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1 Introduction

Hyper-personalized medicine represents the cutting edge of healthcare, which aims
to tailor treatment and prevention strategies uniquely to each individual. Unlike
traditional approaches, which often adopt a one-size-fits-all or even broadly personalized
approach based on broad genetic categories, hyper-personalized medicine considers an
individual’s comprehensive health data by integrating unique biological, genetic, lifestyle,
and environmental influences. This method goes beyond simple genetic profiling by
recognizing that health outcomes are influenced by complex interactions among our
environment, daily routines, and physiological processes and responses.

Central to hyper-personalized medicine is the integration of lifestyle and
environmental factors. Lifestyle habits, such as diet (2–8), exercise (9–16), and sleep
patterns (5, 17–22), directly impact health. Hence, understanding these factors helps tailor
interventions that align with the day-to-day realities of an individual. Environmental
factors, such as air quality (23–28), climate (29–36), and exposure to pollutants (37–46),
also play significant roles in determining health outcomes. By continuously monitoring
and analyzing these elements, healthcare providers can create dynamic health plans that
adapt to real-time changes. This would allow for proactive measures and optimized care.

To enable such a complex model of care, advanced technologies like quantum
computing, artificial general intelligence (AGI), internet of things (IoT), and 6G
connectivity play crucial roles. Quantum computing offers the ability to process vast and
intricate datasets, such as those required to model interactions between genetic markers,
environmental exposures, and lifestyle choices, with far greater speed and accuracy than
classical computing (47–51). AGI, with its adaptive learning capabilities, can analyze and
make sense of this data to provide precise, evolving recommendations that change as
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a patient’s environment or lifestyle does (52–55). IoT devices,
including wearables and environmental sensors, gather continuous
data from individuals, tracking physical activity, biometrics, and
environmental conditions like air quality and humidity (56–61).
With the advent of 6G connectivity, this data can be seamlessly
transferred and processed in real time, enabling instant feedback
and intervention (62–67).

Together, these technologies form the backbone of a hyper-
personalized healthcare model, which will push beyond traditional
medical practices to create a highly responsive and individual-
centered approach to health. As these advancements continue
to evolve, hyper-personalized medicine has the potential to
fundamentally reshape healthcare, offering truly personalized
interventions that support long-term health and wellbeing.

2 Definition of Healthcare 5.0

The European Commission’s Industry 5.0 framework (1),
which prioritizes sustainability, human-centered approaches, and
resilience, provides an insightful basis for defining a similarly
advanced framework in healthcare. This framework aligns naturally
with hyper-personalized medicine, as the goal of Healthcare

5.0 should be to provide not only individualized care but also
sustainable, human-centric, and adaptable healthcare systems.

Hyper-personalized medicine, which tailors treatments and
preventive measures based on the unique genetic, lifestyle, and
environmental factors of each patient, embodies these principles,
as depicted in Figure 1. By focusing on individual needs and
integrating real-time data from IoT devices, advanced AI models,
and sustainable technology, hyper-personalized medicine enables
healthcare systems that prioritize patient wellbeing while adapting
to both environmental challenges and individual health needs.

Healthcare 5.0, modeled after Industry 5.0 (1), would thus
be defined by its commitment to environmental consciousness
(through sustainable resource use and minimized waste), human-
centered care (with each patient’s unique data guiding treatment),
and resilience (enabling healthcare systems to adapt swiftly to
changing conditions and global health challenges). This alignment
with Industry 5.0 (1) principles helps ensure that Healthcare 5.0

does not merely advance medical technology but also builds a
health infrastructure that is robust, equitable, and focused on
long-term human and planetary wellbeing.

3 Lifestyle and environmental factors
in health

3.1 E�ects of lifestyle on individual health

Lifestyle factors, including diet, physical activity, sleep, and
stress, play pivotal roles in shaping individual health outcomes.
They influence both physical and mental wellbeing. Diet is
fundamental to health, particularly in children and adolescents,
where high diet quality is associated with better long-term
health outcomes and reduced risks of obesity and chronic
diseases (2). In adults, plant-based diets have shown significant
health improvements and reductions in medication use. This
underscores their feasibility in promoting community health (8).

Nutrition is also crucial for disease prevention and management,
as demonstrated in studies that link low-inflammatory diets to
reduced symptoms in arthritis patients (3), while other dietary
strategies, such as time-restricted eating, have shown promise in
enhancing metabolic health and in supporting circadian rhythms
(6). Physical activity further bolsters health, with studies noting
its benefits on mental health (14) and resilience through the
release of bioactive molecules called exerkines. These molecules
aid muscle growth and metabolic regulation (9). Exercise also
supports cardiovascular health (13), aids in the prevention
of musculoskeletal decline (12), and improves mental health
outcomes in adults with spinal cord injuries (16).

Sleep quality is similarly essential, with poor sleep linked to
cardiovascular morbidity, metabolic issues, and mental health
risks (18, 20). Irregular sleep patterns have significant health
impacts, including contributing to multimorbidity among
military personnel (22) and mental health issues in adolescents,
particularly during the COVID-19 pandemic (21). Sleep hygiene
improvements, such as promoting regular sleep schedules, are
recommended to combat these effects (17). In fact, stress and
sleep health are interrelated, influencing mental health, mood,
and resilience, with regular physical activity and a balanced diet
offering protective effects against stress-related health issues (4, 11).
Together, these lifestyle factors not only shape individual health
but also serve as cornerstones for preventive health measures and
holistic wellness across different life stages.

3.2 E�ects of environment on individual
health

Environmental factors, such as air quality, pollution, and
climate, significantly impact individual health by contributing to
a range of physical and mental health issues. Poor air quality is
a notable risk factor for cardiovascular and respiratory diseases,
with pollutants like particulate matter, nitrogen dioxide, and
ozone leading to inflammation and oxidative stress (24, 27).
Indoor air pollution also poses serious health risks in urban
environments, particularly in rapidly industrializing regions (28).
Innovative solutions like portable air purification can mitigate
these effects (23). Climate change compounds these issues, with
extreme weather events and increased UV exposure intensifying
health risks. Coates et al. (29) and Ebi et al. (30) underscore
the effects of climate variability, which aggravates dermatological
and heat-related illnesses, especially in vulnerable populations.
Furthermore, water pollution remains a significant health threat,
with contaminants like lead and PFAS (per- and polyfluoroalkyl
substances) affecting vulnerable groups (43, 45). Liu et al. (52)
and Sharma et al. (46) highlight that untreated sewage and
chemical pollution in freshwater sources lead to gastrointestinal
and other waterborne diseases. The mental health implications of
climate change are also crucial, as extreme weather and pollution
contribute to increased psychological distress, particularly among
marginalized communities (34). Public health strategies that
address these environmental determinants, such as improved
health literacy (32) and localized pollution assessments (25), are
essential. Interdisciplinary approaches that integrate pollution
control with health interventions, as advocated by Xu et al. (41),
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FIGURE 1

Healthcare 5.0 framework. The framework illustrates the integration of hyper-personalized medicine through advanced wearable sensors,

personalized data, and continuous data streams enabled by 6G, IoT, AGI, and quantum computing. It is built on three pillars: human-centric care

(emphasizing patient-centered approaches, transparency, and empathy), adaptable healthcare (ensuring flexibility, scalability, and resilience), and

sustainability (promoting eco-friendly practices, resource e�ciency, and long-term solutions). This approach aims to achieve improved, sustainable,

accessible, and a�ordable healthcare outcomes.

are vital for reducing the overall burden of environmental health
risks and supporting resilience against climate change’s impacts on
human health.

3.3 The need for continuous and reliable
data collection to personalize care
e�ectively

Continuous and reliable data collection is essential for effective
personalization in healthcare, as it enables real-time insights
into the evolving health status of a patient. Traditional episodic

health check-ups capture only snapshots of the health of an
individual, often missing critical daily, hourly, minute-by-minute,
or even second-by-second fluctuations in factors like blood glucose,
heart rate, activity levels, and environmental exposures. With
the integration of wearable IoT devices, advanced sensors, and
high-speed 6G connectivity, healthcare providers will be able
to collect and analyze ongoing data streams, in order to build
comprehensive pictures of the unique needs of each patient. This
allows for hyper-personalized adjustments to treatment plans based
on real-time conditions. This will facilitate preventive care, early
interventions, and targeted therapies. Reliable, continuous data
collection thus transforms care from reactive to proactive. This
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supports individualized health strategies that improve long-term
outcomes and quality of life.

In this context, reinforcement learning (68) and recommender
systems (69, 70) can play a vital role. Reinforcement learning
algorithms can adaptively adjust treatment plans by learning from
new data and optimizing health strategies based on physiological
responses and patient feedback over time. Similarly, recommender
systems use ongoing data to offer hyper-personalized suggestions,
such as dietary changes or physical activity adjustments, which
can be aligned with treatment plans, individual health goals, and
lifestyle. Together, these technologies enable a dynamic, proactive
approach to healthcare that supports long-term health and quality
of life improvements.

4 Quantum computing and AGI in
hyper-personalized medicine

4.1 Definitions

Quantum computing, based on the principles of quantum
mechanics, will provide unmatched computational abilities
through quantum-speed processing. By enabling massive parallel
processing, quantum computing can analyze extensive and
complex datasets that classical computers cannot handle effectively
(71). This technology is well-suited for healthcare applications,
particularly in hyper-personalized medicine, where customized
treatments require detailed biological and environmental data (72).

Artificial General Intelligence (AGI), more advanced than
conventional AI, will offer adaptable learning across various tasks,
which enables it to interpret and adjust recommendations for
a wide range of data, including health metrics, environmental
factors, and lifestyle information (73). The responsive and flexible
learning of AGI will allow it to create dynamic treatment plans
that continuously integrate new data. This will make it especially
valuable for hyper-personalized healthcare.

Hyper-personalized medicine aims to deliver highly
individualized healthcare by incorporating genetic, lifestyle,
and environmental data. Using quantum computing and AGI as its
technological foundations, hyper-personalized medicine will adapt
diagnosis and treatment more accurately to patient needs, thus
improving outcomes (74, 75).

4.2 Data processing, prediction, and
modeling

The processing power of quantum computing will transform
data analysis for hyper-personalized medicine and will analyze
vast datasets, such as genomic and environmental data, with
unmatched speed and accuracy. By enabling high-precision and
real-time data analysis, quantum computing will uncover patterns
and risks that were previously undetectable (72, 76). Quantum-
enabled data processing will also support the predictive abilities of
AGI andwill allow it to customize treatment plans based on insights
drawn from real-time health changes. With this capacity, AGI can
provide personalized recommendations that continuously adjust
in response to updated biometrics, dietary changes, stress levels,

and environmental exposures, thus leading to highly effective and
tailored care (71).

Quantum computing will also support AGI in developing
detailed simulations and predictive models for individual
health scenarios. Quantum simulations will map molecular
and cellular interactions and predict the effects of specific
treatments on biological pathways. By modeling environmental
and lifestyle interactions with genetic data, quantum computing
will provide AGI with insights that allow for continuously refined
recommendations based on changes in pollution levels, diet, or
activity (74, 76). These simulations will guide AGI in predicting
disease progression and in determining the most effective
treatments with minimal trial and error. These will reduce the
need for real-world trials and make hyper-personalized care more
accessible and affordable (77).

5 IoT and 6G: real-time data collection
and connectivity

5.1 Role of IoT and 6G in data collection

IoT sensors monitor lifestyle and environmental factors that
influence health, which will support hyper-personalized medicine
by continuously gathering data on health metrics like heart
rate, blood pressure, and activity levels. Environmental sensors
measure air quality, temperature, and humidity, which allow
healthcare providers to understand how surroundings impact
health outcomes (78). These sensors will adapt data collection
methods based on patient location and activities to provide AGI
with context-specific data. AGI will use this information to create
health recommendations that align with a patient’s immediate
environment and daily routines. This will enhance the precision of
care (72).

With 6G networks, data transmission will be instantaneous and
will facilitate seamless communication between IoT devices and
healthcare systems. The ultra-fast data rates and low latency of 6G
will support real-time adjustments in treatment plans by ensuring
immediate access to health metrics and environmental data (73,
79). Additionally, enhanced bandwidth and scalability will allow a
broad network of IoT-connected healthcare devices to operate in
both urban and rural areas, and will thus, expand access to real-
timemonitoring. The advanced encryption and privacy protections
of 6G promises to secure sensitive health data during transmission
and will ensure that data remain protected while enabling rapid and
responsive healthcare interventions (80).

5.2 Enhanced precision and context-aware
care

The integration of 6G with IoT will bring an unprecedented
level of precision to AGI-driven healthcare. With continuous real-
time updates, AGI will dynamically adjust care recommendations
and reduce errors to ensure that treatment is responsive to the
patient’s health needs (79, 81). This high-precision data will
support individualized interventions by allowing AGI to adapt
care based on factors such as activity levels, medication, and
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environmental conditions. By integrating data from multiple IoT
sources into a single health profile, AGI will ensure a consistent and
accurate understanding of the patient’s health and thus, increase
transparency and trust in the healthcare process (82).

Context-aware care will further enhance personalized
healthcare by adjusting AGI recommendations based on
environmental factors like air quality or pollution levels. AGI
will use environmental data to provide timely interventions, such
as advising patients to avoid specific areas on high-pollution
days or adjusting medication based on current conditions (77).
The ability to access live public health advisories will ensure
that AGI recommendations align with a patient’s environment,
creating a holistic approach to hyper-personalized medicine
that addresses both individual health and broader public health
considerations (73).

6 Practical applications and benefits of
hyper-personalized medicine

6.1 Proactive health interventions and
monitoring

With the support of 6G connectivity, AGI will enable
proactive health interventions by adjusting treatment plans in
real time, responding to any sudden changes in the patient’s
health. This capability will allow AGI-driven systems to provide
prompt recommendations on diet, physical activity, and lifestyle
adjustments, aligning them with biometrics and environmental
factors to support optimal patient health (81). Furthermore, health
alerts issued through AGI will help patients take preventive actions,
such as staying hydrated during extreme heat or modifying exercise
routines based on current air quality (78). This proactive approach
will enhance patient wellness and reduce potential health risks.

Continuous monitoring through IoT-enabled wearables will
support the efforts of AGI in tracking vital health metrics
like heart rate, glucose levels, and sleep patterns. As AGI
detects any deviations from a patient’s normal data, it will
initiate timely interventions that address emerging health issues
before they escalate (82). Patients will access these insights
through health dashboards, which will provide ongoing metric
updates and empower individuals to engage actively in their
health management.

Real-time glucose monitoring has been significantly enhanced
by advancements in wearable technologies. For instance, non-
invasive sensors are being developed to monitor glucose levels
through biofluids like sweat, saliva, and interstitial fluid, leveraging
their correlation with blood glucose concentrations. However,
challenges such as accuracy, lag time, and the seamless integration
of data into electronic health records persist. The incorporation
of Internet of Things (IoT) networks can address integration
issues by enabling direct connectivity between sensors and
healthcare platforms. Additionally, emerging 6G technology, with
its unprecedented speed of up to 1 terabyte per second, can reduce
data latency and enable truly real-time monitoring. These systems
can achieve accuracy akin to clinical standards when powered by
AGI algorithms and quantum computing, fostering the potential

for hyper-personalized diabetes management through continuous
feedback and predictive analytics (83).

Personalized diet and exercise plans are another frontier for
proactive health interventions. Current AI-powered diet planning
systems often lack scalability and interpretability, hindering
widespread application. The proposed Healthcare 5.0 framework,
which combines IoT, 6G, AGI, and quantum computing, can
be used to tackle these issues. IoT can enable the integration
of various wearable and environmental sensors into cohesive
networks, while 6G will ensure the rapid processing of vast
datasets. Quantum computing will provide the computational
power required to analyze complex relationships between genetic,
dietary, and physical activity data, facilitating individualized
recommendations. AGI will enhance system interpretability
by identifying actionable insights from multivariate datasets,
bridging the gap between machine-generated plans and human-
understandable guidance (84).

Virtual healthcare assistants (VHAs) demonstrate the
transformative potential of digital health technologies. Within
the Healthcare 5.0 framework, VHAs will utilize IoT-connected
wearable sensors to collect and analyze comprehensive health
data. With the rapid connectivity of 6G, these systems will
provide real-time adaptive health recommendations tailored to
users’ evolving needs. By integrating AGI, VHAs can effectively
interpret user data and offer contextually relevant advice, ensuring
empathetic and precise interactions. For example, they might
provide timely reminders for hydration based on sweat sensor
data or suggest exercises compatible with an individual’s metabolic
profile. Furthermore, the reliance of VHAs on quantum computing
ensures robust data processing, supporting predictive analytics to
anticipate health risks and recommend preemptive measures (85).

6.2 Contextualized health support

Through the integration of IoT and 6G, AGI will provide
context-sensitive health support by tailoring care based on real-
time environmental conditions. This capability will allow AGI to
make specific recommendations, such as advising patients with
respiratory conditions to avoid outdoor activities on days with poor
air quality or adjustingmedications to account for seasonal allergies
(86). The access of AGI to environmental data will enable it to issue
timely alerts, which will help patients to make informed decisions
and avoid exposure to health risks associated with local conditions.
IoT devices will also incorporate public health advisories in order
to ensure that the recommendations made by AGI align with
community health guidelines and environmental data to deliver
holistic and personalized care (73).

7 Challenges and ethical
considerations

7.1 Privacy and security

The vast amounts of personal data generated by IoT devices
and real-time health monitoring raise significant privacy concerns,
as personal health data is among the most sensitive information
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collected. Its gathering, storage, and transmission through IoT and
6G networks could lead to severe privacy violations if not managed
with the highest security standards. To mitigate these risks, a
decentralized approach to data storage, aligned with deontological
ethics, is essential. Deontological ethics (87–90), which emphasizes
the moral duty to protect individual rights, highlights the ethical
obligation to uphold privacy rigorously. This responsibility entails
implementing strong encryption and anonymization protocols,
along with giving users control over their data access, ensuring
respect for individuals’ autonomy. By addressing privacy through
this ethical framework, healthcare providers, network providers,
and developers fulfill their ethical obligations to safeguard personal
health data by emphasizing a commitment to the inherent rights of
each individual to confidentiality and data protection.

Bouderhem explored issues related to AI ethics and proposes
several practical solutions to address them (91). The main
challenges of AI ethics span a wide range of issues, including
safeguarding data privacy, ensuring the secure collection and
storage of data, and addressing concerns about data quality,
availability, and accuracy. Interoperability between different
operating systems, such as iOS and Android adds further
complexity, while issues like bias, health equity, fairness, and
the affordability and accessibility of AI in developing countries
present significant obstacles. Additional challenges include the
regulation and governance of AI systems, controlling third-party
access to personal health data, and maintaining robust security.
Successful implementation and adoption of AI require solutions to
problems such as lack of explainability, lack of transparency, lack
of accountability, errors, misdiagnosis, discrimination, and poor
overall system performance.

To ensure the privacy and security of personal health data,
measures such as educating healthcare personnel, conducting
routine risk assessments, securing data with VPNs, and
restricting access to sensitive information are essential. Role-
based access control, two-factor authentication, data encryption,
and security awareness training further enhance protection
against breaches. Regulating AI systems effectively requires
a comprehensive approach that includes establishing legally
binding rules and standards under the guidance of the World
Health Organization (WHO), strengthening regulatory oversight,
and promoting transparency and accountability. Encouraging
industry self-regulation, fostering international cooperation,
embedding ethical practices in handling personal health data, and
creating a collaborative “AI culture” involving all stakeholders
are vital steps toward achieving responsible and effective
AI governance.

A critical challenge in AI ethics in healthcare is bias. Bias
arises when predictive models perform unevenly across different
demographic or clinical subgroups, often due to imbalanced or
unrepresentative data. This can result in disparities in diagnosis,
treatment recommendations, or outcomes, disproportionately
affecting underrepresented or vulnerable populations. Factors
contributing to bias include data imbalance, where certain groups,
such as ethnic minorities or the older adults, are underrepresented
in training datasets, and systemic bias, where historical inequities in
healthcare practices are inadvertently perpetuated by AI systems.
The consequences of bias are significant, as they can exacerbate

health disparities and undermine trust in AI-driven healthcare
solutions, such as the Healthcare 5.0 framework.

To address these challenges, several strategies can be
implemented. First, ensuring datasets are diverse and
representative of all relevant subgroups is critical, with efforts
focused on collecting data from varied populations, augmenting
underrepresented classes using synthetic data, and regularly
auditing datasets for bias. Second, bias detection and mitigation
techniques, such as fairness metrics, reweighting, and adversarial
debiasing, should be integrated into the development process
to identify and correct disparities. Third, continuous learning
AI systems can help overcome bias by updating models with
new, real-world data and incorporating feedback loops to adapt
to changing population characteristics (92). These systems can
also employ federated learning to enhance representation while
maintaining privacy. Therefore, the Healthcare 5.0 adopted system
feedback for system improvement and addressing bias.

Transparent and explainable AI (XAI) techniques, along with
Artificial General Intelligence (AGI), will become essential for
identifying and addressing biases in healthcare AI systems. These
technologies will enable healthcare professionals to interpret
predictions and make informed decisions. Transparency fosters
accountability and builds trust, particularly in high-stakes
applications like diagnostics and treatment planning. Moreover,
ethical and regulatory oversight is vital, with governments and
organizations establishing guidelines to ensure fairness, such as
mandating fairness audits and documenting data sources and
evaluation criteria. Addressing bias in healthcare AI is both a
technical challenge and a moral imperative. By adopting these
strategies, the Healthcare 5.0 framework can develop equitable and
reliable healthcare solutions that benefit all populations.

The integration of advanced sensors, IoT, and AI provides
many advantages in healthcare. However, the massive volumes
of data collected by these sensors, along with health records and
existing big data on networks, can create an overload of data,
leading to bottlenecks, especially in real-timemonitoring within the
Healthcare 5.0 framework (93). To address these challenges, edge
computing can be deployed near data sources to enable real-time
analysis and reduce reliance on centralized servers. For example,
edge AI can detect abnormal vital signs and send immediate alerts,
minimizing the need to transmit raw data (94). A hybrid approach
combining edge and cloud computing can address both real-time
and long-term data processing needs. Critical data can be processed
locally on edge devices, while less urgent information can be
transmitted to the cloud for deeper analytics and archival purposes.

Data fusion techniques can further reduce redundancy
by consolidating information from various sources, such as
wearable devices, imaging systems, and patient records, to
create comprehensive datasets for more accurate diagnostics.
AI-driven network optimization can dynamically manage data
traffic, predict congestion, and reallocate bandwidth to ensure
smooth transmission of high-priority healthcare data. Efficient
data compression and prioritization algorithms are also crucial
for overcoming bottlenecks by reducing the size of transmitted
data and ensuring that critical information is processed first
(95). Standardizing data formats and communication protocols,
such as adopting HL7 FHIR, can enhance interoperability and
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streamline data exchange, mitigating delays caused by incompatible
systems. Moreover, blockchain technology can offer a secure
and decentralized method for data sharing across stakeholders,
eliminating intermediaries and maintaining data integrity in multi-
institutional collaborations or telehealth systems.

7.2 Accessibility and health equity

The reliance on advanced IoT and 6G-powered healthcare
solutions could pose potential risks to health equity, as those
in economically disadvantaged or rural areas may lack access
to these innovations. In fact, limited infrastructure and access
to technology has been leaving large populations, especially
in low- and middle-income countries without essential health
services (96). Without equitable access, entire populations may
miss out on the benefits of hyper-personalized medicine. This
would exacerbate existing health disparities. From a utilitarian
ethics perspective (97–99), which seeks to maximize societal
benefit and reduce harm, healthcare must strive for inclusivity
in technology distribution. This ethical approach underscores the
need for policies promoting equitable access, in order to ensure
that the positive impact of healthcare reaches the greatest number
of people. Policymakers and healthcare providers must therefore
focus on creating inclusive strategies, such as subsidized devices
and scalable network infrastructure for underserved areas, and
encourage inclusive design practices to support a fair distribution
of healthcare benefits, thereby minimizing the risk of creating a
healthcare divide.

7.3 System reliability

For hyper-personalized medicine to be effective, system
reliability in continuous, real-time healthcare is critical. Breaks
in 6G connectivity or device malfunctions can disrupt data
flow, and thus, potentially delay crucial health interventions or
lead to misinformed treatment changes. From an ethics of care
perspective (100–102), which emphasizes the moral responsibility
to care for others’ wellbeing, ensuring system reliability is central
to building a trustworthy healthcare environment. This ethical
framework prioritizes accountability and responsiveness and calls
on network providers and device manufacturers to establish
fail-safe mechanisms, backup connectivity options, and rigorous
quality control measures. By upholding these standards, providers
demonstrate a commitment to patient welfare and ensure that
hyper-personalized medicine remains a reliable and safe resource.
This approach not only safeguards health outcomes but also
strengthens patient trust in technology-dependent healthcare.

7.4 Doctor-patient dynamics and
socio-behavioral implications in
hyper-personalized medicine

The advent of hyper-personalized medicine, driven by
advancements in genomics, artificial intelligence (AI), and

data analytics, will fundamentally reshape the doctor-patient
relationship. Traditionally, doctors have been the primary
decision-makers, guiding patients based on standardized protocols
and evidence-based practices. In hyper-personalized medicine, the
dynamic will shift toward shared decision-making, with patients
actively participating as their genetic, lifestyle, and environmental
data inform tailored treatment options. This evolution not
only empowers patients but also requires physicians to develop
advanced communication skills to interpret and convey complex
datasets effectively. The socio-behavioral implication in hyper-
personalized medicine is similar to the one of precision medicine
(PM). Eyal et al. (103) provide summary of the physician-patient
relationship in the age of PM that can be the picture of how
the doctor-patient interaction in hyper-personalized medicine.
Traditionally, the doctor-patient relationship follows a simplified
framework where being “sick” is viewed as a distinct social role.
Society assigns this role during doctor-patient interactions, aided
by diagnostic tools and expert heuristics that categorize individuals
as either “healthy” or “sick.” This “sick role” grants individuals’
exemption from societal obligations, provided they actively seek
help from qualified medical professionals. It anchors patients in a
social exchange of trust and care, with the shared goal of restoring
normal functioning. Physicians, in this model, act as gatekeepers,
determining access to the “sick” status, diagnoses, and the limited
resources within the healthcare system. Their authority is rooted in
the voluntary nature of the sick role, medicine’s ethical standards,
and the inherent knowledge gap between doctors and patients.

Personalized medicine and precision medicine (PM), and also
hyper-personalized medicine, disrupt the binary “healthy or sick”
framework, replacing it with a spectrum of hybrid statuses. Patients
are categorized based on genetic, environmental, and behavioral
data, leading to roles like “patients-in-waiting,” where individuals
may be monitored or treated prophylactically despite uncertain
diagnoses. This creates ambiguity for patients and their families,
as traditional healthcare scripts fail to provide clear answers. For
example, families often struggle with the unclear implications of
genetic screening results, leading to stress and confusion as they
navigate unfamiliar and unstable healthcare scenarios.

Hyper-personalized medicine also intensifies uncertainty,
shifting the psychological burden onto patients. Probabilistic
diagnoses, while intended to empower patients through informed
decision-making, can paradoxically increase stress. Socioeconomic,
cultural, and psychological disparities further exacerbate these
challenges, leaving many patients ill-equipped to manage the
complexities of their care. Additionally, patients must increasingly
surrender their privacy as healthcare systems collect detailed data
on genetic, environmental, and behavioral factors. Through active
tracking and passive monitoring, individuals lose control over their
information and how it is used, raising concerns about data privacy
and ethical boundaries.

Doctors will face new responsibilities as hyper-personalized
medicine transforms their role from managing patient complaints
to performing “bridging work.” This involves reconciling
test results with patients’ symptoms, or lack thereof, and
addressing discrepancies in diagnoses. Doctors may redefine
treatment as prevention or adjust diagnostic thresholds, but
many lack the genomic expertise and resources needed for
these tasks. The uncertainty surrounding interactions between

Frontiers in PublicHealth 07 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1522673
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tan et al. 10.3389/fpubh.2024.1522673

environmental, lifestyle, and genetic factors further complicates
their role.

New knowledge asymmetries will emerge as hyper-personalized
medicine advances. Doctors may struggle to interpret genomic data
and manage large-scale datasets, shifting informational dominance
to specialists, labs, and platform managers. To address this
gap and prevent inequities, especially in underserved settings,
doctors must receive specialized training to mediate and disclose
hyper-personalized medicine findings effectively. Without such
adaptations, hyper-personalized medicine findings risks deepening
existing disparities in healthcare access and outcomes. Hyper-
personalizedmedicine transforms traditional roles in the healthcare
system, introducing uncertainty, redistributing authority, and
reshaping the doctor-patient dynamic. These changes demand
significant adjustments from all stakeholders to navigate the
complexities of hyper personalized medicine.

8 Discussion: a vision for the future

Integrating quantum computing, AGI, IoT, and 6G into a
comprehensive healthcare framework can revolutionize medicine
by creating a model that addresses the nuanced interplay
between lifestyle, environmental influences, and genetics. This
integration is fundamental for hyper-personalized healthcare,
where understanding each individual’s unique combination of
genetic, lifestyle, and environmental factors will enable precise and
responsive treatment. Unlike traditional healthcare, which often
relies on static and generalized treatment protocols, this model
adapts dynamically to real-time data, drawing insights from a
wealth of patient-specific information. By continuously monitoring
variables like biometrics, daily activities, air quality, and stress
levels, hyper-personalized medicine can provide recommendations
that respond to changes as they occur. The convergence of these
technologies within an advanced Healthcare 5.0 framework will
build a responsive and patient-centered model, one that prioritizes
both human wellbeing and resilience in a rapidly changing world.

Quantum computing will play a vital role in handling the
extensive and complex data that personalized medicine requires.
With its ability to process massive datasets quickly and accurately,
quantum computing will enable the development of predictive
models that account for the intricate interactions between genes,
environment, and behavior. This computing power will allow
AGI to predict potential health outcomes and adjust treatment
plans dynamically. This will result in a healthcare system that
can proactively address health risks and optimize patient care.
Unlike classical AI, AGI will be capable of learning and adapting
across diverse data types and health domains and will facilitate
a model that not only makes predictions but also adapts as new
data becomes available. The flexible learning of AGI, coupled
with quantum-enhanced analytics, will provide a foundation
for continuously evolving healthcare insights, ensuring that
patient care remains relevant and responsive to their unique
ongoing needs.

The IoT and 6G components will act as the backbone for real-
time data collection and connectivity within this framework. IoT
devices, from wearable fitness trackers to environmental sensors,
will capture a constant stream of data in order to offer a holistic

view of the patient’s health and surroundings. These devices
will monitor essential health metrics, environmental factors, and
behavioral data, which will inform AGI-driven recommendations
and provide actionable insights for both patients and providers.
With 6G connectivity, these data streams will be transmitted
instantly. Delays will be eliminated and real-time intervention
will be enabled. This connectivity will ensure that patients receive
prompt alerts and recommendations, whether they need to adjust
a medication dosage, avoid a particular location due to high
pollution, or hydrate during a heatwave. The high-speed, low-
latency capabilities of 6G will make these instantaneous responses
possible and will create a seamless flow of information that
enhances patient safety and care quality.

To make this vision a reality, robust policy and infrastructure
development are essential to support widespread access to hyper-
personalized, IoT-enabled healthcare. Policymakers must focus on
creating an inclusive digital infrastructure that enables access to IoT
devices and 6G connectivity across socioeconomic backgrounds
and geographic regions. Investment in public infrastructure will be
crucial, particularly in underserved rural and urban areas where
limited access to technology could create disparities in healthcare
access. By prioritizing the deployment of these technologies in
underserved communities, governments and private entities can
work together to ensure that hyper-personalized healthcare is
accessible to all, rather than an exclusive privilege for those in
well-resourced regions. Subsidies for IoT devices and healthcare
services could be another viable option to bridge the gap in access,
making it feasible for low-income individuals to benefit from these
advancements in healthcare technology.

Developing this framework also requires collaboration between
healthcare providers, technologists, and regulatory bodies to
address ethical and practical challenges associated with hyper-
personalized medicine. Privacy and security concerns, for example,
must be at the forefront of policy development, as IoT and
6G networks generate extensive personal health data that must
be protected rigorously. Decentralized storage solutions, robust
encryption, and user control over data access can help mitigate
privacy risks, allowing patients to participate in data sharing with
confidence. Additionally, establishing ethical guidelines for data use
and access is essential to building a trustworthy healthcare system,
where patients feel that their personal information is handled with
integrity. Regulatory bodies will need to establish clear policies that
enforce these standards, ensuring that all stakeholders prioritize
patient privacy and security in the design and implementation of
hyper-personalized healthcare technologies.

To realize a truly equitable and effective Healthcare 5.0

model, a focus on human-centered care and resilience is
necessary. Hyper-personalized medicine inherently aligns with
the goals of the European Commission’s Industry 5.0 framework,
which emphasizes sustainability, human-centric approaches, and
adaptability. Healthcare 5.0, as a parallel framework, would build
on these principles, prioritizing not only individualized care
but also environmental consciousness and the capacity to adapt
to global health challenges. By utilizing resources responsibly
and minimizing waste, Healthcare 5.0 can maintain a focus on
sustainability, addressing the health of the planet alongside the
health of the individual. This approach acknowledges that human
health is inextricably linked to environmental health, and by
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minimizing the environmental impact of healthcare technologies,
we can promote a system that supports both planetary and
personal resilience.

Promoting health equity is a key component of Healthcare 5.0,
as the risks of exacerbating health disparities through advanced
technologies must be acknowledged and addressed. For hyper-
personalized medicine to be universally beneficial, policymakers
and healthcare providers need to ensure that the advantages of IoT,
6G, quantum computing, and AGI reach underserved populations.
Affordable and accessible healthcare solutions, powered by these
technologies, should become a priority for public health initiatives.
Additionally, implementing inclusive technology design, such as
multilingual support and intuitive interfaces, will enable broader
participation in hyper-personalized healthcare, ensuring that
individuals of all backgrounds and abilities can benefit from these
innovations. Policymakers must advocate for equitable resource
allocation and accessible infrastructure to minimize the healthcare
divide and maximize the societal benefits of Healthcare 5.0.

To achieve this vision, a collaborative approach is essential.
Policymakers, healthcare providers, researchers, and technology
developers need to come together to align their efforts, working
within a shared framework of objectives and ethical guidelines.
Interdisciplinary partnerships can drive innovation, creating a
healthcare system that integrates emerging technologies into a
cohesive and human-centered model. Educational initiatives can
also play a role in supporting this transition, as healthcare providers
and patients alike will need to understand how to engage with these
new technologies effectively. Training programs for healthcare
professionals in AGI, quantum computing, IoT, and 6G will be
crucial to ensure that they can use these tools to their full potential,
while public health campaigns can raise awareness about the
benefits and responsibilities of hyper-personalized healthcare.

8.1 How do we get there?

Achieving this advanced model of healthcare requires clear
action steps from each stakeholder involved. First, governments
must prioritize digital infrastructure investments to lay the
groundwork for widespread IoT and 6G deployment, especially
in under-resourced areas. Healthcare institutions and technology
companies should work collaboratively to develop secure data-
sharing frameworks that protect patient privacy while allowing
the necessary data flow for personalized care. Research and
development in quantum computing and AGI must also continue
at a rapid pace, focusing on scalable, cost-effective applications that
align with the needs of the healthcare sector.

Meanwhile, healthcare providers should begin integrating
IoT-enabled devices into their practices, familiarizing themselves
with data from wearables and environmental sensors to create
more comprehensive patient profiles. Educational institutions
should incorporate AGI, IoT, and quantum computing concepts
into medical training programs, preparing future healthcare
professionals to operate in a hyper-personalized, technology-driven
environment. Developing partnerships with tech companies and
research institutions will accelerate this process, as interdisciplinary
collaboration is essential to creating a healthcare system that
integrates cutting-edge technologies seamlessly.

A crucial next step involves engaging patients and the
public. Effective communication about the benefits of hyper-
personalized medicine, as well as transparent explanations of
data use and security, can foster trust and willingness to
participate in this healthcare model. Public health campaigns
and community workshops can demystify these technologies,
addressing potential concerns and showcasing the ways hyper-
personalized care can enhance quality of life. Such engagement
is particularly important for marginalized communities that may
have historically experienced healthcare disparities.

8.2 A call to action

In conclusion, hyper-personalizedmedicine has the potential to
revolutionize healthcare by integrating quantum computing, AGI,
IoT, and 6G into a comprehensive and human-centered model.
However, realizing this vision requires more than technological
advancement; it demands a commitment to equity, ethical
responsibility, and resilience. We call on all stakeholders, from
policymakers and healthcare providers to technologists and
patients, to contribute to building a healthcare system that
prioritizes individual wellbeing, environmental sustainability, and
universal access. This endeavor represents a collective effort, where
each sector’s actions influence the development and success of
hyper-personalized medicine.

By aligning our goals with the Healthcare 5.0 framework,
we can ensure that the innovations we create not only enhance
individual care but also foster a sustainable and resilient healthcare
infrastructure. Let us seize this opportunity to redefine healthcare,
transforming it into a system that supports the health of every
individual while addressing the broader challenges of our global
environment. Together, we can pave the way toward a future where
healthcare is truly personalized, equitable, and prepared tomeet the
needs of a changing world.
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