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Editorial on the Research Topic

Spatial epidemiology

Spatial epidemiology is a branch of epidemiology that focuses on the analysis

of geographic variations in disease with respect to the distribution of demographic,

environmental, behavioral, and socioeconomic risk factors (1). It involves analyzing spatial

data to identify spatial clusters of health events, understand the influence of place and

space on health outcomes, and assess the effectiveness of public health interventions (2).

Recent advances in data availability and analytical methods have created new opportunities

to improve research on both chronic non-communicable and infectious diseases.

Chronic non-communicable diseases

With the rapid development of spatial technology, research exploring determinants

of chronic non-communicable diseases has been not only on traditional non-spatial

factors (e.g., lifestyle behaviors), but increasingly on spatial factors (e.g., natural and

built environments) (3–5). We can now collect multi-source data about various types of

environments with unprecedented precision and breadth, for example, from air quality

monitoring stations, remote sensing images, social media carrying public opinions, and

wearable sensors, which have formed a rich, complex information network. For example,

a recent U.S. study estimated the negative health impacts of PM2.5 in Texas by using

a software that, developed by the U.S. Environmental Protection Agency (EPA), uses a

variety of exposure-response functions to integrate air pollutant, population, disease, and

death data for health effect estimation at fine spatial scales (Bryan and Landrigan). This

study found that, although the levels of PM2.5 concentration across most of the states

complied with the EPA standards, at least 4.3% of the statewide premature deaths in 2016

could be attributed to PM2.5; moreover, PM2.5 was positively associated with the mortality

of stroke, low birth weight, non-fatal lung cancers, Alzheimer’s disease, and asthma. A

major limitation is the uncertainty in the estimation of PM2.5 concentrations for regions

with insufficient PM2.5 monitoring stations, which implies the importance and necessity

of improving the existing modeling approaches for estimating the concentration of and

exposure to PM2.5 with as high accuracy as possible (6).
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Public health event monitoring tools on the basis of Internet

search data are another set of popular, also low-cost, spatial

epidemiological methods worthy of investigation. For example, the

Baidu Index can quantify the search volume of specific keywords

in a certain geographical area within a given time range, with a

higher value indicating a higher level of popularity for the keyword.

A recent Chinese study used the Baidu Index and data from the

China’s Health Statistical Yearbook to generate the heatmaps and

estimate the national prevalence of asthma from 2011 to 2020, with

the assumption that a higher Baidu Index value for the keyword

“asthma” reflects a greater public concern and interest in asthma

(Li et al.). Based on the Baidu Index and discharged records of

1,733,515 asthma patients, this study investigated the prevalence of

asthma and its variations in the incidence across different regions.

The prevalence of asthma from 2011 to 2020 and the hospitalization

expenses for asthma increased while the length of hospital stay

decreased. Although the asthma data were not actual real-world

data, this study still provided an objective method based on internet

search data to reflect the regional asthma prevalence.

Infectious diseases

Spatial heterogeneities of natural and socioeconomic factors

may underlie the variations in the incidence of infectious diseases

(7). Furthermore, some spatial factors, such as population density

and human mobility, are also related to the transmission and

early detection of infectious diseases, such as COVID-19 (8, 9).

Hence, spatial epidemiology needs to consider new indicators and

methods for reducing inaccurate estimation and prediction. For

example, a recent U.S. study collected daily PM2.5 concentrations

and daily numbers of COVID-19 cases in 49 states during 2020–

2021, to analyze temporal changes in the association between PM2.5

and COVID-19 incidence and the variations of the association

across states, by combining a time-varying time-series generalized

additive model with a Leroux-conditional-autoregression (LCAR)

(Liu et al.). This study found that each 1 µg/m3 increase in the

daily PM2.5 concentration was associated with a 0.92% increase in

COVID-19 incidence, which exhibited significant spatiotemporal

heterogeneities with stronger associations in the eastern and

middle regions and with a U-shaped temporal change. Another

Spanish study used six human mobility datasets (two individual

movement datasets from social media and four individual trip

datasets from the Spanish Ministerio de Transportes) and three

meteorological datasets from satellite data (temperature, humidity,

and ultraviolet radiance), to analyze the joint effect of human

mobility and meteorological factors on the spreading of COVID-

19 in 48 provinces during August 2020 to March 2021 (Conesa

et al.). This study found a significant joint effect of mobility and

meteorological factors on the increasing incidence of COVID-

19 cases, while neither mobility nor meteorological factors were

significantly associated with COVID-19 incidence.

Similarly, a Chinese study of the 3,710,962 bacillary dysentery

(BD) cases from China CDC estimated the short-term association

between monthly average temperature (MAT) and BD, introducing

an innovative approach to address spatial heterogeneities by

leveraging spatial autocorrelation (Wang et al.). This study first

used a generalized additive model to independently estimate

the province-specific association between MAT and BD. Then,

a Leroux-prior-based conditional autoregression strategy was

applied to spatially smooth the association and characterize

its spatial distribution, accurately estimating the short-term

association between MAT and BD. Compared with the existing

methods, this method could enhance the accuracy of estimation in

multi-city studies by considering spatial autocorrelation. Moreover,

they found that the relative risks of BD in western provinces of

China was higher than those in eastern provinces, which could

provide scientific evidence for allocating public health resources in

the future. However, a major limitation of this study is that the

association between MAT and BD could not be estimated on a

fine temporal or spatial scale, which implies the importance and

necessity of improving the current spatial methods for estimating

the individual exposure assessment.

Outlook for future studies

Spatial epidemiology offers a powerful lens for understanding

the distribution and burdens of chronic non-communicable and

infectious diseases, and recent studies have further advanced

this field. As we move forward, continuous innovation and

interdisciplinary collaboration remain essential in refining our

understanding of environmental health dynamics and improving

public health outcomes. Future spatial epidemiological studies

should focus on integrating multi-source data and exploring

new methods (e.g., artificial intelligence) to address the current

challenges (10).
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