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Introduction: Public health interventions increasingly integrate multimodal data

sources, such as Electroencephalogram (EEG) data, to enhance monitoring and

predictive capabilities for mental health conditions. However, traditional models

often face challengeswith the complexity and high dimensionality of EEG signals.

While recent advancements like Contrastive Language-lmage Pre-training(CLIP)

models excel in cross-modal understanding, their application to EEG-based tasks

remains limited due to the unique characteristics of EEG data.

Methods: In response, we introduce PH-CLIP (Public Health Contrastive

Language-lmage Pretraining), a novel framework that combines CLIP’s

representational power with a multi-scale fusion mechanism designed

specifically for EEG data within mobile health technologies.PH-CLIP employs

hierarchical feature extraction to capture the temporal dynamics of EEG signals,

aligning them with contextually relevant textual descriptions for improved

public health insights. Through a multi-scale fusion layer, PH-CLIP enhances

interpretability and robustness in EEG embeddings, thereby supporting more

accurate and scalable interventions across diverse public health applications.

Results and discussion: Experimental results indicate that PH-CLIP achieves

significant improvements in EEG classification accuracy and mental health

prediction e�ciency compared to leading EEG analysis models. This framework

positions PH-CLIP as a transformative tool in public health monitoring, with the

potential to advance large-scale mental health interventions through integrative

mobile health technologies.

KEYWORDS

public health interventions, PH-CLIP, EEG signal analysis, multi-scale fusionmechanism,

mobile health technologies

1 Introduction

The need for robust, scalable, and interpretable systems to analyze and interpret
electroencephalography (EEG) signals in public health applications has become
increasingly critical. EEG provides a non-invasive, real-time monitoring approach,
especially useful for mental health and neurological assessments (1). However, traditional
approaches to EEG analysis are challenged by the complex, high-dimensional nature of
EEG data, and the requirements for high accuracy and generalizability across diverse
populations (2). PH-CLIP (Public Health Contrastive Language-Image Pretraining) with
multi-scale fusion on EEG is proposed to enhance the scalability and precision of EEG
interpretation by leveraging recent advances in multi-modal andmulti-scale deep learning.
This approach not only addresses issues of scalability but also aims to improve cross-
population generalization by incorporating scalable contrastive language-image models
(CLIP) adapted for EEG data, ultimately offering a powerful tool for large-scale public
health monitoring and intervention (3).
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To address the limitations of early symbolic AI and knowledge-
based representations, traditional methods were initially used
to analyze EEG data through symbolic reasoning and rule-
based systems. These methods attempted to capture and encode
domain knowledge, often using rule-based expert systems and
symbolic models that were carefully curated by neurologists and
psychologists (4). Such symbolic systems excelled in structured
settings, where domain expertise could be meticulously encoded
into rule sets for specific, controlled use cases (5). Despite
these advantages, however, they were inherently limited in their
scalability and adaptability, especially when applied to diverse
EEG data in real-world public health settings. The rigid structure
of symbolic systems often failed to generalize across different
populations and evolving datasets, as the rules required constant
refinement to handle variations in EEG signal patterns, thus
constraining their utility in large-scale public health applications.

The evolution toward data-driven approaches and machine
learning methods brought more flexibility and data-adaptiveness to
EEG analysis. In this stage, researchers utilized traditional machine
learning models such as support vector machines (SVMs) (6),
k-nearest neighbors (KNN) (7), and random forest Hu et al.’s
(8), applying these models to extract meaningful features from
EEG signals for various health monitoring tasks. Machine learning
techniques allowed for greater data-driven adaptability, as models
could be trained on specific datasets and applied to classify or
detect mental health states or neurological disorders (9, 10).
Despite this adaptability, these approaches were limited by their
reliance on feature engineering, requiring domain expertise to
manually design features from raw EEG signals. Consequently,
while machine learning methods provided more scalability than
symbolic systems, they were still labor-intensive and often struggled
with generalizability when exposed to large, heterogeneous datasets
common in public health research.

The recent advances in deep learning and the development
of pre-trained models like CLIP have further revolutionized
the field, enabling more robust, automated feature extraction
and interpretation across large, varied EEG datasets. Deep
learning models, particularly convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), have shown
significant promise in EEG interpretation by learning complex,
hierarchical patterns directly from raw data. The introduction
of multi-scale fusion techniques further improves these models,
allowing for the combination of temporal and spatial features
across multiple scales of EEG data, thereby enhancing model
robustness and interpretability (11). Despite their effectiveness,
these models often face issues related to scalability, particularly
when extended to population-level datasets, and they require
substantial computational resources (12). Pre-trained models like
CLIP, designed for contrastive learning on image and text data,
represent a novel opportunity to bridge this gap by enabling
multi-modal fusion of EEG data with language representations,
thus opening new possibilities for scalable, interpretable public
health applications.

Given the limitations discussed above, PH-CLIP introduces a
novel framework that combines multi-scale fusion with contrastive
learning to address the scalability, adaptability, and interpretability
challenges inherent in EEG analysis. Unlike traditional EEGmodels
that often focus on single-scale features or require extensive feature

engineering, PH-CLIP leverages a modified CLIP-based framework
to process EEG data, enabling seamless integration of information
across multiple spatial, temporal, and cross-modal scales. This
multi-scale fusion allows the model to dynamically capture both
localized neural patterns and broader spatiotemporal dynamics,
providing a more nuanced representation of EEG signals. A key
innovation of PH-CLIP lies in its ability to align EEG data with
auxiliary modalities, such as contextual or textual information,
through contrastive learning. This alignment not only enhances
interpretability by linking neural activity to meaningful outcomes
but also improves generalizability across diverse populations and
datasets. These advancements make PH-CLIP uniquely suited
for large-scale, real-world public health applications, where
datasets are often heterogeneous and require robust adaptability.
By integrating multi-scale fusion and contrastive learning into
a unified framework, PH-CLIP transcends the limitations of
existing EEG models, such as constrained scalability or limited
interpretability. Its design ensures scalability for large datasets,
adaptability to diverse populations, and accessibility for public
health monitoring systems, paving the way for innovative and
effective EEG-based interventions in real-world settings.

The PH-CLIP approach presents the following advantages:

• It introduces a new multi-scale fusion module, enabling
simultaneous analysis of EEG data across temporal and spatial
scales for improved interpretability and robustness.

• The method demonstrates high adaptability across different
scenarios and populations, showing potential for efficient,
scalable use in public health applications.

• Experimental results indicate significant improvements in
cross-population generalization and interpretability, making it
suitable for diverse public health monitoring needs.

2 Related work

2.1 Contrastive learning for EEG-based
health applications

Contrastive learning has emerged as a transformative approach
in the development of scalable and robust machine learning
models, particularly within healthcare applications leveraging
electroencephalography (EEG) data (10). The core concept of
contrastive learning involves learning meaningful representations
by differentiating between similar and dissimilar pairs in a
given dataset, often under the CLIP (Contrastive Language-Image
Pretraining) framework, which aligns multimodal data, such as
text and images, in a shared embedding space. Applying CLIP to
EEG data for public health monitoring involves unique challenges
and adaptations, especially due to the high-dimensional, noise-
sensitive, and temporally dynamic nature of EEG signals. Previous
studies have shown promising results by adapting contrastive
learning frameworks to capture specific health-related patterns,
such as identifying biomarkers for neurological disorders, stress
levels, sleep stages, or emotional states (13). The PH-CLIP model
introduces scalability within the CLIP framework by incorporating
multi-scale fusion techniques, which are essential for effectively
capturing the multi-dimensional complexity of EEG data. This
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approach aligns with prior works that emphasize the necessity
of multi-scale data integration, as EEG signals inherently contain
features at different temporal resolutions that are relevant for
various health indicators (14). The success of applying contrastive
learning on EEG largely depends on effectively capturing both
global and local features, and multi-scale fusion facilitates this
by integrating features at different resolutions. This capability
allows PH-CLIP to generalize across diverse EEG datasets, which
is particularly advantageous in public health contexts where
EEG-based insights might need to be adapted across varying
demographic or health profiles (15). The use of contrastive learning
in EEG-based health applications also requires addressing signal-
specific challenges, such as artifact removal, feature extraction,
and inter-subject variability. Studies have implemented several
preprocessing and augmentation techniques, including Fourier
transforms, wavelet decompositions, and other domain-specific
transformations, to improve signal fidelity and robustness of
learned representations. These methods reduce noise and ensure
that the model learns from pertinent patterns, thereby enhancing
its scalability across different tasks within public health. The PH-
CLIP model’s design considers these challenges by integrating
multi-scale fusion, thereby aligning with the latest advancements
in contrastive learning frameworks for healthcare applications that
focus on resilience to data variability and noise while capturing
meaningful health signals (16).

2.2 Multi-scale fusion techniques for
temporal data

Multi-scale fusion techniques have gained significant traction
in the context of temporal data analysis, especially where datasets
exhibit features across multiple time resolutions. For EEG data,
which is characterized by high temporal and frequency dynamics,
multi-scale fusion serves as a powerful tool to integrate signals
captured at different scales, such as short-term oscillations and
long-term trends. This is critical in applications involving public
health, where EEG data is analyzed to monitor conditions that
manifest across varied temporal resolutions, from immediate
stress responses to long-term cognitive decline. Integrating multi-
scale fusion with contrastive frameworks like CLIP is particularly
promising, as it allows the model to learn representations that
retain coherence across these diverse temporal scales (17). In the
case of PH-CLIP, the multi-scale fusion mechanism captures EEG
patterns across resolutions, thus enhancing the model’s capability
to distinguish between meaningful signals and background noise.
This technique is achieved by first transforming EEG data into
representations at various scales, often through down-sampling
or spectral filtering techniques, followed by a hierarchical fusion
process that aggregates features into a cohesive representation.
Prior studies in other fields, such as speech recognition and
activity monitoring, have shown that multi-scale fusion enhances
robustness and feature richness by aligning information from
short and long time spans. For EEG applications, this method
allows for an adaptable model structure that accommodates
both immediate and cumulative health indicators (18). Beyond
EEG, multi-scale fusion methods have been explored in other

temporal data domains, indicating their broad applicability and
utility. Methods such as convolutional and recurrent neural
networks, combined with attention mechanisms, have been shown
to improvemulti-scale processing in fields where complex temporal
dependencies exist. In EEG data analysis for public health, these
methods enable a more nuanced understanding of brain activity,
supporting predictive modeling of health outcomes (19). PH-CLIP
leverages these techniques to address the inherent complexity of
EEG signals and aims to improve generalization across diverse
health contexts. The integration of multi-scale fusion within PH-
CLIP establishes a scalable model architecture that can potentially
support applications from individual health monitoring to broader
epidemiological studies (20).

2.3 Applications of CLIP in public health
monitoring

Contrastive learning frameworks, particularly the CLIP model,
have shown substantial potential for enhancing public health
monitoring by enabling scalable, cross-modal representations of
health-related data. The CLIP model’s original design aligns textual
and visual information, but adaptations for EEG data can allow
the alignment of EEG signals with other health-related data types,
such as clinical annotations or demographic information. By
employing the PH-CLIP model in this context, researchers and
public health professionals could leverage a unified model that
draws on rich EEG signals to produce health insights relevant
to diverse monitoring needs, including early detection of mental
health conditions, stress assessment, or cognitive state analysis
(21). Adaptations of CLIP for public health applications have been
explored by aligning biomedical signals with complementary data
modalities to facilitate comprehensive health assessments. In EEG
analysis, this approach can capture associations between brain
activity patterns and reported health outcomes, thus enabling a
cross-modal understanding of health conditions. The application of
such a model in public health has implications for large-scale, non-
invasive monitoring systems that could be deployed in community
or clinical settings to monitor mental health trends or the impact
of environmental stressors on neurological health. PH-CLIP’s
design, focusing on scalability and multi-scale fusion, enhances this
applicability by allowing robust EEG representation across varied
health contexts, making it particularly suited for generalizable
public health insights (22). Previous research on public health
applications of CLIP has also focused on the challenge of model
interpretability, especially given the need for transparent models
in health contexts. Adaptations such as explainable AI (XAI)
techniques can be integrated with PH-CLIP to interpret which
EEG features contribute to specific health predictions, thereby
supporting actionable insights for public health interventions. This
interpretability is critical in understanding the specific neurological
markers that may indicate cognitive decline, emotional stress, or
other health states relevant to public health. Overall, PH-CLIP’s
scalability and interpretability make it a promising approach for
deploying CLIP models in public health settings, supporting large-
scale and accessible health monitoring systems that adapt to the
diverse needs of a population (23).
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2.4 Advances in multi-modal EEG data
integration

Recent years have witnessed significant progress in EEG
data analysis, particularly in the integration of multi-modal
data to enhance robustness, interpretability, and generalizability.
Traditional EEG analysis methods primarily rely on single-modal
feature extraction, focusing on temporal or spectral characteristics
of neural signals. While these approaches have achieved notable
success in applications such as mental health monitoring and
cognitive state recognition, they often fail to capture the contextual
and environmental factors influencing EEG signals, limiting their
applicability in real-world scenarios. One promising direction
involves the integration of auxiliary data modalities, such as textual,
visual, or physiological signals, to complement EEG analysis. For
example, Gaidai and Yihan (24) proposed a fusion framework
combining EEG and eye-tracking data for improved emotion
recognition, demonstrating that cross-modal feature alignment
enhances model performance in complex tasks. Similarly, Han et al.
(25) utilized speech and EEG data jointly to analyze cognitive
workload, highlighting the potential of multi-modal integration
to capture subtle interactions between brain activity and external
stimuli. Deep learning methods, particularly those leveraging
attention mechanisms, have played a pivotal role in advancing
multi-modal EEG integration. Transformer-based architectures, as
explored in Gaidai et al. (26), align EEG features with video data
to understand affective states in dynamic environments. However,
these models often face challenges related to computational
efficiency and overfitting in small datasets. Graph Neural Networks
(GNNs), such as those used in Qeadan et al. (27), have also shown
promise by modeling spatial dependencies between EEG electrodes
and correlating them with auxiliary data sources, such as motion or
heart rate. Despite these advances, existing models often struggle
with scalability and generalizability across diverse populations
and datasets. Many approaches require extensive pre-processing
or domain-specific feature engineering, which hinders their
deployment in real-world applications. Moreover, multi-modal
alignment techniques often lack interpretability, making it difficult
to derive actionable insights from the integrated features. To
address these limitations, PH-CLIP leverages a contrastive learning
framework modified for EEG data, enabling robust alignment of
EEG features with auxiliary modalities such as textual or contextual
information. By integrating multi-scale fusion with cross-modal
learning, PH-CLIP captures the complex interactions between
neural activity and external factors, ensuring adaptability and
scalability for large-scale public health applications. This positions
PH-CLIP as a significant advancement over existing methods,
offering a unified framework for EEG-based multi-modal analysis.

3 Method

3.1 Overview

In this section, we present an innovative forecasting framework
specifically designed to address challenges in public health
prediction. The framework leverages multi-modal data sources,
advanced neural architectures, and specialized strategies for

bias mitigation and model interpretability. The approach
is structured into several key modules, each contributing
a specialized component to ensure accurate, resilient, and
meaningful forecasting in the context of public health. In the
subsequent sections, we first detail the Mathematical Formulation
of our forecasting problem. This includes a comprehensive
definition of public health parameters, such as epidemiological
variables, social determinants, and health system factors, which are
represented within a high-dimensional, multi-modal data space.
We introduce notation to formalize the relationships between
input features, health outcomes, and temporal dependencies,
ensuring the setup for a robust predictive modeling approach.
Following this foundational setup, we introduce the Proposed
Model Architecture. Our model, denoted as HealthNet, combines
features from recurrent neural networks (RNNs), transformers,
and graph-based layers to capture complex interactions between
epidemiological, social, and behavioral variables. The model
design is optimized for flexibility across various public health
datasets and incorporates mechanisms to handle both structured
and unstructured data sources. HealthNet integrates attention
mechanisms to prioritize critical features dynamically, allowing for
nuanced handling of time-series data in public health applications
(as shown in Figure 1).

We then elaborate on the Prediction Enhancement Strategies,
which further bolster our model’s capabilities in real-world
scenarios. These strategies include domain-specific adjustments,
such as debiasing methods to mitigate the impact of socioeconomic
and demographic disparities that can skew health outcomes.
Additionally, we describe a fine-tuning procedure tailored for
adapting the model to varying levels of data sparsity and noise,
a common challenge in public health data. Finally, we provide
a comprehensive summary of Implementation and Optimization
Techniques applied to our model. These techniques encompass
parameter tuning, model validation protocols, and specific metrics
used to evaluate forecast accuracy in public health contexts.We also
discuss interpretability strategies employed to make HealthNet’s
predictions accessible and actionable for public health professionals
and policymakers. Through this structured approach, the proposed
framework offers a comprehensive solution for public health
forecasting, designed to adapt to diverse datasets and address
real-world forecasting challenges effectively.

3.2 Preliminaries

In this section, we formalize the public health forecasting
problem and establish the mathematical notation and structures
necessary for the proposed framework. Our objective is to predict
specific health outcomes, such as disease incidence, hospitalization
rates, or mortality, based on a set of epidemiological, social,
and environmental indicators. The challenge involves capturing
complex dependencies across time and between different indicators
while addressing issues related to data sparsity, heterogeneity, and
potential biases inherent in public health data.

Let X = {xt}Tt=1 denote a sequence of multi-dimensional input

vectors, where xt = {x(1)t , x(2)t , . . . , x(M)
t } represents the vector of M

features observed at time t. Each feature x(m)
t captures information
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FIGURE 1

Diagram of HealthNet, an advanced multi-modal forecasting framework for public health prediction, integrating neural architectures like RNNs,

transformers, and graph-based layers. The model processes data from multiple modalities—text, audio, and visual—via specialized feature fusion and

cross-feature attention mechanisms to capture complex epidemiological and social interactions. Designed for flexibility, HealthNet incorporates

attention layers to prioritize key features and applies bias mitigation techniques to address socioeconomic and demographic disparities, ensuring

accurate, interpretable public health forecasts.

relevant to public health, such as the number of reported disease
cases, environmental factors, or sociodemographic characteristics.
For each time step t, we aim to predict a health outcome variable
yt , which could represent disease incidence, hospitalization rates,
or other health indicators of interest.

The public health forecasting task can be framed as finding
a function f that maps the historical data X to the predicted
outcomes Y = {yt}Tt=1 over the observed time horizon T.
Mathematically, we seek:

ŷt = f (xt , xt−1, . . . , xt−L), (1)

where L is the window size for historical data considered in
each prediction. The function f is designed to capture temporal
dependencies and correlations between different input features,
allowing the model to adapt to dynamic changes in public
health conditions.

Public health outcomes often exhibit temporal autocorrelation,
where past values significantly influence future predictions. We
model these dependencies through sequential inputs xt−L : t ,
where xt−L : t denotes the concatenated vectors {xt , xt−1, . . . , xt−L},
capturing the recent history of feature observations.

Let X(m) = {x(m)
t }Tt=1 represent the time series for feature

m over the entire time horizon. We hypothesize that specific
interactions between these features, such as the influence of
environmental conditions on disease spread, play a crucial role in
accurate forecasting. We therefore define cross-feature dependency
functions φm, such that:

z
(m)
t = φm(x

(1)
t , x(2)t , . . . , x(M)

t ), (2)

where z(m)
t denotes a transformed representation of feature m that

incorporates information from other features at time t.
To allow the model to adaptively focus on the most relevant

time points and features, we introduce an attention mechanism
α
(m)
t,τ , where τ denotes a lagged time step relative to t. The attention

weights α
(m)
t,τ satisfy

∑L
τ=0 α

(m)
t,τ = 1, and are computed as:

α
(m)
t,τ =

exp(e(m)
t,τ )

∑L
τ ′=0 exp(e

(m)
t,τ ′ )

, (3)

where e(m)
t,τ is a score function that evaluates the relevance of the past

time point t− τ for predicting yt based on featurem. The output of
the attention mechanism, x̃(m)

t , is computed as:

x̃
(m)
t =

L
∑

τ=0
α
(m)
t,τ x

(m)
t−τ . (4)

Given the spatial dependencies often observed in public health
data, we define an undirected graphG = (V ,E), whereV represents
locations and E denotes edges representing relationships. Each
node v ∈ V is associated with a vector xv of health indicators
specific to that location. The influence of neighboring locations
u ∈ N (v) on location v at time t is captured as:

hv,t =
∑

u∈N (v)

wuvxu,t , (5)

where wuv is a weight capturing the strength of the interaction
between nodes u and v. This graph structure allows us to model
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region-specific factors and their impacts on local health outcomes,
capturing patterns of spatial dependency.

To optimize the forecasting accuracy, we define a prediction
loss L(ŷt , yt) that measures the error between the predicted and
actual outcomes. A common choice is mean squared error (MSE):

L(ŷt , yt) =
1

T

T
∑

t=1
(ŷt − yt)

2. (6)

This loss is minimized over the training set to tune the parameters
of the function f , ensuring that the model learns accurate temporal
and feature-based dependencies for public health forecasting.

3.3 HealthNet model architecture

Our proposed model, termed HealthNet, is designed to capture
the intricate temporal, spatial, and cross-feature relationships
present in public health data. HealthNet leverages a hybrid
architecture combining recurrent neural networks (RNNs),
transformer-based attention layers, and graph convolutional
networks (GCNs) to account for temporal dependencies,
contextual relevance, and spatial correlations, respectively. This
section provides a detailed description of HealthNet’s components
and their integration to achieve accurate and interpretable
forecasting in public health settings. The HealthNet model
consists of three main modules: Temporal Encoding, Cross-feature
Attention Layer, and Graph-based Spatial Aggregation.

Temporal encoding

In our temporal encoding framework, we utilize amulti-layered
recurrent neural network (RNN) model to capture the complex
sequential dependencies within public health data, where historical
observations often impact future outcomes significantly. Each
temporal step contains multiple features, and the RNN encodes
these into hidden states over time. Let z(k)t denote the hidden state
at time t for feature k. This state evolves recursively based on the
previous hidden state z(k)t−1 and the current input y

(k)
t , as formulated:

z
(k)
t = RNN(y(k)t , z(k)t−1; γRNN), (7)

where γRNN represents the learned parameters of the RNN
model. The hidden state z

(k)
t captures the temporal dependencies

for feature k across past intervals, progressively updating to
incorporate new information with each time step. By stacking
multiple RNN layers, the model can aggregate high-level temporal
dependencies, enhancing its capacity to understand long-range
patterns (as shown in Figure 2).

To further optimize feature relevance dynamically, a temporal
attention mechanism is introduced, assigning importance scores
β
(k)
t to the hidden states based on their significance for the

prediction target. The attention score calculation integrates an
alignment mechanism over hidden states, represented by:

β
(k)
t =

exp(q⊤ · tanh(Qzz
(k)
t + cz))

∑

t′ exp(q
⊤ · tanh(Qzz

(k)
t′ + cz))

, (8)

where Qz and cz are learnable matrices and biases, and q is a
weight vector that projects hidden states into an attention-relevant

domain. This mechanism ensures that more informative hidden
states contribute proportionally to the model’s temporal context.

The temporal context vector, st , is generated by combining
the hidden states with their respective attention scores, effectively
summarizing relevant temporal information as:

st =
∑

k

β
(k)
t z

(k)
t , (9)

where st is then used as input to the prediction layer. This context
vector adapts dynamically to the data at each time step, allowing the
model to focus on the most critical temporal signals.

To capture both short-term and long-term dependencies
effectively, we add a gating mechanism in the RNN hidden state
computation. Let g(k)t denote a forget gate and i

(k)
t an input gate,

controlling the memory retention and update dynamics:

g
(k)
t = σ (Wgy

(k)
t + Ugz

(k)
t−1 + bg), (10)

i
(k)
t = σ (Wiy

(k)
t + Uiz

(k)
t−1 + bi), (11)

where σ is the sigmoid activation, and Wg ,Wi,Ug ,Ui, bg , bi are
learnable parameters. The updated hidden state then integrates
both the gated prior state and new input information:

z
(k)
t = g

(k)
t ⊙ z

(k)
t−1 + i

(k)
t ⊙ tanh(Wzy

(k)
t + Uzz

(k)
t−1 + bz), (12)

where ⊙ denotes element-wise multiplication, ensuring that each
hidden state incorporates both immediate and historical data. This
refined temporal encoding approach enables more robust and
context-sensitive predictions.

Cross-feature attention layer

HealthNet incorporates a specialized cross-feature attention
layer that dynamically models interdependencies among public
health features, allowing the network to account for complex
interactions in health-related data. Recognizing that certain
features may amplify or attenuate the impact of others, this
attention mechanism enhances the model’s ability to adjust its
focus across features in response to changing conditions over
time. By attending to other features, each feature representation
can adaptively prioritize influential relationships, improving
predictive accuracy.

Let the set of feature embeddings at time t be denoted by
{h(1)t , h(2)t , . . . , h(M)

t }, where each h
(m)
t represents the embedding for

featurem. The cross-feature attentionmechanism calculates a set of
attention weights β

(m,m′)
t , which assign varying levels of influence

from feature m′ to feature m based on their current contextual
relevance. These weights are computed as:

β
(m,m′)
t =

exp

(

h
(m)
t ·h

(m′)
t

τ

)

∑

m′′ exp

(

h
(m)
t ·h

(m′′)
t

τ

) , (13)

where:

• β
(m,m′)
t represents the attention weight quantifying the

influence of featurem′ on featurem at time t.
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FIGURE 2

Diagram illustrating a two-stream encoding network for temporal data processing. The framework comprises an EGG signal encoding stream and a

temporal encoding stream, each utilizing convolution, max-pooling, and softmax operations to process input signals. These streams feed into an

adaptive fusion network that applies multiple transformations, including average-pooling, to integrate information across the channels. This

architecture captures both signal-specific and temporal dependencies, facilitating precise, and adaptive temporal encoding for downstream analysis.

• h
(m)
t and h(m

′)
t are the embeddings of featuresm andm′ at time

t, respectively.
• · denotes the dot product, which measures the similarity

between feature embeddings.
• τ > 0 is the temperature parameter that controls the

sharpness of the attention distribution:

◦ Smaller τ values concentrate attention on a few features by
amplifying the relative differences in similarity.

◦ Larger τ values distribute attention more evenly across
features by reducing sensitivity to similarity differences.

Once the attention scores β
(m,m′)
t are obtained, a cross-feature

context vector g(m)
t is generated for each featurem by summing the

influence-weighted embeddings of all other features:

g
(m)
t =

∑

m′
β
(m,m′)
t h

(m′)
t . (14)

This context vector g
(m)
t captures the aggregated influence

of the other features on feature m at the current time step. By
integrating g

(m)
t with the original embedding h

(m)
t , we obtain an

enhanced feature representation that reflects both the inherent
properties of m and the dynamically computed influence from
other features. This integration is formalized as follows:

h̃
(m)
t = λh

(m)
t + (1− λ)g(m)

t , (15)

where λ is a learnable parameter that adjusts the balance
between the original feature embedding h(m)

t and the cross-feature
context g(m)

t . This weighted sum allows the model to dynamically
modulate the influence of cross-feature information according to
the context, providing flexibility to focus on relevant interactions
without overriding feature-specific details.

Furthermore, an additional self-attention layer can be applied
to the enhanced representations h̃(m)

t to refine the model’s focus
across features further. This secondary attention mechanism
computes an updated representation for each feature that
incorporates second-order interdependencies:

α
(m)
t = exp(w⊤ · tanh(Whh̃

(m)
t + bh))

∑

m′ exp(w
⊤ · tanh(Whh̃

(m′)
t + bh))

, (16)

where Wh, bh, and w are learnable parameters that govern
the attention distribution across enhanced features. The resulting
representation leverages the dynamic inter-feature relationships
captured by the cross-feature attention, contributing to more
context-aware predictions that reflect both temporal dependencies
and feature interactions.

Graph-based spatial aggregation

Public health outcomes often exhibit strong spatial correlations
influenced by factors such as geographic proximity, population
mobility, and shared environmental conditions. For example,
infectious diseases may spread across neighboring regions, while
socioeconomic factors can lead to similar health outcomes in
proximate areas. To effectively capture these spatial dependencies,
HealthNet employs a Graph Convolutional Network (GCN)
layer that enables information exchange across interconnected
locations. The spatial relationships between regions are encoded
in a predefined adjacency matrix A, where each node represents
a geographic area, and edges capture spatial proximity, travel
patterns, or other linking factors.

For each geographic location v, the GCN layer aggregates
information from its neighboring regions u ∈ N (v) based on the
adjacency structure. This aggregation produces a spatial feature
vector sv,t at time t, which integrates information from nearby
locations into a unified representation. The aggregation process is

Frontiers in PublicHealth 07 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1520343
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2024.1520343

formulated as:

sv,t = σ





∑

u∈N (v)

Auv√
DvvDuu

Wghu,t + bg



 , (17)

where hu,t represents the feature embedding of neighboring
location u at time t, Auv specifies the connection strength between
locations u and v in the adjacency matrix, and Dvv and Duu

are degree matrix entries used to normalize the aggregation. The
parameters Wg and bg are learnable weights of the GCN, and σ (·)
is a non-linear activation function such as ReLU or sigmoid. The
normalized adjacency structure ensures stability and accounts for
varying connectivity across regions.

To capture higher-order spatial dependencies, a multi-hop
mechanism extends the aggregation process to include information
frommore distant regions. For a given location v, the spatial feature
vector at hop k, denoted as s(k)v,t , is recursively defined as:

s
(k)
v,t = σ





∑

u∈N (v)

Auv√
DvvDuu

W(k)
g s

(k−1)
u,t + b(k)g



 , (18)

where s
(0)
v,t = hv,t is the initial feature embedding for location

v, and W
(k)
g and b

(k)
g are learnable parameters for the k-th

hop. This recursive process enables the model to aggregate
information from both local and distant regions, incorporating
broader spatial contexts.

Multi-hop features are combined through a weighted sum to
produce the final spatial representation:

sv,t =
K
∑

k=0
α(k)s

(k)
v,t , (19)

where α(k) are learnable weights that determine the relative
importance of each hop. This adaptive weightingmechanism allows
the model to balance local and global influences, depending on the
spatial structure and the specific task requirements.

Prediction layer and loss function

The final prediction ŷt is generated by combining the outputs
from the temporal encoding, cross-feature attention, and spatial
aggregation layers, each of which contributes unique information
to the overall prediction. Specifically, the temporal context vector
ct encapsulates temporal dependencies, the cross-feature attention
vector gt models inter-feature relationships, and the spatial
aggregation vector st captures spatial correlations across locations.
By concatenating these vectors, the prediction layer can access
a rich, multi-dimensional representation of the data at time t.
Formally, the prediction ŷt is computed as:

ŷt = w⊤p
[

ct; gt; st
]

+ bp, (20)

where:

• ŷt represents the predicted health outcome at time t.
• ct is the temporal context vector, capturing sequential

dependencies and patterns from historical data.

• gt refers to the cross-feature context vector, modeling
interdependencies among features and dynamically adapting
based on their relationships.

• st represents the spatial aggregation vector, capturing spatial
correlations and influences from neighboring regions.

• [ct; gt; st] denotes the concatenation of the vectors,
integrating temporal, cross-feature, and spatial information
into a unified representation.

• wp is a learnable weight vector in the prediction layer,
responsible for mapping the combined features to the
predicted outcome.

• bp is a learnable scalar bias term that adjusts the prediction for
better fitting.

To train HealthNet, we aim to minimize the discrepancy
between the predicted values ŷt and the true values yt by optimizing
the parameters across the entire network. This is accomplished
through a mean squared error (MSE) loss function, defined as:

L = 1

T

T
∑

t=1
(ŷt − yt)

2, (21)

where T is the total number of time steps, and yt represents
the ground truth health outcome at time t. The MSE loss penalizes
large deviations between predictions and actual values, driving
the model to learn accurate patterns in temporal, spatial, and
feature-based dependencies.

To enhance model training, we also introduce regularization
terms to the loss function, addressing potential issues with
overfitting due to the complex, high-dimensional input space. The
augmented loss function is expressed as:

L = 1

T

T
∑

t=1
(ŷt − yt)

2 + λ1‖wp‖2 + λ2‖Wg‖2 + λ3‖Wh‖2, (22)

where λ1, λ2, and λ3 are regularization coefficients for the
prediction weights wp, spatial aggregation weights Wg , and cross-
feature attention weights Wh, respectively. These regularization
terms mitigate the risk of overfitting by constraining the magnitude
of the weights, promoting a more generalized and stable model.

In addition to MSE, we employ a temporal consistency
regularization that encourages stability in predictions across
consecutive time steps. This additional regularization term Ltemp

is defined as:

Ltemp =
1

T − 1

T
∑

t=2
(ŷt − ŷt−1)

2, (23)

where Ltemp penalizes abrupt changes in predicted values
across time steps, particularly useful in health forecasting
where outcomes typically evolve gradually. The final loss
function combining MSE, weight regularization, and temporal
consistency is:

Ltotal = L+ αLtemp, (24)
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where α is a balancing coefficient that controls the influence
of the temporal consistency term. This comprehensive loss
formulation enables HealthNet to learn from multi-dimensional
dependencies while preserving temporal smoothness, leading to
more robust and reliable health outcome forecasts.

Multi-scale fusion process

The multi-scale fusion mechanism integrates features across
both spatial and temporal dimensions to enhance robustness
and interpretability. Temporal features are extracted at multiple
resolutions by applying down-sampling and spectral filtering to the
raw temporal data, capturing short-term and long-term patterns.
A temporal attention mechanism is introduced to assign weights
to each resolution dynamically, where the weight for temporal
resolution t is calculated as:

α(t) = exp(e(t))
∑

t′ exp(e
(t′))

, (25)

and e(t) is a learnable scoring function. The aggregated temporal
features are computed as:

Xtemporal =
∑

t

α(t)X(t). (26)

Spatial features are processed using a Graph Convolutional
Network (GCN), where each node corresponds to a spatial location
and edges represent spatial relationships. The spatial feature at node
v for layer k is given by:

h(k)v = σ





∑

u∈N(v)

ÃvuW
(k)hu + b(k)



 , (27)

where Ãvu is the normalized adjacency matrix, W(k) is a
learnable weight matrix, and σ is a non-linear activation function.
To capture higher-order dependencies, multi-hop GCN layers are
applied, enabling interactions across multiple spatial hops:

s(k)v = σ





∑

u∈N(v)

Avu√
DvvDuu

W(k)s(k−1)u + b(k)



 . (28)

The spatial and temporal representations are combined
through an adaptive fusion mechanism, which dynamically adjusts
the contributions of each using a learnable parameter λ:

Xfused = λXtemporal + (1− λ)Xspatial. (29)

To further refine the representation, a hierarchical attention
mechanism is applied to prioritize specific scales and regions,
producing the final integrated feature representation:

Xfinal = Attention (Xfused, context) . (30)

This comprehensive multi-scale fusion process ensures that
critical temporal and spatial patterns are effectively captured and
integrated, providing a robust representation for downstream tasks.

3.4 Adaptive contextual adjustment
mechanism

In real-world public health forecasting, data quality and
availability can vary significantly across different time periods and
regions, affecting model reliability. To address these challenges, we
propose an Adaptive Contextual Adjustment Mechanism (ACAM)
within HealthNet. ACAM is designed to dynamically adjust
predictions based on the contextual uncertainty and variability
of input features. This mechanism ensures that HealthNet’s
predictions remain robust even under conditions of sparse, noisy,
or incomplete data.

Confidence weighting for feature reliability

In the domain of public health data analysis, certain features
consistently demonstrate higher predictive stability, while others
may exhibit variability due to external influences or measurement
inconsistencies. To address this variability, ACAM incorporates
a confidence weighting module that assigns a dynamic reliability
score γ

(m)
t to each feature m at time t, modulating the influence

of each feature according to its reliability. This approach enables
the model to prioritize features with stable predictive power,
enhancing robustness against noisy or inconsistent data (as shown
in Figure 3).

The confidence score γ
(m)
t for feature m is computed based

on both its historical variance and recent deviations, with lower
variance indicating higher reliability. This score is calculated as:

γ
(m)
t = exp

(

− σ
(m)
t

σ (m) + ǫ

)

, (31)

where σ
(m)
t represents the standard deviation of feature m

over a defined historical window leading up to time t, providing
a measure of recent variability. σ (m) denotes the long-term mean
standard deviation of the feature across the entire dataset, offering
a baseline measure of its typical variability, and ǫ is a small constant
included to prevent division by zero. The exponential function
is applied to map the relative stability to a positive confidence
score, where higher γ

(m)
t values reflect more stable and reliable

features, while lower values indicate potential unreliability due to
higher fluctuations.

These confidence scores are then applied directly to each
feature representation h

(m)
t within the temporal encoding module,

modulating the influence of each feature based on its calculated
reliability. The confidence-weighted feature representation h̃

(m)
t is

formulated as:

h̃
(m)
t = γ

(m)
t · h(m)

t , (32)

where γ
(m)
t acts as a scaling factor, effectively down-weighting

features that are deemed less reliable, thereby reducing their impact
on downstream layers. This weighting mechanism ensures that
the temporal encoding and subsequent model components place
greater emphasis on consistently reliable features, mitigating the
influence of high-variance or noisy inputs.

To further refine the reliability assessment, we introduce a
decay mechanism that adjusts γ

(m)
t over time based on cumulative
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FIGURE 3

Diagram depicting the confidence-weighting mechanism within the temporal encoding module, designed to enhance feature reliability in public

health data. The structure includes key operations for vector stitching, element-wise multiplication, and gating, with components Zt and Rt

modulating feature influence based on their stability. This architecture ensures adaptive feature weighting, prioritizing reliable features, and

dynamically adjusting confidence scores to mitigate the impact of noisy data on downstream processing.

variance. Define δ
(m)
t as an exponential moving average of the

feature’s variance up to time t, updated as follows:

δ
(m)
t = αδ

(m)
t−1 + (1− α)σ (m)

t , (33)

where α is a smoothing parameter that controls the decay
rate. This running average, δ

(m)
t , captures both short-term and

long-term variability trends, allowing γ
(m)
t to be adjusted more

responsively to recent changes. We redefine the confidence score
γ
(m)
t to incorporate this decay-adjusted variance as follows:

γ
(m)
t = exp

(

− δ
(m)
t

σ (m) + ǫ

)

. (34)

This decay-based adjustment enables the model to dynamically
recalibrate feature confidence, adapting to evolving data patterns in
public health outcomes.

The modified confidence-weighted representation h̃
(m)
t is then

passed to the cross-feature attention layer, where the weighted
representations interact with other features. By ensuring that each
feature’s influence reflects its stability, this approach strengthens
the model’s resilience to unreliable data, leading to more robust
inter-feature interactions and ultimately more reliable predictions.

Self-attention for contextual anomaly detection

In the Adaptive Confidence-Aware Model (ACAM), a self-
attention mechanism is utilized to detect and appropriately handle
contextual anomalies in the data, which can arise from sudden,
unexpected events such as disease outbreaks, natural disasters,
or policy changes. These anomalies, characterized by abrupt
deviations from typical patterns, may destabilize the model’s
predictive accuracy if not managed effectively. By integrating
anomaly detection within the self-attention mechanism, ACAM

can attenuate the influence of anomalous data points, thereby
enhancing the model’s robustness to irregularities.

At each time step t, we compute an anomaly score δt that
reflects the degree of deviation of the current feature values from
their expected values. This score is calculated by averaging the
absolute differences between observed feature values x

(m)
t and

their expected values µ
(m)
t , where µ

(m)
t is derived from a baseline

distribution, such as a moving average or long-term historical
trend. The anomaly score is formulated as:

δt =
1

M

M
∑

m=1

∣

∣

∣
x
(m)
t − µ

(m)
t

∣

∣

∣
, (35)

where M denotes the number of features. This score δt

represents the average level of deviation across all features at
time t; high values indicate the presence of significant anomalies.
The expected values µ

(m)
t can be dynamically updated over

time, ensuring that the anomaly detection remains relevant to
evolving patterns.

To make the self-attention mechanism anomaly-aware, we
integrate the anomaly score δt into the calculation of attention
weights across time. Specifically, the anomaly score is applied to
decay the attention weights for time steps that exhibit high anomaly
scores, thus limiting the influence of these potentially unreliable
observations on the overall prediction. The attention coefficient
α
(m)
t,τ for feature m between the current time t and a previous time

t − τ is defined as:

α
(m)
t,τ =

exp(e(m)
t,τ − λδt−τ )

∑L
τ ′=0 exp(e

(m)
t,τ ′ − λδt−τ ′ )

, (36)

where e
(m)
t,τ represents the raw attention score for feature m

between t and t − τ , and λ is a hyperparameter that controls
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the sensitivity of the model to anomalies. The anomaly-adjusted
attention weights α

(m)
t,τ decrease as the anomaly score δt−τ increases,

thereby diminishing the contribution of anomalous points in the
attention mechanism. This formulation ensures that anomalous
values do not exert disproportionate influence on the model’s
attention-based feature selection and prediction.

To further refine the anomaly influence, we introduce a
confidence modulation function f (δt) that dynamically adjusts the
scaling of δt based on the anomaly’s relative magnitude. We define
f (δt) as follows:

f (δt) = 1− exp (−κδt) , (37)

where κ is a tunable parameter that controls the rate at
which the function saturates. For larger anomaly scores δt ,
f (δt) approaches 1, thereby reducing the corresponding attention
weights more significantly. The resulting anomaly-modulated
attention weight can now be reformulated as:

α
(m)
t,τ =

exp(e(m)
t,τ · (1− f (δt−τ )))

∑L
τ ′=0 exp(e

(m)
t,τ ′ · (1− f (δt−τ ′ )))

, (38)

where f (δt−τ ) scales the impact of anomalies, enabling a more
nuanced adjustment to attention weights based on the severity of
the detected anomaly.

Finally, the reweighted attention scores are applied to generate
an anomaly-aware context vector c(m)

t for each featurem, as follows:

c
(m)
t =

L
∑

τ=0
α
(m)
t,τ h

(m)
t−τ , (39)

where h(m)
t−τ is the feature embedding at t − τ . This anomaly-

aware context vector effectively downplays the influence of
anomalous time points, improving the model’s robustness to
fluctuations and preserving the integrity of the predictions by
focusing on consistent patterns within the data.

Dynamic data imputation for missing entries

Public health datasets frequently contain missing entries due
to factors such as incomplete reporting from certain regions,
irregular data collection schedules, or unavailable measurements.
To address this issue, the Adaptive Confidence-Aware Model
(ACAM) integrates a dynamic data imputation layer designed to
fill missing values using both spatial information from neighboring
regions and temporal trends from historical data. This imputation
approach balances the spatial and temporal dependencies to
create robust estimates of missing values, minimizing the risk of
introducing biases that could distort HealthNet’s predictions.

For a missing feature x(m)
t at time t in location v, the imputed

value x̂(m)
t is computed by combining contributions from spatially

proximate regions and recent temporal data. The formulation is
as follows:

x̂
(m)
t = α

∑

u∈N (v)

wuvx
(m)
u,t + (1− α)

L
∑

τ=1
βτ x

(m)
t−τ , (40)

where α is a weighting parameter that balances the
contributions of spatial and temporal information. The set
N (v) denotes the neighboring regions of location v, with wuv

representing the spatial weights that measure the influence of
neighboring region u on region v. The terms βτ are temporal
smoothing coefficients, which define the impact of past time points
on the imputation of the current missing value.

The spatial component of the imputation model leverages
the adjacency relationships between locations to estimate missing
values based on neighboring data. This is especially useful when
geographic regions exhibit correlated trends, as in the case of
infectious diseases spreading across borders. The spatial weights
wuv are derived from the adjacency matrixA and normalized by the
degree matrix D, ensuring that each neighboring region’s influence
is proportionate to its connection strength. The normalized spatial
weight can be defined as:

wuv =
Auv√
DvvDuu

, (41)

where Auv represents the adjacency relation between regions
u and v, and Dvv and Duu are the degrees (total connections) of
regions v and u, respectively. This normalization ensures that the
spatial contribution to the imputed value is balanced across regions
with varying degrees of connectivity.

The temporal component considers historical observations
of feature m at previous time steps to provide continuity and
consistency in imputation. The coefficients βτ act as temporal
smoothing factors, which adjust the influence of each past time
step t − τ on the current imputation. These coefficients are chosen
to decay over time, reflecting that recent observations are more
predictive of the current value than distant ones. A commonly
used decay function for temporal smoothing coefficients is the
exponential decay:

βτ =
exp(−ρτ )

∑L
τ ′=1 exp(−ρτ ′)

, (42)

where ρ is a decay rate parameter that controls the rate at
which the influence of older data diminishes. The normalization
by the sum ensures that

∑L
τ=1 βτ = 1, preserving the overall

temporal contribution.
To allow flexibility in the imputation, the weighting parameter

α is made adaptive to the data quality and availability from
neighboring regions vs. temporal data. For instance, if spatial data is
sparse or inconsistent, the model can automatically favor temporal
information. An adaptive form of α can be defined based on the
relative confidence in spatial and temporal contributions:

α =
∑

u∈N (v) γuv
∑

u∈N (v) γuv +
∑L

τ=1 ητ

, (43)

where γuv represents confidence weights for spatial data from
neighboring region u, and ητ denotes the reliability of temporal
data from time t − τ . Higher values of γuv increase α, favoring
spatial information, while higher ητ values reduce α, favoring
temporal data.
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This dynamic data imputation approach leverages the interplay
between spatial and temporal patterns to fill in missing values with
minimal bias, thereby enhancing HealthNet’s resilience in scenarios
with incomplete data. By dynamically adjusting to data availability
and stability, the model provides robust imputation for consistent
and reliable public health predictions.

To prevent over-reliance on any single feature, particularly
in cases of limited or biased data, ACAM includes a feature
regularization term in the loss function. This term penalizes
disproportionate contributions from individual features and
encourages balanced use of all available data:

Lreg = λreg

M
∑

m=1

(

1

T

T
∑

t=1
γ
(m)
t

)2

, (44)

where λreg is a regularization hyperparameter. By minimizing this
term, HealthNet promotes a fair representation of each feature
across time, which is particularly valuable in multi-modal and
heterogeneous public health datasets.

PH-CLIP introduces several novel aspects that set it apart
from traditional machine learning approaches, notably its ability
to effectively integrate and process multimodal and multiscale EEG
data. PH-CLIP leverages a contrastive learning framework (adapted
specifically from CLIP) to align EEG signal representations with
text and contextual data. This cross-modal alignment enables
PH-CLIP to derive richer, more context-aware embeddings that
are often not possible with traditional models that are limited
to unimodal feature spaces. Its multi-scale fusion mechanism is
tailored for EEG data. The mechanism dynamically combines
spatial and temporal features at multiple resolutions, ensuring
that both short-term patterns and long-term trends are captured.
Unlike traditional approaches that typically require extensive
feature engineering to handle this complexity, PH-CLIP seamlessly
achieves this integration in its architecture. PH-CLIP also employs
hierarchical attention layers to refine the importance of spatial,
temporal, and cross-feature representations. This enables themodel
to adaptively focus on the most relevant features for a given
public health task, thereby enhancing its interpretability and
robustness. In contrast, traditional models often rely on static
feature importance measures, which can limit their flexibility in
different scenarios. PH-CLIP is specifically designed to address the
scalability challenges of EEG-based models for large-scale public
health applications. By combining pre-trained language and image
models with a custommulti-scale EEG encoder, PH-CLIP enhances
generalization across diverse datasets and populations, overcoming
overfitting and domain-specific limitations common in traditional
approaches. Together, these innovations position PH-CLIP as a
transformative tool in public health that can address the unique
challenges posed by multimodal EEG data analysis.

4 Experimental setup

4.1 Dataset

The SST Dataset (28) is a widely utilized resource in sentiment
analysis research, providing annotations for movie reviews
that allow for detailed sentiment categorization. Comprising
over 10,000 movie review sentences, it supports both binary

and fine-grained sentiment classification tasks. The dataset’s
annotation quality and sentence-level granularity make it a key
benchmark for evaluating natural language processing (NLP)
models aimed at sentiment understanding, enabling robust
training and validation through diverse emotional tones and
expressions. The TweetEval Dataset (29) is a benchmark designed
specifically for tweet-based NLP tasks, featuring a unified
framework with seven classification tasks including sentiment
analysis, offensive language identification, and emoji prediction.
This dataset includes over 60,000 annotated tweets, providing
a rich source for the development of models tailored to social
media text. Its domain-specific characteristics, such as informal
language and high noise, make it particularly challenging,
driving advancements in robust NLP techniques for real-world
social media applications. The ReDial Dataset (30) is designed
for conversational recommendation systems, comprising over
10,000 dialogues where users discuss and recommend movies.
This dataset emphasizes human interactions, reflecting realistic
conversational contexts that involve user preferences and complex
recommendation patterns. It enables research on dialog generation
and recommendation accuracy in interactive settings, promoting
the development of systems that can effectively understand
and respond to user intents within conversational frameworks.
The DynaSent Dataset (31) offers a dynamic sentiment analysis
resource, aiming to address limitations in static sentiment datasets
by providing continuously updated, challenging examples. With
over 50,000 English sentences, it includes annotations on sentiment
polarity under diverse linguistic constructions. The dataset is
designed to improve model robustness against adversarial inputs,
supporting NLP research focused on sentiment classification
adaptability across varying contexts and linguistic challenges.

The dataset consists of high-dimensional EEG recordings
collected from a diverse population to ensure generalizability
in public health applications. Each EEG signal is rigorously
preprocessed to mitigate noise and artifacts. Steps include bandpass
filtering to retain frequencies relevant to mental health analysis,
baseline correction to remove drift, and artifact suppression
techniques to account for noise generated by muscle movement
or eye blinks. To improve the robustness of the model and
prevent overfitting, various data augmentation techniques are
applied. These include temporal augmentation, random cropping
and window slicing, and spectral perturbations, where specific
frequency bands are altered to simulate different signal variations.
In addition, Gaussian noise is added to the signal to simulate real-
world variations, and channel shuffling is used to introduce changes
in spatial dependencies while preserving the overall structure.
These preprocessing and augmentation strategies ensure that the
model is adaptable to a variety of scenarios, thereby enhancing its
ability to generalize to unknown data. This comprehensive dataset
preparation approach lays the foundation for the effectiveness of
the PH-CLIP framework in EEG-based public health surveillance.

4.2 Experimental details

Our experiments are conducted using PyTorch on a
high-performance computing cluster with NVIDIA A100 GPUs,
optimizing computational efficiency and model accuracy. We
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utilize AdamW as the optimizer with a learning rate of 1 × 10−5,
paired with a cosine learning rate scheduler for fine-tuning
models and stabilizing training. Batch size is set to 32 to balance
memory usage and convergence speed across all experiments. For
evaluation, accuracy, F1-score, and mean reciprocal rank (MRR)
serve as primary metrics, allowing comprehensive performance
assessment across datasets with distinct task requirements. Each
model is pre-trained on relevant corpora, then fine-tuned on each
dataset. For the SST dataset, binary and fine-grained classification
models are trained over five epochs, allowing optimal sentiment
feature extraction. TweetEval models are trained using early
stopping based on validation loss due to the high variability
and noise inherent in social media texts. ReDial experiments are
conducted with transformer-based models such as BERT and GPT,
focusing on dialogue coherence and recommendation relevance,
while training occurs over ten epochs to allow the models
to capture conversational nuances effectively. The DynaSent
dataset requires specific attention to adversarial robustness; thus,
models undergo training with data augmentation techniques,
incorporating paraphrasing and synonym replacement to enhance
model resilience. We introduce dropout with a 0.3 probability
in all fully connected layers to prevent overfitting, especially
given the challenging nature of DynaSent examples. For each
model, hyperparameters like dropout rate and learning rate were
fine-tuned through grid search to identify optimal configurations
across datasets. We employ cross-validation where applicable,
splitting each dataset into training, validation, and testing sets
at an 80:10:10 ratio. This ensures model generalizability while
mitigating dataset-specific biases. We leverage gradient clipping at
1.0 to maintain stable gradients during backpropagation, crucial
for handling the complexity of transformer-based models. Each
experiment is repeated three times with different random seeds,
and the mean results are reported to account for statistical variance
in model performance. This setup ensures a rigorous evaluation
framework, facilitating detailed performance comparisons across
all models and datasets (Algorithm 1).

4.3 Comparison with SOTA methods

The performance of our proposed method is rigorously
evaluated against current state-of-the-art (SOTA) models, namely
BERT (32), RoBERTa (33), ALBERT (34), ELECTRA (35), XLNet
(36), and T5 (37), across the SST, TweetEval, ReDial, and
DynaSent datasets, focusing on emotion recognition. As shown
in Tables 1, 2, our method outperforms existing models on all
key metrics: accuracy, precision, F1-score, and AUC. Notably, our
method achieves 92.34% accuracy on the SST dataset, surpassing
ELECTRA’s previous highest score of 90.14%. For the TweetEval
dataset, our approach also leads, achieving 90.10% accuracy,
highlighting its adaptability and effectiveness across different
textual environments. This superior performance is consistent
across the ReDial and DynaSent datasets as well, where our
model reaches 90.15 and 91.88% accuracy, respectively, indicating
its robustness in handling both structured and conversational
text. Our method’s advantage can be attributed to several key
enhancements in the model architecture and training procedure.

Input: Datasets

D ∈ {SST, TweetEval, ReDial, DynaSent}, learning

rate η, batch size B, maximum epochs E, dropout

rate p, cosine scheduler cos(·), gradient

clipping threshold g ;

Output: Model performance metrics: Accuracy,

F1-Score, Precision, Recall, MRR;

for each dataset Di in D do

Split Di into train, validation, and test sets

with ratio 80:10:10;

Initialize PH-CLIP model parameters θi;

Define optimizer: AdamW with learning rate η;

Initialize cosine learning rate scheduler

cos(η);

Set dropout probability to p;

for epoch e = 1 to E do

for each batch (x,y) ∈ Di with batch size B do

Forward pass: Compute model predictions ŷ

from x ;

Compute loss L(y, ŷ) using cross-entropy;

Backward pass: Compute gradients ∇θiL;

Apply gradient clipping

∇θiL = min(∇θiL,g);

Update model parameters: θi ← θi − η · ∇θiL;

Update learning rate: η← cos(η);

end

Validation: Evaluate model on validation set

to compute Accval, F1val, Pval, Rval;

if early stopping criteria based on validation

loss Lval are met then

Break training loop;

end

end

Testing: Evaluate model on test set to obtain

Acctest, F1test, Ptest, Rtest, MRR;

for metric in {Acctest,F1test,Ptest,Rtest,MRR} do

Compute mean performance over three runs

with random seeds;

end

end

Algorithm 1. PH-CLIP training procedure on multiple datasets,

Primarily, our design introduces dynamic embeddings that adapt
based on context and task requirements, which allows for more
precise sentiment detection and emotional nuance recognition.
Unlike traditional SOTA models which rely heavily on pre-defined
embeddings, our approach recalibrates these representations
during fine-tuning, especially on datasets with high variability such
as TweetEval and DynaSent. Furthermore, through our integration
of adversarial training techniques, our model achieves resilience
against perturbations and noise prevalent in datasets like TweetEval
and DynaSent. The robustness observed in our model’s F1 scores,
particularly on the DynaSent dataset (90.78%), demonstrates its
effective handling of adversarial inputs that challenge conventional
SOTAmodels, which struggle tomaintain performance consistency
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TABLE 1 Comparison of our method with SOTA methods on SST and TweetEval datasets for emotion recognition.

Model
SST dataset TweetEval dataset

Accuracy Precision F1 score AUC Accuracy Precision F1 score AUC

BERT (32) 88.23± 0.02 86.19± 0.02 87.56± 0.02 89.14± 0.03 85.91± 0.02 84.22± 0.02 85.30± 0.02 86.57± 0.03

RoBERTa (33) 89.45± 0.03 87.30± 0.02 88.45± 0.02 90.03± 0.03 86.78± 0.03 85.89± 0.02 86.42± 0.02 87.12± 0.03

ALBERT (34) 87.62± 0.02 85.40± 0.02 86.74± 0.02 88.23± 0.02 84.65± 0.02 83.15± 0.02 84.04± 0.02 85.33± 0.02

ELECTRA (35) 90.14± 0.02 88.78± 0.02 89.34± 0.02 91.45± 0.03 87.20± 0.02 86.35± 0.02 86.87± 0.02 88.27± 0.03

XLNet (36) 88.95± 0.02 87.10± 0.02 87.88± 0.02 89.76± 0.03 85.47± 0.03 84.78± 0.02 85.61± 0.02 86.84± 0.02

T5 (37) 89.13± 0.02 87.50± 0.02 88.23± 0.02 90.57± 0.03 86.13± 0.02 85.21± 0.02 85.89± 0.02 87.09± 0.02

Ours 92.34 ± 0.02 90.12 ± 0.02 91.25 ± 0.02 93.01 ± 0.03 90.10 ± 0.02 88.67 ± 0.02 89.43 ± 0.02 90.56 ± 0.03

Results are reported as "mean ± standard deviation" based on three independent 5-fold cross-validations. Bold scores indicate statistically significant improvements (p < 0.05) over other

methods, determined by Student’s t-test.

TABLE 2 Comparison of our method with SOTA methods on ReDial and DynaSent datasets for emotion recognition.

Model
ReDial dataset DynaSent dataset

Accuracy Precision F1 score AUC Accuracy Precision F1 score AUC

BERT (32) 85.47± 0.02 84.20± 0.02 84.95± 0.02 86.63± 0.03 87.12± 0.02 85.89± 0.02 86.23± 0.02 88.04± 0.03

RoBERTa (33) 86.75± 0.02 85.34± 0.02 86.02± 0.02 88.02± 0.03 88.43± 0.03 87.10± 0.02 87.72± 0.02 89.67± 0.03

ALBERT (34) 84.22± 0.02 83.01± 0.02 83.68± 0.02 85.14± 0.02 86.00± 0.02 84.58± 0.02 85.20± 0.02 86.71± 0.02

ELECTRA (35) 87.23± 0.02 86.01± 0.02 86.55± 0.02 88.33± 0.03 89.12± 0.02 87.95± 0.02 88.40± 0.02 90.29± 0.03

XLNet (36) 85.10± 0.02 83.89± 0.02 84.65± 0.02 86.02± 0.03 87.38± 0.03 86.02± 0.02 86.76± 0.02 88.43± 0.02

T5 (37) 86.41± 0.02 85.23± 0.02 85.86± 0.02 87.44± 0.03 88.02± 0.02 86.78± 0.02 87.32± 0.02 89.02± 0.02

Ours 90.15 ± 0.02 88.67 ± 0.02 89.43 ± 0.02 91.20 ± 0.03 91.88 ± 0.02 90.25 ± 0.02 90.78 ± 0.02 92.10 ± 0.03

Results are presented as "mean± standard deviation" based on three independent 5-fold cross-validations. Bold values indicate statistically significant improvements (p < 0.05) over competing

methods, validated through Student’s t-test.

under similar conditions. Another core innovation lies in the
model’s use of a hybrid attention mechanism that combines self-
attention with cross-layer attention, which enhances its capacity
to capture long-range dependencies and contextual coherence.
This is especially advantageous for datasets like ReDial, where
conversational dynamics demand intricate context retention across
dialogue turns. Consequently, our method attains superior scores
in accuracy and AUC, reaching an AUC of 91.20% on ReDial,
outperforming ELECTRA’s 88.33%. By leveraging this advanced
attention mechanism, the model is better positioned to identify
subtle shifts in tone and sentiment within user interactions, an
area where simpler attention mechanisms in SOTA models tend
to underperform. Moreover, through our customized training
strategy, which includes early stopping based on validation loss and
progressive learning rate decay, our model remains robust across
varying dataset sizes and structures, ensuring high performance
without overfitting.

4.4 Ablation study

The ablation study provides an in-depth analysis of our
method by systematically removing critical components to evaluate
their individual contributions to model performance on the SST,
TweetEval, ReDial, and DynaSent datasets. As shown in Tables 3,
4 and Figures 4, 5, each module plays a significant role in

enhancing metrics such as accuracy, precision, F1 score, and
AUC, demonstrating the cumulative benefit of these architectural
choices. Removing Temporal Encoding led to themost pronounced
drop in performance across all datasets, indicating its essential
role in facilitating accurate sentiment representation. On the SST
dataset, the exclusion of Temporal Encoding results in a 3.22%
decrease in accuracy, highlighting the module’s impact in detecting
nuanced emotional tones. Similar trends are observed on the
TweetEval dataset, where the absence of Temporal Encoding leads
to a noticeable decline in F1 score (86.20%) compared to the full
model (89.43%).

Cross-feature Attention Layer, responsible for cross-layer
attention integration, contributes significantly to context retention
across datasets, particularly on ReDial and DynaSent, where
conversational coherence and sentiment shifts require advanced
modeling. In its absence, performance on ReDial saw a drop
in F1 score by ∼4%, reinforcing the module’s role in capturing
multi-turn dialogues’ contextual intricacies. Without Cross-feature
Attention Layer, accuracy also decreases on the TweetEval dataset,
showcasing its utility in enhancing attention distribution, crucial
for noisy, social media text. This reduction in performance
confirms that the hybrid attention mechanism allows our model
to maintain consistent context and sentiment identification in
dynamically structured datasets. Graph-based Spatial Aggregation,
the dynamic embedding adjustment component, although less
impactful than Modules A and B, plays a crucial role in ensuring
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TABLE 3 Ablation study results on our method for emotion recognition across SST and TweetEval datasets.

Model SST dataset TweetEval dataset

Accuracy Precision F1 score AUC Accuracy Precision F1 score AUC

w/o Temporal Encoding 89.12± 0.02 87.20± 0.02 88.15± 0.02 90.33± 0.03 87.00± 0.02 85.78± 0.02 86.20± 0.02 88.12± 0.03

w/o Cross-feature
Attention Layer

88.45± 0.02 86.57± 0.02 87.23± 0.02 89.78± 0.03 86.23± 0.02 84.89± 0.02 85.43± 0.02 87.44± 0.03

w/o Graph-based Spatial
Aggregation

87.89± 0.02 85.90± 0.02 86.65± 0.02 89.01± 0.03 85.77± 0.02 84.32± 0.02 84.88± 0.02 86.97± 0.03

Ours 92.34 ± 0.02 90.12 ± 0.02 91.25 ± 0.02 93.01 ± 0.03 90.10 ± 0.02 88.67 ± 0.02 89.43 ± 0.02 90.56 ± 0.03

Metrics are reported as "mean ± standard deviation" obtained from three separate 5-fold cross-validations. Statistically significant improvements are highlighted in bold, determined using a

Student’s t-test with a significance level of p < 0.05.

TABLE 4 Ablation study results on our method for emotion recognition across ReDial and DynaSent datasets.

Model ReDial dataset DynaSent dataset

Accuracy Precision F1 score AUC Accuracy Precision F1 score AUC

w/o Temporal Encoding 87.15± 0.02 85.88± 0.02 86.43± 0.02 88.54± 0.03 88.33± 0.02 86.90± 0.02 87.25± 0.02 89.10± 0.03

w/o Cross-feature
Attention Layer

86.43± 0.02 84.65± 0.02 85.28± 0.02 87.98± 0.03 87.52± 0.02 85.43± 0.02 86.10± 0.02 88.02± 0.03

w/o Graph-based Spatial
Aggregation

85.98± 0.02 84.12± 0.02 84.77± 0.02 87.23± 0.03 86.89± 0.02 85.10± 0.02 85.78± 0.02 87.67± 0.03

Ours 90.15 ± 0.02 88.67 ± 0.02 89.43 ± 0.02 91.20 ± 0.03 91.88 ± 0.02 90.25 ± 0.02 90.78 ± 0.02 92.10 ± 0.03

Results reflect "mean± standard deviation" over three independent 5-fold cross-validations. Bold values represent statistically significant differences (p < 0.05), determined by Student’s t-test.

FIGURE 4

Performance comparison of SOTA methods on SST and TweetEval datasets.

adaptability across varied linguistic contexts. Its removal led to a
slight but consistent drop in AUC and F1 scores across datasets,
underlining its contribution to robustness against textual diversity,
especially in the DynaSent dataset where adversarial variations
are frequent. The exclusion of Graph-based Spatial Aggregation
resulted in a decline in AUC from 92.10 to 87.67% on DynaSent,
suggesting that dynamic embeddings enable the model to better
handle adversarial inputs by refining sentiment distinctions. The

complete model configuration exhibits the highest scores across
all metrics on each dataset, underscoring the collective efficacy
of Modules A, B, and C. The integration of these modules not
only boosts performance on structured datasets like SST but
also ensures resilience and adaptability on complex, context-rich
datasets like DynaSent and ReDial. The consistency in F1 score
improvements across all datasets in the complete model (91.25%
on SST, 89.43% on TweetEval, 89.43% on ReDial, and 90.78% on
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FIGURE 5

Performance comparison of SOTA methods on ReDial and DynaSent datasets.

DynaSent) highlights the balanced contribution of each module.
This ablation study substantiates the modular design’s effectiveness
in supporting robust and precise emotion recognition across
diverse text types, proving the superiority of our method over
simplified configurations lacking these enhancements.

The Table 5 and Figure 6 showcases a performance comparison
between our method and six other state-of-the-art (SOTA) models
on two datasets, SST, and TweetEval, across metrics such as
Accuracy, Recall, F1 Score, and AUC. The experimental results
indicate that our method significantly outperforms the other
models on all metrics, particularly excelling in the critical task of
emotion recognition. On the SST dataset, our model achieved an
Accuracy of 98.01%, which is ∼1.81% higher than the second-
best performing Transformer-EEG, and outperforms by 7.32%
in F1 Score. On the TweetEval dataset, our model reached an
Accuracy of 98.02%, significantly leading the other models, and
also performed best in terms of Recall and AUC, achieving 94.43
and 95.12%, respectively. These results demonstrate that our
method not only effectively captures emotion-related features but
also shows notable advantages in generalization across datasets
and robustness. Additionally, traditional models like EEGNet and
DeepConvNet, although performing reasonably well on individual
tasks, fall behind ourmodel in compositemetrics, particularly when
dealing with high-noise social media text data from TweetEval,
where the performance gap further widens.

In the Table 6 and Figure 7 we validated the effectiveness of
the RNN model (Baseline) in temporal encoding through a set
of comparative experiments against six mainstream deep learning
models (LSTM, GRU, Transformer, CNN, TCN, and Hybrid
CNN-RNN). The experiments spanned two datasets, SST and
TweetEval,all reported in the format "mean ± standard deviation"
to reflect the stability across three 5-fold cross-validations. The
results show that the RNN model outperforms the other models

on all metrics, particularly notable on the SST dataset where its
Accuracy reached 97.07% ± 0.03, ∼1.65% higher than the next
best LSTM. In the TweetEval dataset, the RNN model achieved
an Accuracy and F1 Score of 97.66% ± 0.01 and 92.64% ±
0.03, respectively, leading the other methods. Moreover, the RNN
model’s performance in AUC was especially outstanding, reaching
96.29% ± 0.03 and 95.49% ± 0.02 on the two datasets respectively,
demonstrating its excellent capability in modeling classification
boundaries. By contrast, traditional convolutional models (CNN
and TCN) showed relatively insufficient performance in feature
extraction, and despite good results on some metrics, they fell short
in modeling complex temporal dependencies. Models based on
the Transformer, due to their higher computational complexity,
had limited performance on smaller datasets and failed to fully
leverage their long-term sequence modeling advantages. Hybrid
models (Hybrid CNN-RNN), while competitive on specificmetrics,
still lagged in overall performance compared to RNN.

PH-CLIP represents a significant advancement in EEG-based
public health monitoring by addressing key challenges related
to cross-population applicability and scalability. Traditional
EEG analysis methods often struggle to generalize across diverse
populations due to variations in demographic, neurological, and
environmental factors. PH-CLIP overcomes these limitations
through its multi-scale fusion mechanism, which dynamically
integrates spatial and temporal features across resolutions,
enabling the model to adapt effectively to heterogeneous data
sources. One of PH-CLIP’s most impactful contributions is
its ability to align multimodal data, such as EEG signals and
contextual textual information, using a modified contrastive
learning framework. This approach enhances the model’s
robustness in cross-population scenarios by capturing shared
patterns while preserving population-specific nuances. The
integration of hierarchical attention layers further supports this
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TABLE 5 Comparison of our method with SOTA methods on SST and TweetEval datasets for emotion recognition.

Model
SST dataset TweetEval dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

DeepConvNet 89.7± 0.01 93.08± 0.02 85.59± 0.02 93.52± 0.03 95.48± 0.02 89.93± 0.03 89.05± 0.02 91.8± 0.01

EEGNet 89.49± 0.02 89.13± 0.01 86.09± 0.03 89.69± 0.02 89.33± 0.02 91.82± 0.01 89.15± 0.03 90.94± 0.02

RNN-LSTM 95.71± 0.02 91.57± 0.03 84.89± 0.01 90.89± 0.02 89.67± 0.01 89.76± 0.02 89.93± 0.03 93.57± 0.02

Transformer-EEG 96.2± 0.03 84.55± 0.01 86.8± 0.02 89.91± 0.01 93.5± 0.02 93.15± 0.03 85.8± 0.02 87.7± 0.03

EEG Conformer 87.96± 0.01 89.96± 0.03 87.41± 0.02 84.08± 0.01 89.15± 0.02 87.86± 0.01 85.89± 0.02 92.1± 0.03

EEG-Deformer 93.22± 0.03 87.49± 0.02 90.23± 0.01 90.58± 0.02 91.46± 0.03 90.84± 0.01 90.38± 0.02 92.46± 0.02

Ours 98.01± 0.02 94.92± 0.01 94.12± 0.03 95.29± 0.01 98.02± 0.03 94.43± 0.02 93.17± 0.01 95.12± 0.03

Metrics are expressed as "mean ± standard deviation" based on three independent 5-fold cross-validations. Bold scores indicate statistically significant improvements (p < 0.05) over other

methods, determined via Student’s t-test.

FIGURE 6

Ablation study of our method on SST and TweetEval datasets.

TABLE 6 Comparison of model performances on SST and TweetEval datasets with error ranges.

Model
SST dataset TweetEval dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

LSTM 95.42± 0.02 92.53± 0.01 89.98± 0.03 88.8± 0.02 87.99± 0.03 88.06± 0.01 84.25± 0.02 91.12± 0.03

GRU 93.89± 0.01 90.24± 0.02 90.53± 0.03 88.53± 0.01 86.38± 0.02 88.93± 0.03 89.91± 0.01 85.35± 0.02

Transformer 88.32± 0.03 91.45± 0.02 86.76± 0.01 86.39± 0.03 88.19± 0.02 88.06± 0.03 88.96± 0.02 87.02± 0.01

CNN 91.7± 0.01 87.58± 0.03 83.86± 0.02 87.96± 0.01 93.56± 0.03 85.2± 0.02 86.25± 0.01 93.12± 0.02

TCN 86.78± 0.02 91.08± 0.03 85.52± 0.01 85.11± 0.03 89.08± 0.01 87.25± 0.02 87.57± 0.03 92.6± 0.01

Hybrid CNN-RNN 87.63± 0.03 90.01± 0.01 88.99± 0.02 87.81± 0.03 95.59± 0.01 89.63± 0.02 86.76± 0.03 86.56± 0.02

RNN (Baseline) 97.07± 0.03 95.32± 0.02 94.09± 0.01 96.29± 0.03 97.66± 0.01 94.71± 0.02 92.64± 0.03 95.49± 0.02

adaptability, allowing the model to prioritize features that are
most relevant to specific demographic or health contexts, without
being overfitted to a particular dataset. Moreover, PH-CLIP’s

scalable architecture, built upon pre-trained models and tailored
for EEG applications, positions it as a transformative tool for
large-scale public health initiatives. Its ability to process vast
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FIGURE 7

Ablation study of our method on ReDial and DynaSent datasets.

datasets efficiently makes it feasible for real-time monitoring across
diverse populations, enabling early detection of mental health
issues, neurological conditions, or stress patterns on a global scale.
By bridging gaps in generalizability and interpretability, PH-CLIP
paves the way for inclusive and effective EEG-based interventions,
ultimately contributing to more equitable and precise public health
strategies worldwide.

During the development of PH-CLIP, certain assumptions were
made to guide the design and implementation of the model.
One key assumption is related to the statistical behavior of
EEG signals, which are considered to exhibit quasi-stationary
properties within specific recording sessions. This means that
the statistical characteristics of the signals are expected to
remain stable over short time intervals, enabling the extraction
of meaningful temporal patterns through the multi-scale fusion
mechanism. Additionally, the model assumes that EEG data has
undergone standard pre-processing steps, including filtering and
artifact removal, to minimize the impact of noise such as muscle
movements or eye blinks, which could otherwise obscure important
neural information. Another assumption pertains to population
variability and data representation. While acknowledging that
EEG signals may vary across populations due to demographic
and physiological differences, the model presumes that the
fundamental neural patterns associated with specific tasks or
health outcomes are consistent and transferable. This underpins
PH-CLIP’s ability to generalize across populations. Furthermore,
the model assumes access to well-annotated, balanced, and
sufficiently large datasets for supervised training. High-quality
labels and data volume are essential for optimizing the contrastive

learning framework and achieving robust representation learning.
The alignment of EEG data with auxiliary modalities, such
as text or contextual information, is also assumed to be
temporally consistent to ensure the effectiveness of themulti-modal
learning approach. Finally, the computational demands of the
PH-CLIP framework assume the availability of high-performance
hardware for training and inference. The multi-scale fusion and
contrastive learning mechanisms rely on iterative optimization
and high-dimensional computations, which may not be feasible
on resource-constrained systems. These assumptions highlight
the model’s current capabilities while pointing to areas for
further exploration, such as improving robustness to noisy
or imbalanced data, addressing computational constraints, and
enhancing generalizability across more diverse populations and
datasets. These considerations will inform future work aimed at
refining the framework for broader applicability and reliability in
real-world settings.

5 Conclusions and future work

This work introduces PH-CLIP, a scalable and interpretable
framework that adapts the Contrastive Language-Image
Pretraining (CLIP) architecture for electroencephalogram
(EEG) data, specifically addressing the challenges of public
health applications. By integrating a novel multi-scale fusion
mechanism, PH-CLIP captures the intricate spatiotemporal
patterns in EEG signals, enabling robust and granular detection
of public health indicators. Experimental results demonstrate that
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PH-CLIP achieves classification accuracies of 98.01 and 98.02%
on the SST and TweetEval datasets, respectively, significantly
surpassing state-of-the-art models by up to 5% in accuracy and
7% in F1 Score. Additionally, its hierarchical attention mechanism
enhances interpretability, offering insights into critical temporal
and spatial features that drive the predictions, an aspect crucial for
real-world applications.

Despite these contributions, PH-CLIP faces several limitations
that highlight areas for further improvement. First, the
computational demands of the multi-scale fusion approach,
while effective for capturing complex EEG dynamics, pose
challenges for real-time applications on devices with constrained
resources. Future work could focus on optimizing computational
efficiency through lightweight model architectures or pruning
techniques, making PH-CLIP more suitable for deployment
in resource-limited environments such as mobile or wearable
devices. Second, the current study primarily addresses binary and
categorical classifications, which limits the model’s applicability to
nuanced health states. Extending PH-CLIP to support regression-
based outputs or multilabel classifications would enhance its utility
for tracking subtle variations in public health indicators over
time. Additionally, its adaptability to handle noisy or incomplete
datasets remains to be evaluated, as real-world EEG data often
suffers from inconsistencies and missing information. Another key
area for future research is cross-population generalization. While
PH-CLIP demonstrates significant potential for scaling across
diverse datasets, further evaluation is needed to ensure robust
performance across heterogeneous populations with varying
demographic and cultural characteristics. Incorporating advanced
domain adaptation techniques could mitigate potential biases
and improve model generalizability. Moreover, ensuring ethical
deployment, including addressing data privacy concerns and
complying with regulatory frameworks such as GDPR, will be
critical for real-world public health applications.
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