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Hospital wastewater (HWW) is a significant environmental and public health threat, 
containing high levels of pollutants such as antibiotic-resistant bacteria (ARB), 
antibiotic-resistant genes (ARGs), antibiotics, disinfectants, and heavy metals. This 
threat is of particular concern in low- and middle-income countries (LMICs), where 
untreated effluents are often used for irrigating vegetables crops, leading to direct 
and indirect human exposure. Despite being a potential hotspot for the spread of 
antimicrobial resistance (AMR), existing HWW treatment systems in LMICs primarily 
target conventional pollutants and lack effective standards for monitoring the 
removal of ARB and ARGs. Consequently, untreated or inadequately treated HWW 
continues to disseminate ARB and ARGs, exacerbating the risk of AMR proliferation. 
Addressing this requires targeted interventions, including cost-effective treatment 
solutions, robust AMR monitoring protocols, and policy-driven strategies tailored 
to LMICs. This perspective calls for a paradigm shift in HWW management in 
LMIC, emphasizing the broader implementation of onsite treatment systems, 
which are currently rare. Key recommendations include developing affordable and 
contextually adaptable technologies for eliminating ARB and ARGs and enforcing 
local regulations for AMR monitoring and control in wastewater. Addressing these 
challenges is essential for protecting public health, preventing the environmental 
spread of resistance, and contributing to a global effort to preserve the efficacy of 
antibiotics. Recommendations include integrating scalable onsite technologies, 
leveraging local knowledge, and implementing comprehensive AMR-focused 
regulatory frameworks.
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1 Introduction

Hospitals play a vital role in national healthcare systems and advancing medical science 
(1). However, their operations generate wastewater containing diverse hazardous contaminants, 
posing major challenges for environmental health. Hospital wastewater (HWW) is rich in 
pollutants, including toxic chemicals, antibiotic residues, pathogens, and antibiotic-resistant 
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bacteria (ARB) and genes (ARGs) (2, 3). Importantly, contaminant 
levels in hospital wastewater are considerably higher that those in 
community wastewater (4, 5), making hospitals critical hotspots for 
antimicrobial resistance (AMR) and environmental pollution.

Updated global estimates indicate that, in 2021, 1.14  million 
deaths were directly attributable to bacterial antimicrobial resistance 
(AMR), with most occurring in low- and middle-income countries 
(LMICs) due to diverse and complex factors (6). However, the 
environmental contribution to this burden remains largely overlooked, 
despite its potential role as a key driver (7). Currently, there are no 
precise figures quantifying the environmental contribution to the 
overall AMR burden. While the clinical implications of environmental 
antibiotic resistance remain poorly understood, environmental 
bacteria, among the most abundant microbial populations, can serve 
as reservoirs and donors for resistance genes. Through horizontal gene 
transfer, these genes may ultimately reach human and animal 
pathogens (8). Moreover, disinfectants, heavy metals, and antibiotic 
residues in hospital wastewater (HWW) may act as co-selectors for 
AMR, compounding the problem (2).

In LMICs, untreated HWW poses significant risks to public 
health and the environment due to insufficient onsite treatment 
infrastructure. Most hospitals in LMICs discharge wastewater without 
proper treatment, leading to the widespread dissemination of ARGs, 
ARB, and other hazardous substances (9–11). Untreated HWW is 
often used for irrigating crops, especially leafy crops, increasing direct 
human exposure to ARGs, ARB, and toxic substances through food 
consumption (12). Vulnerable populations living downstream HWW 
discharge points face elevated risk from direct exposure to untreated 
wastewater in these regions (13, 14). This practice exacerbates the 
environmental dissemination of ARGs, posing risks to food safety and 
public health through direct exposure to resistant pathogens.

This perspective advocates for a paradigm shift in HWW 
management in LMICs, emphasizing the need for onsite treatment 
systems that target AMR alongside traditional pollutants. Key steps 
include developing cost-effective technologies specifically designed to 
eliminate ARGs and ARB, implementing AMR-focused monitoring 
standards, and protecting vulnerable populations from exposure. 
Addressing these challenges is vital not only for public health in 
LMICs but also for the global effort to preserve antibiotic efficacy.

2 Treatment of hospital wastewater in 
LMICs: effectiveness and perspectives 
for addressing AMR

Onsite treatment of hospital wastewater is uncommon in many 
LMICs, where most hospitals discharge untreated wastewater directly 
into the environment. This practice poses considerable environmental 
and public health risks, particularly in the spread of AMR. In LMICs 
where onsite treatment is implemented, it typically involves a 
combination of physical, chemical, and biological processes aimed at 
removing solids and organic matter through three main stages 
(Figure 1) (15, 16). The first stage is primary sedimentation, followed 
by secondary treatment with aerobic biological processes such as 
activated sludge, trickling filters, or rotating biological contactors. The 
final, tertiary stage involves disinfection. However, these systems often 
prioritize the removal of conventional pollutants and are generally 
insufficient for effectively eliminating ARB, ARGs, and antibiotic 
residues. Inconsistent disinfection practices, along with issues such as 
high sludge production, formation of potentially toxic by-products, 
and limited monitoring for AMR components, further reduce the 
efficacy of these systems.

FIGURE 1

Representation of typical HWWT processes described in the existing literature from LMICs. Created in Biorender.com.
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These primary and secondary treatment stages may reduce 
organic loads but do little to address AMR, while tertiary disinfection 
methods are inconsistently applied. Key limitations to these 
approaches include:

 • First, the inexistence of any on-site wastewater treatment system 
in majority of LMICs hospitals.

 • Lack of infrastructure for advanced treatment technologies, such 
as membrane bioreactors (MBRs) and advanced oxidation 
processes (AOPs).

 • Insufficient regulatory frameworks mandating AMR-specific 
treatment or monitoring standards.

 • High costs and technical complexity associated with state-of-
the-art technologies, making them inaccessible for many LMICs.

 • Absence of real-time monitoring systems to evaluate the 
effectiveness of HWWT in mitigating AMR.

 • Limited awareness among stakeholders about the environmental 
role of HWW in AMR proliferation.

Experimental approaches in some LMICs have shown promise. In 
Vietnam, for instance, a combined sponge-Membrane Bioreactor 
(sponge-MBR) and ozonation system significantly improved antibiotic 
removal from hospital wastewater (17). This treatment employed 
physical retention, biodegradation, sorption, and photo-
transformation to enhance antibiotic elimination. Despite its potential, 
however, large-scale implementation is hindered by high costs and the 
need for comprehensive cost-effectiveness assessments.

In Ethiopia, hospitals have employed conventional treatment 
methods like filtration, sedimentation, and biocides to manage 
bacterial contamination (18). However, these approaches have 
proven insufficient for effectively eliminating ARB; prolonged 
retention times may even facilitate horizontal gene transfer and 
resistance development. Similar outcomes have been reported in 
other LMICs, where treatment methods focused on basic 
filtration and sedimentation fail to adequately address AMR, 
allowing resistant bacteria and genes to persist in treated effluent 
(17–26).

More advanced technologies, such as membrane bioreactors, 
ozonation, and UV-based Advanced Oxidation Processes (AOPs), 
have shown success in reducing ARGs and antibiotic concentrations 
in experimental setups in LMICs (16, 17, 27). Solar-powered 
UV-AOPs, in particular, have proven effective in eliminating emerging 
contaminants, making them promising for sustainable AMR 
mitigation. However, high initial capital and operational costs, 
technical complexity, and scalability challenges remain significant 
barriers, limiting their practicality for widespread use in resource-
constrained settings. More challenges include,

 • Complex maintenance requirements, including frequent cleaning 
of membranes to prevent fouling.

 • Dependence on reliable energy sources, which are often 
unavailable in resource-constrained settings, although this can 
be sourced from solar systems.

 • Generation of by-products (e.g., reactive oxygen species in AOPs) 
that may require further treatment.

 • Limited local expertise to operate and troubleshoot these 
advanced systems.

In the context of LMICs, hospital wastewater treatment 
(HWWT) faces significant monitoring gaps and regulatory 
shortcomings. Effective monitoring of HWWT systems is essential 
to ensure compliance with environmental standards and control the 
spread of AMR. However, monitoring in LMICs largely focuses on 
conventional parameters, such as biochemical oxygen demand 
(BOD), chemical oxygen demand (COD), total suspended solids 
(TSS), and nutrient levels (3, 28). Critical gaps remain in monitoring 
AMR-specific components, including ARGs, pharmaceutical 
residues, heavy metals (which act as co-selectors for resistance by 
creating selective pressures in the wastewater environment that favor 
the survival and proliferation of resistant microorganisms), and 
multidrug-resistant organisms. These overlooked parameters are 
critical for evaluating the true effectiveness of HWWT systems in 
mitigating AMR risks.

3 Path forward for effective HWW 
management in LMICs

Addressing the current gaps in HWWT requires a multi-
faceted approach that includes expanding onsite treatment, 
investing in innovative technologies, establishing standardized 
monitoring protocols, and strengthening collaborative efforts 
across sectors (Figure 2). This includes building local technical 
capacity through training, fostering community engagement, and 
ensuring financial and policy support for sustainable 
HWWT systems.

 1 Expanding onsite treatment: Promoting onsite treatment in 
hospitals is essential for addressing AMR at its source. By 
treating wastewater directly at the hospital level, the spread of 
untreated contaminants into larger ecosystems and urban 
treatment systems can be mitigated. Modular and affordable 
decentralized systems can provide practical solutions for 
LMICs, particularly those with limited infrastructure. 
Regarding decentralized systems, they could integrate 
modular components tailored to specific LMIC conditions. 
For example:

 • A primary sedimentation tank for solids removal.
 • Secondary treatment using constructed wetlands or 

anaerobic reactors.
 • Tertiary treatment incorporating solar or UV disinfection.
 • Portable, prefabricated units that can be easily deployed in 

remote or underserved areas.
These designs should leverage locally available materials, such as 

indigenous plants for wetlands, to reduce costs and enhance 
community acceptance.

 2 Investment in innovative technologies: Developing cost-
effective treatment technologies specifically aimed at reducing 
AMR is essential for progress. Solutions such as solar-
supported UV-Advanced Oxidation Processes (AOPs), sponge-
Membrane Bioreactor (sponge-MBR) systems, and other 
advanced oxidation processes (AOPs) must be tailored to the 
specific needs and challenges of LMICs, with a focus on 
minimizing operational complexities. Promising options 
may include:
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 • Constructed wetlands: Low-cost, decentralized systems using 
plants and microorganisms to treat wastewater. Some designs 
incorporate biofilms to enhance ARG removal.

 • Solar-driven advanced oxidation processes (AOPs): Cost-
effective for ARG degradation in sunny regions, though 
maintenance and scalability remain challenges.

 • Combined systems: Sponge-membrane bioreactors coupled 
with ozonation have shown efficacy in experimental setups 
in Vietnam.

 3 Adaptation of successful treatment methods: Treatment 
methods that have shown promise in other low- and middle-
income countries (LMICs) should be  adapted for use in 
different countries or hospitals within the same country. This 
adaptation process should include in-depth cost-effectiveness 
and stakeholder analyses to facilitate their successful adoption. 
So far, several barriers hinder the widespread adoption of 
successful HWWT methods from one LMIC to another and 
these may include:

 • Economic disparities, limiting the affordability of advanced 
treatment technologies.

 • Variability in local infrastructure and technical capacity.
 • Differences in regulatory standards and 

enforcement mechanisms.

Some relevant solutions could involve:

 • Subsidizing technology transfer through international 
funding initiatives.

 • Adapting technologies to local contexts (e.g., using region-
specific materials or energy sources).

 • Building regional collaborations to share knowledge 
and experiences.

 4 Tailoring context-specific solutions and leveraging good 
practices: Tailored solutions that consider the specific social, 
economic, and infrastructural contexts of LMICs are essential 
for effective hospital wastewater management. By integrating 
local knowledge and building upon existing good practices 
from similar settings, solutions can be better adapted to meet 
the unique challenges of each region. This approach not only 
enhances community engagement but also increases the 
likelihood of successful implementation and long-term 
sustainability. Examples may include the use of locally sourced 
materials for treatment systems and incorporating traditional 
ecological knowledge into wastewater reuse practices. A few 
example include systems, such as:

 • Using locally available plants in constructed wetlands to 
enhance contaminant removal.

 • Incorporating natural coagulants, such as Moringa oleifera 
seeds, for wastewater clarification.

 • Aligning treatment practices with existing community water 
management systems to foster acceptance and participation.

 5 Standardizing AMR monitoring protocols: Updated 
monitoring standards that explicitly include AMR-related 
parameters, such as ARGs, antibiotic residues, and heavy metals 
are essential for adequately assessing HWWT performance. 
Standardized protocols should expand beyond current World 
Health Organization guidance, which is limited to antibiotic 
manufacturing wastewater (29), to encompass regular 
HWWT. This expansion would facilitate better regulation and 

FIGURE 2

Challenges and perspectives to address the ARG/ARB components in HWWT standards. Created in Biorender.com.
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provide a more comprehensive evaluation of how effectively 
treatment systems mitigate AMR risks. A robust monitoring 
protocol should include:

 • Regular quantification of ARGs and ARB using molecular 
methods (e.g., qPCR or metagenomics).

 • Detection and quantification of antibiotics, disinfectants, and 
heavy metals.

 • Microbial community analysis to identify resistant species.
 • Standardized sampling points at hospital discharge outlets and 

downstream ecosystems.
 • Benchmarks for resistance levels, aligned with international 

guidelines, such as the World Health Organization’s guidance 
on AMR monitoring in wastewater.

 6 Capacity building and collaboration: Strengthening local 
expertise through continuous training initiatives is essential 
ensuring the sustainability of HWWT solutions. Cross-sector 
collaboration between healthcare facilities, policymakers, 
environmental experts, and community organizations, such as 
the I-CRECT-Consortium,1 is vital for advancing the 
development and adoption of effective AMR mitigation 
strategies. Such international consortia can:

 • Facilitate knowledge sharing and capacity building among 
LMIC stakeholders including adoption of HWWT methods 
that work in one context to another.

 • Support pilot studies and research to evaluate innovative 
HWWT technologies in diverse contexts.

 • Advocate for harmonized international standards and funding 
for AMR mitigation efforts in LMICs.

 7 Regulatory reform: Establishing and enforcing robust 
regulatory frameworks that mandate AMR monitoring and 
limit AMR components in treated effluents is essential for 
meaningful progress. Government support, along with 
incentives for hospitals that implement effective onsite 
treatment, could significantly enhance HWW management 
efforts. Furthermore, governments can:

 • Provide financial subsidies or tax incentives for hospitals that 
install compliant onsite systems.

 • Establish grant programs for pilot projects in public hospitals.
 • Introduce regulatory requirements with phased 

implementation to allow hospitals time to comply.
 • Recognize hospitals with effective HWWT systems through 

public awards to encourage participation.

4 Conclusion

Antimicrobial resistance is one of the most pressing public health 
crises, driven, amongst other factors, by inadequate management of 
hospital wastewater, particularly in low- and middle-income countries. 
The discharge of untreated or inadequately treated wastewater, which 
is rich in antibiotics, ARB, and ARGs, contributes to the proliferation 
of AMR, adversely affecting both human health and environmental 
integrity. To effectively combat AMR from an environmental 

1 https://www.jpiamr.eu/projects/i-crect

perspective, it is crucial to expand HWW management’s focus beyond 
conventional pollutants and emphasize resistance control.

This perspective advocates for a transformative shift in HWW 
management, particularly in LMICs. Key components of an effective 
strategy include the implementation of onsite treatment, the development 
of scalable technologies, the establishment of AMR-focused monitoring 
protocols, and regulatory reform. Collaborative action among researchers, 
public health officials, environmental regulators, and local stakeholders is 
imperative for developing innovative solutions, ensuring sustainability, 
and enforcing compliance with best practices.

Ultimately, and in line with what other researchers in this field have 
recommended (30), to mandate the monitoring and reduction of AMR 
components in hospital effluents will require a lot, some of which include:

 • Promoting universal implementation of onsite treatment for 
HWW in hospitals

 • Aligning national policies with international guidelines, such as 
those from WHO.

 • Establishing penalties for non-compliance alongside incentives 
for compliance.

 • Integrating AMR-specific parameters into existing water 
quality standards.

 • Ensuring regular audits and transparent reporting of 
monitoring data.

 • Increasing public awareness campaigns about AMR and 
environmental health connections.
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