at lag 1 month: 1.75, 95% CI: 1.02–
3.01), and sexually transmitted and bloodborne diseases (RR at lag 2 month: 1.12, 
95% CI: 1.00–1.26). However, the association with PM2.5 remained inconclusive.

Conclusion: These findings suggest a potential link between ambient air 
pollution exposure and the risk of infectious diseases, highlighting the urgent 
need for a comprehensive understanding of the relationship between air 
pollution and notifiable infectious diseases, as well as an in-depth evaluation of 
disparities across the disease spectrum.
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Introduction

China has substantially reduced the disease burden through 
effective infectious disease control measures (1). However, this has 
also led to an underestimation of infectious diseases as major causes 
of morbidity and mortality (1, 2). In recent years, outbreaks of 
emerging infectious diseases, such as COVID-19 and monkeypox, 
have posed new challenges to public health and driven greater interest 
in understanding the risk factors associated with these infectious 
diseases (3, 4). While recent outbreaks have drawn heightened 
attention to the role of weather and air pollutants in infectious diseases 
(5–8), assessments of the impact on a wide range of infectious diseases 
remain limited (3).

Ambient air pollutants, including fine particulate matter (PM2.5) 
and ozone (O3), may contribute to increased concentrations of 
bacteria, viruses, or other pathogens in the atmosphere (9). 
Additionally, they could act as immunosuppressive agents, weakening 
the human body’s typical immune defenses (3). Existing 
epidemiological evidence linking air pollution to infectious diseases 
remains limited and inconclusive, making it challenging to draw 
reliable conclusions from current research. For example, most studies 
have focused on conjunctivitis, tuberculosis (TB), and respiratory 
infectious diseases (especially COVID-19), yet their findings have 
been inconsistent (3, 10, 11), potentially due to variations in study 
areas, study periods and modeling specifications. Further 
investigations into other infectious diseases, such as diarrheal diseases, 
malaria, measles, hand-foot-mouth disease, mumps, and others, are 
needed (12–15). To the best of our knowledge, no previous study has 
simultaneously examined the impact of ambient air pollutants on 
various infectious diseases during the same study period under a 
unified study protocol (3, 16). Therefore, the successive infectious 
disease surveillance system in China presents an opportunity to 
provide a complete picture of the association between air pollution 
and various notifiable infectious diseases, as well as a comprehensive 
evaluation of disparities across the spectrum of diseases.

This study aimed to comprehensively examine the short-term 
effects of air pollution on a wide range of notifiable infectious diseases 
and evaluate disparities in associations across specific categories in 
Shanghai between 2013 and 2019. The identification of potential 
disparities in infectious disease burdens due to air pollution would 
provide direction for the targeted implementation of prevention and 
control measures. This includes strengthening surveillance systems to 
monitor specific infectious diseases or categories that may exhibit 
elevated risks under higher pollution levels, enabling timely 
interventions and optimized allocation of medical resources. 
Additionally, enhancing public education on the health impacts of air 
pollution raises awareness and encourages the adoption of protective 
measures, thereby mitigating associated health risks.

Materials and methods

Study design and infectious disease data

The study applies a time-series analysis using secondary data 
collected in Shanghai, a megacity in China, between 2013 and 2019. 
Ethical approval was not required as the research utilized secondary 
data that did not include any personal or identifiable information.

Monthly National Notifiable Infectious Diseases (NNIDs) data 
were obtained from a surveillance system. Details of this systematic, 
long-term infectious disease surveillance system are provided in 
Supplementary material. A total of 43 NNIDs were included in this 
study, grouped into seven categories following the previous 
categorization approach (17). Specifically, (I) vaccine-preventable 
diseases (11 diseases): includes seasonal influenza, rubella, pertussis, 
mumps, measles, hepatitis A, B, and D, neonatal tetanus, poliomyelitis, 
and diphtheria. (II) Bacteria (4 diseases) Includes tuberculosis, scarlet 
fever, meningococcal meningitis, and leprosy. (III) Gastrointestinal 
and enterovirus diseases (5 diseases): Consist of diseases primarily 
affecting the gastrointestinal system, such as typhoid and paratyphoid, 
infectious diarrhea, hand, foot, and mouth disease (HFMD), 
dysentery, and acute hemorrhagic conjunctivitis. (IV) Sexually 
transmitted and bloodborne diseases (4 diseases): Include syphilis, 
gonorrhea, HIV/AIDS, and hepatitis C. (V) Vector-borne diseases (7 
diseases): Includes typhus, schistosomiasis, malaria, kala-azar, 
Japanese encephalitis, dengue, and filariasis. (VI) Zoonotic diseases (9 
diseases): Include brucellosis, hepatitis E, hydatid disease, rabies, 
anthrax, leptospirosis, H5N1, H7N9, and severe acute respiratory 
syndrome (SARS). (VII) Quarantinable diseases (3 diseases): Includes 
hemorrhagic fever, cholera, and plague.

Air pollutants and weather variables

The two air pollutants analyzed in this study are fine particulate 
matter (PM2.5) and ozone (O3), in units of μg/m3, in accordance with 
the China ambient air quality standards (GB3095-2012). Monthly 
average PM2.5 concentrations at the surface level were obtained from 
a nationwide dataset with a spatial resolution of 10 km (18, 19). This 
air pollution dataset is publicly accessible and was developed as part 
of the Tracking Air Pollution (TAP) project in China.1 It integrates 
multisource-fusion data and employs machine learning algorithms to 
improve the accuracy and reliability of the exposure data. The 
methodology for predicting PM2.5 concentrations has been described 
in previous studies (18, 20). In brief, a comprehensive dataset was first 
assembled, incorporating ground-level PM2.5 measurements from 
monitoring stations, satellite-derived aerosol optical depth (AOD), 
meteorological variables, land use features, population density, and 
elevation details, along with outputs from the Weather Research and 
Forecasting/Community Multiscale Air Quality Modeling System 
(WRF/CMAQ). This information was harmonized into a unified 
10 km grid. Subsequently, PM2.5 concentrations in the TAP products 
were predicted using a two-stage machine learning approach that 
employed a synthetic minority oversampling technique and a tree-
based gap-filling method. The cross-validation of the prediction 
model ranged from 0.80 to 0.88, suggesting a good simulation 
performance of the predictions relative to the measurements (19).

Predictions for the maximum 8-h average O3 concentrations were 
derived from the TAP dataset, utilizing a three-stage random forest-
based modeling approach (21). This model integrates a wide range of 
data sources, including ground-level observations, CMAQ 
simulations, Ozone Monitoring Instrument (OMI) satellite O3 profiles 

1 http://tapdata.org.cn/
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(PROFOZ), meteorological data from MERRA-2, MODIS-derived 
Normalized Difference Vegetation Index (NDVI), and annual night 
light data from the National Centers for Environmental Information 
(NCEI). In the first stage, two separate sets of O3 predictions were 
generated: one incorporating satellite data and the other excluding it, 
addressing gaps due to missing satellite retrievals. The non-satellite 
model ensured full spatial coverage. The second stage employed an 
elastic-net regression to combine predictions from both models, 
producing a unified set of O3 estimates. In the final stage, residuals—
calculated as the difference between observed maximum 8-h O3 
concentrations and second-stage predictions—were modeled using 
kriging interpolation to capture spatiotemporal variations. These 
residuals were then added to the second-stage estimates to produce 
the final predictions. The model’s performance, assessed using 5-fold 
cross-validation, showed an R2 value of 0.70, indicating good 
agreement with ground-level measurements.

Monthly meteorological data from 2013 and 2019, including 
average temperature (°C) and relative humidity (%), were obtained 
from the National Meteorological Data Sharing Center.2

Statistical analysis

To investigate the short-term effect of air pollutants on NNIDs, a 
time series regression (TSR) using a generalized linear model was 
applied (22). TSR is widely used in environmental epidemiology for 
assessing short-term associations, defined in this study as the 
relationship between monthly variations in air pollutant exposure and 
changes in NNID counts. Socioeconomic and demographic factors are 
assumed to remain relatively stable over neighboring months. A 
Quasi-Poisson model was selected to account for the overdispersion 
in NNIDs counts. Various time adjustment methods were explored to 
account for long-term trends and seasonal patterns in NNIDs, 
including linear trends, time interactions, Fourier terms, and different 
splines with varying degrees of freedom (df). Among these, a natural 
cubic B-spline (NCS) with 8 df per year was identified as the most 
appropriate for our analysis (Supplementary Figure S1).

The generalized linear regression model has been extensively 
applied in previous global TSR studies examining the short-term 
health effects of air pollutants (23–26). This study used two distinct 
modeling approaches: the single lag model and the Distributed Lag 
Model (DLM). These approaches were chosen to capture the 
typically linear and delayed health effects of air pollutant exposure 
(27, 28). The single lag model assumes that a unit increase in 
pollutants is associated with an outcome at a specific future time 
point, such as a 1-month lag representing the relationship between 
exposure during the previous month and outcomes in the current 
month. In contrast, the DLM accounts for cumulative exposure 
effects over multiple lag months, thereby capturing the impact of 
past exposures distributed over several months on current health 
outcomes. Specifically, the DLM incorporates a cross-basis 
function, which simultaneously models the exposure and lag 
dimensions under the assumptions of linear relationships with 
NNIDs (29–31). For non-infectious diseases, a maximum lag of 

2 http://data.cma.cn/

21 days is commonly applied, which approximates lag1  in this 
study (31). However, given the more complex causal pathways 
associated with infectious diseases and recommendations from 
previous literature highlighting the extended duration of infectious 
immune periods (22, 32), a lag period of up to 2 months 
was considered.

To control for time-varying confounders, a double-pollutant 
model was applied for each pollutant, adjusting for the influence of the 
other pollutant as well as time-varying weather variables, including 
mean temperature and relative humidity (29). The adjustment for the 
confounder was performed using an NCS with 3 df applied to the 
moving average of each covariate over the lag period, as suggested by 
previous research (25, 33, 34). Additionally, a stratified analysis was 
conducted using NNID categories and specific causes. To ensure 
sufficient statistical power, only subgroups with a sample size greater 
than 5,000 were included in the stratification analysis (35). The effect 
estimates are reported as relative risks (RRs) with 95% confidence 
intervals (CIs), representing the change in risk per 10 μg/m3 increase 
in PM2.5 or O3 at each lag month.

Sensitivity analysis

To assess the robustness of the analysis, several sensitivity analyses 
were conducted. First, the lag period was extended to 3 months to 
examine a wider range of relationship patterns and lag durations. 
Second, single-pollutant models were fitted for comparison with the 
results from double-pollutant models. All the analyses were performed 
in R software (version 4.2.1; https://www.rproject.org/) with the 
“dlnm” package. A two-sided p-value of less than 0.05 was considered 
statistically significant.

Results

Characteristics of NNIDs and air pollutants

Between January 2013 and December 2019, a total of 661,267 
incident cases of NNIDs were reported in Shanghai (Table 1). The 
majority of reported cases were gastrointestinal and enterovirus 
diseases (351,464 cases, 53%), followed by sexually transmitted and 
bloodborne diseases (137,036 cases, 20%), vaccine-preventable 
diseases (93,134 cases, 14%), and bacterial diseases (73,851, 11%). 
In contrast, fewer cases were reported for vector-borne diseases 
(447 cases), zoonotic diseases (5,300 cases), and quarantinable 
diseases (35 cases). Time-series plots revealed evident seasonal 
patterns across all NNIDs categories, along with an overall declining 
trend over time, except for vector-borne and zoonotic diseases 
(Supplementary Figure S2).

During the study period, the average monthly concentrations 
of PM2.5 and O3 were 46.8 μg/m3 and 124.1 μg/m3, respectively 
(Table 2). The corresponding monthly ambient weather variables 
were 17.4°C for mean temperature and 72.8% for relative humidity. 
Seasonal variations were evident for all weather variables 
(Supplementary Figure S3), and a notable decreasing trend in PM2.5 
levels was observed over time. Pairwise correlation analysis 
indicated moderate correlations between air pollutants and 
meteorological variables (Supplementary Figure S4).
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Short-term effects of air pollutants on 
NNIDs

The short-term effects of PM2.5 and O3 on NNIDs were assessed 
using the single lag model and DLMs, with the results summarized in 
Table 3.

In the single lag analysis, where the effects of other lag periods 
were not adjusted for, PM2.5 exposure in the current month (lag 0) was 
significantly associated with an increased risk of total NNIDs (RR: 
1.09, 95% CI: 1.00–1.19) and vaccine-preventable diseases (RR: 1.22, 
95% CI: 1.01–1.47). However, findings from the DLMs indicated that 
most associations between PM2.5 exposure and NNID categories 

across individual lags were not statistically significant. Notably, PM2.5 
exposure at all lag months, as well as cumulative PM2.5 exposure, was 
associated with a decreased risk of sexually transmitted and 
bloodborne diseases (Table 3). Consistent patterns in risk estimates 
were observed across specific NNID diseases within the category and 
over their respective lag periods (Figure 1). For example, for specific 
sexually transmitted and bloodborne diseases, a 10-μg/m3 increase in 
PM2.5 over lag 0–2 was associated with a 56% (95% CI: −76– −20) and 
59% (95% CI: −79– −22) decrease in monthly syphilis and gonorrhea 
cases, respectively (Supplementary Table S1). In addition, lower PM2.5 
exposure at lag 2 was linked to a higher risk of tuberculosis (RR: 0.77, 
95%CI: 0.60–0.99).

TABLE 1 Summary statistics of 43 notifiable infectious diseases by category and specific diseases during 2013–2019 in Shanghai.

n Meana SDa n Meana SDa

Vaccine-preventable diseases 93,134 1109.0 1538.0 Vector-borne diseases 447 5.3 4.8

SI 63,728 759.0 1550.0 Typhus - - -

Rubella 1,433 17.1 37.3 Schistosomiasis - - -

Pertussis 353 4.20 6.1 Malaria 220 2.6 1.7

Mumps 18,361 219.0 109.0 Kala-azar - - -

Measles 2,612 31.1 55.9 JE 9 0.1 0.3

Hepatitis A 1,795 21.4 9.7 Dengue 218 2.6 4.5

Hepatitis B 4,847 57.7 25.2 Filariasis - - -

Hepatitis Db 5 0.1 0.3 Zoonotic diseases 5,300 63.1 23.8

NT - - - Brucellosis 35 0.4 0.7

Poliomyelitis - - - Hepatitis E 5,225 62.2 23.8

Diphtheria - - - HD 6 0.1 0.3

Bacterial diseases 73,851 879.0 248.0 Rabies 12 0.1 0.4

TB 48,338 575.0 95.4 Anthrax - - -

SF 25,475 303.0 231.0 Leptospirosis - - -

MM 16 0.2 0.4 H5N1 - - -

Leprosy 22 0.3 0.7 H7N9c 22 0.3 1.0

Gastrointestinal and 

enterovirus diseases

351,464 4,184.0 2743.0 SARS - - -

T/P 186 2.2 1.7 Quarantinable diseases 35 0.4 1.1

ID 41,589 495.0 214.0 HF 29 0.3 1.1

HFMD 308,266 3670.0 2714.0 Cholera 6 0.1 0.3

Dysentery 1,241 14.8 12.9 Plague - - -

AHC 182 2.2 3.1 Totald 661,267 7,872.2 2,837.9

Sexually transmitted and 

bloodborne diseases

137,036 1,631.0 272.0

Syphilis 94,688 1,127.0 165.0

Gonorrhea 37,937 452.0 136.0

AIDS 3,889 46.3 18.3

Hepatitis C 522 6.2 4.5

SI, Seasonal influenza; NT, Neonatal tetanus; TB, Tuberculosis; SF, Scarlet fever; MM, Meningococcal meningitis; T/P, Typhoid and paratyphoid; ID, Infectious diarrhea; HFMD, Hand, foot, 
and mouth disease; AHC, Acute hemorrhagic conjunctivitis; AIDS, Acquired immune deficiency syndrome; JE, Japanese encephalitis; HD, Hydatid disease; SARS, Severe acute respiratory 
syndrome. HF, Hemorrhagic fever. -: no cases.
aAverage and standard deviation (SD) of monthly cases during 2013–2019.
bAvailable from 2016-1.
cAvailable from 2013-12.
dTotal numbers during 2013–2019.
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For O3, significant associations with total NNIDs were found at 
lag 1 and 2  in the DLMs, although these associations were not 
observed in the single lag models. Specifically, each 10-μg/m3 increase 
in O3 at lag 1 and 2 was associated with a 29% (95% CI: 2–65) and 18% 
(95% CI: 1–38) risk increase in monthly total NNID cases, respectively. 
For specific categories, higher O3 concentrations at lag 1 were 
significantly associated with an increased risk of vaccine-preventable 
diseases in both single lag models (RR: 1.20, 95% CI: 1.06–1.36) and 

DLMs (RR: 1.75, 95% CI: 1.02–3.01) (Table 3). Furthermore, in the 
DLM, higher O3 exposure at lag 2 was linked to an elevated risk of 
sexually transmitted and bloodborne diseases (RR: 1.12, 95% CI: 
1.00–1.26). These associations remained consistent for specific 
diseases within the category, with effect sizes generally larger in the 
DLMs compared to the single lag models, particularly for diseases 
such as seasonal influenza, mumps, scarlet fever, and gonorrhea 
(Figure 1, Supplementary Table S1).

Sensitivity analysis

The sensitivity analyses indicated that the associations remained 
generally robust, with or without adjustment for the other pollutants 
(Supplementary Table S2). When a longer lag period of up to 3 months 
was applied, the results from the DLMs exhibited inconsistencies 
across lag durations and NNIDs categories for PM2.5 exposure. For O3, 
the observed associations weakened as the lag periods increased 
(Supplementary Table S3).

Discussion

This study extensively assesses the relationship between ambient 
air pollution and a broad range of notifiable infectious diseases 
utilizing the infectious disease surveillance system. It provides a 

TABLE 2 Summary statistics for monthly levels of air pollutants and 
weather variables in Shanghai from 2013 to 2019.

PM2.5 
(μg/m3)

O3  
(μg/m3)

Temperature 
(°C)

Relative 
humidity 

(%)

Minimum 17.4 60.1 4.3 57.0

10th 25.7 74.4 6.1 65.0

25th 33.0 98.5 10.1 68.8

Median 45.1 130.6 18.2 74.0

Mean 46.8 124.1 17.4 72.8

SD 19.6 33.3 8.3 5.9

75th 56.5 152.5 24.2 77.0

90th 74.5 161.2 28.3 80.0

Maximum 118.4 180.8 32.0 83.0

th, percentile of the distribution; SD, standard deviation.

TABLE 3 Relative risks (and 95% confidence intervals) for the monthly infectious diseases per unit increase in air pollutant concentrations were 
estimated using the double-pollutant model.

Total
Vaccine-

preventable
Bacteria

Gastrointestinal 
and enterovirus

Sexually 
transmitted 

and 
bloodborne

Zoonotic

PM2.5 Single Lag Model

Lag0 1.09 (1.00, 1.19) 1.22 (1.01, 1.47) 1.01 (0.92, 1.11) 1.13 (1.00, 1.29) 1.02 (0.96, 1.08) 1.00 (0.87, 1.15)

Lag1 0.90 (0.79, 1.02) 0.77 (0.59, 1.02) 1.01 (0.88, 1.15) 0.85 (0.71, 1.01) 1.00 (0.92, 1.09) 1.02 (0.85, 1.24)

Lag2 0.99 (0.87, 1.11) 1.07 (0.84, 1.36) 0.93 (0.84, 1.04) 0.98 (0.82, 1.16) 0.94 (0.88, 1.00) 0.95 (0.81, 1.11)

Distributed Lag Model

Lag0 0.92 (0.65, 1.29) 1.47 (0.70, 3.11) 0.78 (0.57, 1.07) 0.76 (0.48, 1.19) 0.82 (0.70, 0.97) 0.89 (0.53, 1.47)

Lag1 0.75 (0.43, 1.30) 1.37 (0.39, 4.78) 0.65 (0.39, 1.09) 0.51 (0.25, 1.06) 0.71 (0.54, 0.92) 0.81 (0.35, 1.89)

Lag2 0.86 (0.64, 1.16) 1.28 (0.66, 2.47) 0.75 (0.57, 1.00) 0.71 (0.48, 1.05) 0.79 (0.68, 0.91) 0.85 (0.54, 1.34)

Net effect1 0.59 (0.18, 1.89) 2.58 (0.19, 35.07) 0.38 (0.13, 1.14) 0.28 (0.06, 1.28) 0.46 (0.26, 0.81) 0.61 (0.10, 3.57)

O3 Single Lag Model

Lag0 0.91 (0.85, 0.98) 0.84 (0.72, 0.97) 1.00 (0.91, 1.09) 0.94 (0.85, 1.03) 0.98 (0.94, 1.03) 0.97 (0.87, 1.08)

Lag1 1.05 (0.99, 1.12) 1.20 (1.06, 1.36) 1.01 (0.93, 1.09) 1.05 (0.97, 1.13) 1.01 (0.97, 1.06) 1.02 (0.94, 1.12)

Lag2 1.00 (0.95, 1.06) 0.93 (0.82, 1.05) 1.01 (0.95, 1.08) 1.00 (0.93, 1.07) 1.01 (0.97, 1.05) 1.00 (0.92, 1.07)

Distributed Lag Model

Lag0 1.09 (0.91, 1.30) 1.25 (0.84, 1.86) 1.22 (0.97, 1.55) 1.11 (0.85, 1.43) 1.11 (0.97, 1.27) 1.06 (0.77, 1.45)

Lag1 1.29 (1.02, 1.65) 1.75 (1.02, 3.01) 1.36 (0.98, 1.88) 1.28 (0.90, 1.82) 1.19 (0.99, 1.43) 1.13 (0.73, 1.76)

Lag2 1.18 (1.01, 1.38) 1.29 (0.94, 2.23) 1.22 (0.99, 1.50) 1.16 (0.92, 1.47) 1.12 (1.00, 1.26) 1.08 (0.82, 1.42)

Net effect1 1.67 (0.95, 2.93) 2.84 (0.83, 9.75) 2.03 (0.96, 4.28) 1.64 (0.72, 3.75) 1.48 (0.97, 2.25) 1.29 (0.47, 3.53)

The model was adjusted for seasonality and long-term trend, mean temperature, relative humidity, and O3 or PM2.5. Bold estimates indicate p < 0.05.
1Cumulative risk per 10 μg/m3 change in each air pollutant.
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FIGURE 1

Relative risks (and 95% confidence intervals) of infectious diseases associated with a 10 μg/m3 increase in PM2.5 and O3 for each NNID category (A-E). The 
double-pollutant distributed lag model (DLM) was adjusted for seasonality, long-term trends, co-pollutants, mean temperature, and relative humidity.

comprehensive and detailed evaluation of risk disparities across 
various infectious diseases. Our findings suggest potential associations 
between exposures to PM2.5 and O3 and total NNIDs, with variations 
in the associations observed across specific categories and diseases 
depending on the pollutant.

Evidence on the relationship between air pollution and 
infectious diseases remains limited, often focusing on individual 
diseases, which hinders comparisons across studies. In our study, 
we found no adverse effects of PM2.5 or O3 on tuberculosis (TB), 
which is consistent with recent meta-analyses (3, 11). However, a 
previous literature review reported contrasting evidence, 
suggesting a positive relationship between PM2.5 exposure and TB 
(10). Further large-scale studies encompassing a broader range of 
infectious diseases are needed to achieve a more comprehensive 
understanding and comparison of the effects of air pollution on 
infectious diseases.

The mechanisms underlying the adverse health effects of air 
pollution on infectious diseases are poorly understood. The 
observed associations may be explained by the hypothesis that air 
pollutants can enhance the presence of bacteria, viruses, or other 
pathogens in the ambient air. This effect may arise from specific 
components in urban PM2.5, chemical reactions of air pollutants 
(such as alterations in pH levels and heavy metals), as well as 
meteorological factors like temperature and humidity (36–38). 
Moreover, ambient air pollutants may exert an immunosuppressive 
effect, potentially compromising the immune system in the human 
body and thus impacting human health (39, 40). Interestingly, our 
results indicate that PM2.5 exposure had a more immediate effect 
on NNIDs, with the peak observed in the current month, while O3 
exposure showed a delayed effect and peaked at a one-month lag. 
We  hypothesize that the effects of these pollutants may vary 
depending on the stage of infection or through mechanisms 
beyond inflammation and oxidative stress. However, further 
investigation is required. The sensitivity analysis with a prolonged 
lag period suggests that the observed impacts were sensitive to the 
choice of lag period. Overall, we observed greater inconsistency in 
the estimates with longer lag periods (2 and 3 months of lag).

Our study has several strengths. First, it included over 6 million 
infectious disease cases from 43 causes over 7 years in a large urban 
setting, providing high statistical power and enhancing the 
generalizability of our findings to other urban populations with 
similar climates. Second, we employed flexible modeling methods to 
capture the complex exposure-lag-response relationship, as air 
pollutants often display delayed effects. This approach also allowed for 
the consideration and adjustment of time-varying confounders. Third, 
in the absence of a universally adopted classification for infectious 
diseases, we  categorized NNIDs into seven categories based on 
previous research, facilitating a comprehensive examination of the 
relationships between air pollution and a broad spectrum of NNIDs. 
This categorization enabled detailed comparisons and assessments of 
disparities across diseases, offering critical insights that could inform 
targeted interventions and further research into the distinct 
pathogenic pathways underlying these diseases.

This study has several limitations that should be interpreted with 
caution. First, we assumed that all incident NNID cases were exposed 
to the same monthly averaged levels of air pollutants and weather 
based on city-level data. Such measurements may not fully capture 
spatial variations in exposure across urban and suburban areas within 
this large city. Second, this time-series analysis used monthly 
averages, which may influence the adequacy of the statistical power 
and the results. Nonetheless, in single-city studies using Poisson 
regression, the total number of counts and the variation in exposure 
are the dominant factors determining model power and assessment 
precision, rather than time resolution or duration of study period 
(35). Third, we could not explore associations between air pollution 
and certain categories of NNIDs, such as vector-borne diseases, due 
to a limited sample size (<5,000). Further studies should focus on 
identifying associations between specific diseases within each 
category, with larger sample sizes and more precise resolution. 
Fourth, we did not address the potential issue of multicollinearity 
arising from immune population dynamics and the strong 
autocorrelation in disease transmission (22). Finally, due to the lack 
of data, the analysis did not include other pollutants such as nitrogen 
dioxide, sulfur dioxide, and carbon monoxide, as well as some 
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time-varying confounders, including changes in behavior and public 
health policies.

Conclusion

In conclusion, our study found an association between ambient air 
pollution and infectious diseases, revealing significant disparities across 
different disease categories. These findings have important public health 
implications, emphasizing the need for targeted preventive and control 
strategies for infectious diseases or categories particularly sensitive to air 
pollution. Moreover, the results can inform interventions and mitigation 
measures regarding air pollution to further reduce the health burdens of 
air pollution in Shanghai. By addressing a critical gap in the existing 
evidence, our study underscores the urgent need for comprehensive 
evaluation and prompt action to mitigate the substantial burden of air 
pollution-attributable infectious diseases.
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