
Frontiers in Public Health 01 frontiersin.org

Research on the impact of 
artificial intelligence technology 
on urban public health resilience
Erdong Chen * and Huaxin Zhang 

School of Economics, Liaoning University, Shenyang, China

Urban public health resilience has become a critical focus in the transition to 
high-quality development, especially in addressing increasing public health 
challenges. This study explores the role of artificial intelligence (AI) technology 
in enhancing urban public health resilience across 284 Chinese cities from 
2011 to 2021. Using a comprehensive index based on resistance, recovery, and 
innovation dimensions, the study quantifies AI technology levels through patent 
applications and authorizations, further disaggregating these into invention, utility 
model, and design patents. A two-way fixed effects regression model and spatial 
econometric models are employed to analyze the direct and spillover effects of 
AI on urban public health systems. The results demonstrate that AI technology 
significantly enhances resilience by improving resource allocation and response 
efficiency, with stronger impacts observed in eastern and central regions compared 
to western regions, where economic and technological capacities are weaker. 
Spatial analysis reveals significant positive spillover effects, particularly from patent 
authorizations, which enhance public health resilience in neighboring cities through 
cross-regional collaboration and resource sharing. Despite these advancements, 
regional disparities in economic development and technological infrastructure 
limit AI’s broader impact, underscoring the need for targeted policies, enhanced 
funding, and interdisciplinary training to bridge the digital divide. The findings 
highlight AI’s transformative potential in fostering urban public health resilience 
and call for sustained investment and collaboration to maximize its benefits.
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1 Introduction

China is currently transitioning from rapid growth to high-quality development, and public 
health services, which are closely linked to the well-being of the population, have become a 
critical component of social welfare (1). The 20th National Congress of the Communist Party 
of China proposed the promotion of the Healthy China initiative, the improvement of the public 
health system, and the optimization of the public safety system. The Third Plenary Session of 
the 20th Central Committee emphasized the importance of promoting social co-governance, 
coordination between healthcare services and public health, and integration of medical care 
and prevention, bringing public health issues to the forefront of the national agenda. Meanwhile, 
as digital technology and the digital economy continue to develop, new-generation artificial 
intelligence (AI) is gradually permeating all aspects of social life. Particularly in the public 
health sector, AI has become an essential tool for enhancing the efficiency of public health 
governance (2, 3). Through big data analysis, machine learning, natural language processing, 
and predictive models, AI technology offers intelligent and data-driven solutions for public 
health, significantly improving the management efficiency, emergency response speed, and 
resource allocation of public health services (4, 5). However, regional disparities in public health 
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resources have led to varying outcomes in the application of AI 
technology. Therefore, it is essential to rely on policy guidance and 
financial support to bridge the “digital divide” and address the uneven 
regional development of AI technology deployment, thereby enhancing 
urban public health resilience across all regions (6–8).

AI, with its capabilities surpassing human perception, reasoning, 
and learning, has become a driving force in economic, social, and 
technological development (8). Extensive academic discussions have 
explored the impact of AI across multiple fields, including regional 
economies, income distribution, employment, and industrial 
restructuring. While these studies provide theoretical and empirical 
analyses from different perspectives, their results have often been mixed 
(9–11). In the context of regional economic development, AI has 
demonstrated a positive impact by enhancing labor productivity and 
promoting economic growth through technological progress (12). 
However, AI may also contribute to structural unemployment and 
exacerbate income inequality (13). On the other hand, AI can reduce the 
demand for labor by automating certain tasks, while simultaneously 
creating new job opportunities, particularly in high-skill sectors, thereby 
increasing the demand for human capital (14). Additionally, AI promotes 
an innovation-driven development model, providing strong support for 
industrial transformation and upgrading, particularly in the digital 
economy and emerging industries. AI applications improve production 
efficiency, reshape production models in both traditional and emerging 
industries, and lead to substantial productivity gains (15). Research has 
shown that AI plays a significant role in expanding the breadth of 
innovation, cultivating new productivity, and promoting high-quality 
development (16). More importantly, AI offers new approaches in the 
public health field: it improves the workflows of medical equipment and 
healthcare personnel, enabling smart diagnostics and remote 
monitoring, thus reducing unnecessary patient-doctor interactions. 
Through big data collection, AI can more accurately predict disease 
trends and provide emergency plans for public health institutions. 
Additionally, AI can analyze vast amounts of patient data, learn from this 
data, and provide personalized medical recommendations for each 
patient, thereby meeting individual healthcare needs (17–19).

Resilience refers to a system’s ability to respond to external shocks 
and return to a stable state (20). In engineering, resilience describes a 
system’s capacity to recover to its original state after experiencing 
stress, emphasizing the balance achieved after responding to pressure 
(21). Ecological resilience posits that a system may enter a new, lower-
level stable state after absorbing a certain level of disturbance, decline 
if unable to adapt to external shocks, or surpass its original state by 
restructuring to achieve a superior level (22). Drawing inspiration 
from adaptive system theory, scholars have revisited the concept of 
economic resilience, introducing the notion of “adaptive resilience” 
(23). Currently, there is a vast body of literature on economic 
resilience. Some scholars focus on measuring economic resilience 
using single indicators such as employment numbers, unemployment 
rates, wage levels, and GDP, while others adopt comprehensive 
indicator systems to evaluate regional economic resilience. Researchers 
have examined various factors influencing economic resilience, 
including how organizational culture and leadership affect resilience, 
and the role of industrial structure, the digital economy, and 
entrepreneurial activity in shaping economic resilience (24–26). 
Following major shocks such as the 2008 global financial crisis and the 
COVID-19 pandemic, countries and regions have conducted extensive 
research on how to enhance economic resilience and promote 

sustainable development, making this a key topic in regional 
development and macroeconomic policy research (27, 28).

A review of studies on AI technology and economic resilience 
reveals that AI has developed rapidly and expanded in scale, but still lags 
behind developed countries like the United States. In the field of urban 
public health resilience, research remains sparse, making it an area ripe 
for pioneering studies (29). This paper argues that existing research on 
AI technology and urban public health resilience is lacking, which has 
hindered the development of unified conclusions. First, there is a lack of 
clear definitions and explanations of the core concepts and connotations 
of urban public health resilience, making it difficult to draw consistent 
conclusions about AI’s impact and conduct systematic assessments. 
Second, there are discrepancies in the objective levels and practical 
scopes of the explanatory and dependent variables used to represent AI 
technology and urban public health resilience, affecting the robustness 
of regression results. Finally, the mechanism of interaction between the 
two has not yet been explored in either theoretical or empirical research. 
Based on this, the marginal contributions of this paper are as follows:

First, the study provides a comprehensive and systematic exploration 
of urban public health resilience, conceptualizing its core dimensions as 
resistance, recovery, and innovation (30, 31). It establishes an index 
system grounded in practical considerations, offering a robust theoretical 
framework and methodological foundation for advancing research in 
public health resilience. Second, this research employs patent application 
and authorization data related to artificial intelligence (AI) technologies 
as core explanatory variables. It further disaggregates patents into 
invention, utility model, and design categories, thereby quantifying the 
mechanisms through which AI influences urban public health resilience. 
This approach significantly enriches the quantitative methodologies in 
resilience studies (32). Third, to address existing gaps in the intersection 
of AI technology and public health resilience, the paper offers an 
innovative analysis of their underlying mechanisms. It demonstrates that 
AI technology substantially enhances urban public health resilience by 
improving healthcare efficiency, optimizing resource allocation, and 
fostering inter-city collaboration. Fourth, the study also conducts an 
in-depth investigation into the heterogeneous impacts of AI technology 
on public health resilience across eastern, central, and western Chinese 
cities. Additionally, it highlights the positive spatial spillover effects of AI 
technology, underscoring its capacity to benefit neighboring regions 
through knowledge transfer and resource sharing (33, 34).

The structure of this paper is as follows: Section 2 provides the 
theoretical analysis, Section 3 covers the sample and data, Section 4 
discusses the results, Section 5 focuses on spatial tests, and the 
conclusion is presented in the final section.

2 Theoretical analysis

2.1 Public health resilience

Public health refers to the systematic and collective measures and 
strategies undertaken by nations and societies to improve population 
health. It involves various institutions, community groups, and 
individuals working in coordinated efforts and making scientific 
decisions to prevent diseases, extend human lifespan, and promote 
overall health (34). The main objectives of public health can 
be  summarized into three areas: first, disease prevention through 
vaccination, health education, and improved healthcare infrastructure 
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to mitigate potential health threats; second, early detection, timely 
treatment, and rehabilitation of existing diseases to minimize long-
term health impacts; and third, the promotion of physical and mental 
well-being through daily habits and positive attitudes, enhancing 
overall quality of life, regardless of disease presence (35, 36).

Narrowly defined, public health resilience can be measured by the 
number of doctors, hospital beds, and healthcare workers. In a broader 
sense, it encompasses the multi-dimensional capacity of regional or 
urban public health systems to respond to external shocks—such as 
disease outbreaks, natural disasters, or environmental pollution—
while focusing on core elements. This capacity includes three aspects: 
resistance, recovery, and innovation. Resistance refers to the ability of 
public health systems to reduce or withstand the negative impacts of 
external shocks through preventive measures, policy protections, and 
social support networks. Recovery is the system’s ability to swiftly 
restore core functions and re-establish normal operations after a crisis. 
Innovation reflects the system’s capacity to learn from crises, 
continuously improving and adapting to be more flexible and efficient 
when facing future challenges (37). Public health resilience is defined 
by its adaptability, resource diversity, systemic synergy, and capacity 
for early risk detection. By leveraging integrated social governance 
and optimized systems, it ensures the stability and sustainable 
advancement of urban public health infrastructures.

2.2 The role of AI technology in enhancing 
urban public health resilience

The self-evolving and integrative nature of AI technology has 
revolutionized knowledge production, strengthening connections 
between innovation elements and driving continuous AI iterations. This 
has blurred the boundaries between industries and has had a profound 
impact on urban public health services. As AI technology integrates 
further with traditional healthcare industries, its application in healthcare 
products and services has continued to grow, creating new value and 
significantly enhancing the operational efficiency and organizational 
effectiveness of healthcare institutions (38). Technological advancements, 
especially in AI and other emerging digital technologies, have had a 
far-reaching and positive impact on urban public health resilience 
through several pathways. Firstly, AI strengthens urban public health 
resilience. By employing data-driven analysis and sophisticated predictive 
models, AI can accurately forecast the transmission dynamics of 
infectious diseases. This capability provides early warning systems and 
robust risk prevention measures, enabling cities to respond more 
effectively to public health emergencies. Secondly, AI contributes to 
urban public health recovery. In the aftermath of a health crisis, AI-driven 
optimization of resources and intelligent allocation significantly improve 
recovery efficiency. It ensures the effective distribution of medical 
supplies and supports the development of personalized rehabilitation 
plans, streamlining patient recovery pathways. Moreover, public 
communication platforms powered by natural language processing 
reduce misunderstandings, helping populations adapt more smoothly to 
the post-crisis “new normal.” Finally, AI accelerates innovation in urban 
public health. By enabling seamless cross-sector collaboration, it 
facilitates the deep integration of medical and preventive systems. This 
integration drives the transformation of public health governance models 
toward intelligent, data-informed solutions, creating a foundation for 
smarter and more adaptive health management systems (39).

2.3 Regional heterogeneity of AI’s impact 
on urban public health resilience

Long-standing disparities exist among Chinese cities across 
various dimensions, and AI’s impact on urban public health resilience 
may exhibit regional heterogeneity. Understanding the level of AI 
development and its impact on urban public health resilience can 
assist policymakers in formulating specific policies to mitigate adverse 
shocks (40). Significant differences in economic development levels 
and technological innovation capabilities exist between the eastern, 
central, and western regions. In the eastern regions, with higher 
economic development, cities possess stronger technological 
innovation capabilities and greater capacity for public health resource 
allocation. As a result, AI applications can more effectively drive the 
optimization and management of public health systems, significantly 
enhancing urban public health resilience. Central cities, which are 
undergoing rapid industrialization and urbanization, have an urgent 
need for industrial transformation and upgrading. The introduction 
of AI technology can effectively elevate the technical capabilities of 
traditional healthcare industries, optimizing urban public health 
resource allocation and scheduling, with relatively stable technological 
gains. However, in the underdeveloped western regions, the weak 
economic foundation, insufficient technological innovation capacity, 
and scarce public health resources present significant challenges. 
Despite national policy support and resource input, the promotion 
and application of AI technology face numerous limitations, resulting 
in minimal impact on urban public health resilience (41).

2.4 Spatial correlation analysis of AI’s 
impact on urban public health resilience

The spatial spillover effects of AI technology on urban public 
health resilience are primarily reflected in cross-city technology 
diffusion, information sharing, and resource allocation. Firstly, spatial 
spillover theory underscores the importance of regional cooperation 
and coordinated management in enhancing urban public health 
resilience. Public health events such as disease outbreaks, 
environmental pollution, and emergency responses often transcend 
city boundaries, requiring collaborative efforts. While AI technology 
strengthens local public health systems, its positive effects spill over to 
neighboring cities, creating broader regional benefits (42). Secondly, 
information sharing and technological diffusion serve as key 
mechanisms for realizing these spatial effects. AI applications in 
healthcare, public health management, and environmental monitoring 
not only improve a city’s emergency response capabilities but also 
enable the transfer of technological advancements to neighboring 
cities. This is achieved through data sharing, cross-regional monitoring 
platforms, and the mobility of skilled professionals, fostering collective 
resilience across the region. Thirdly, the flow of production factors and 
collaborative effects provides essential support for technological 
spillovers. AI technology, which relies heavily on talent, capital, and 
infrastructure, facilitates the movement of these resources across 
regions. Early adopters of AI often attract high-skilled professionals 
and innovative enterprises, accelerating technology diffusion and 
optimizing resource allocation. This dynamic fosters the coordinated 
development of regional public health systems (43). Fourthly, 
improvements in a city’s public health resilience can generate a 
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“demonstration effect” or “follow-up effect,” inspiring neighboring 
cities to adopt similar technologies and policies. These cascading 
influences encourage adjustments in regional policy frameworks and 
increased investments in technology, ultimately driving the collective 
optimization of public health systems across the region.

3 Sample and data

3.1 Sample selection

Prefecture-level cities in China serve as relatively comprehensive 
and autonomous administrative units. In 2011, a substantial 
accumulation of digital data related to public health was achieved, 
while significant breakthroughs were made in artificial intelligence 
technologies such as deep learning and big data analysis, marking the 
initial emergence of AI’s transformative potential. This study selects 
284 prefecture-level cities and municipalities from 2011 to 2021 as the 
research sample, based on the availability and completeness of the 
data. The original data for this study primarily comes from the China 
City Statistical Yearbook, provincial and municipal statistical 
yearbooks, the Urban Construction Statistical Yearbook, prefecture-
level city statistical bulletins, the China Research Data Service 
Platform (CNRDS), and the CEIC database. Where official data were 
unavailable, substitute indicators were applied, and missing data were 
imputed using linear interpolation.

3.2 Definition of variables

3.2.1 Dependent variable
Urban public health resilience can be measured using either the 

single-index method or the comprehensive-index method. The 
single-index method is straightforward to calculate and easy to 
interpret; however, it often neglects the interactions and dynamic 
relationships within the system, which may introduce bias. In 
contrast, the comprehensive-index method provides a more holistic 
assessment by capturing the multidimensional nature of public health 
resilience and offering a systematic evaluation. Accordingly, this 
study employs the entropy weight method to construct a 
comprehensive index for measuring urban public health resilience. 
This study, grounded in scientific rigor, systematic analysis, and data 
availability, categorizes urban public health resilience into three 

dimensions: resistance, recovery, and innovation. To quantify these 
dimensions, specific secondary indicators were developed (44). Given 
the differences in scale and orientation among these indicators, the 
range standardization method was employed to mitigate their impact 
on the results. Subsequently, weights were assigned using the 
coefficient of variation method, resulting in a comprehensive index 
of urban public health resilience. Table  1 outlines the secondary 
indicators, along with their corresponding descriptions and 
attributes, used in the comprehensive index methodology.

3.2.2 Independent variable
AI technology reflects a city’s capacity for technological 

innovation and knowledge accumulation. Innovations in AI 
algorithms, applications, and system architectures are often 
represented and safeguarded through patents (44). Artificial 
intelligence patents represent a tangible indicator of technological 
innovation, offering a robust and comprehensive data foundation for 
empirical research. They serve as a reliable proxy for evaluating the 
advancements and maturity of artificial intelligence technologies, 
aligning with rigorous academic standards. In this study, AI patents 
are used as a proxy variable to measure AI technology levels. Using the 
IPC classification, data on AI patent applications and authorizations 
were collected from the Chinese patent database via Python 
web-scraping techniques, with separate regressions conducted for 
each, followed by interaction tests. Additionally, AI patents were 
classified to further explore the mechanisms and impacts of AI 
technology on urban public health resilience.

3.2.3 Control variables
Government intervention (gov) is measured by the ratio of local 

fiscal general budget revenue to GDP, with higher values indicating 
stronger government intervention in the market. Openness to trade 
(tra) is measured by the ratio of imports and exports, converted to 
RMB using the prevailing exchange rate, to GDP. Excessive reliance 
on trade may increase a city’s vulnerability to external public health 
shocks. Population density is measured by the logarithm of the urban 
resident population. When effectively planned and managed, higher 
population density can significantly enhance a city’s response capacity 
for public health resilience and improve the efficiency of human 
capital allocation. Resident income is measured by the ratio of 
disposable income to the resident population. Higher income levels 
can strengthen a city’s ability to handle sudden public health crises 
and improve long-term resilience. Electricity consumption (elec) is 

TABLE 1 Comprehensive evaluation index system for urban public health resilience.

Primary dimension Secondary indicator Indicator definition Attribute

Resistance Basic Pension Insurance Coverage Rate Ratio of people covered by pension insurance to the resident population +

Basic Medical Insurance Coverage Rate Ratio of people covered by medical insurance to the resident population +

Unemployment Insurance Coverage Rate Ratio of people covered by unemployment insurance to the resident population +

Recovery Number of Hospitals Number of hospitals per 10,000 people +

Number of Beds Number of beds per 100 people +

Number of Doctors Number of doctors per 100 people +

Innovation Education Expenditure Ratio of education expenditure to GDP +

R&D Expenditure Ratio of R&D expenditure to DDP +

Innovation Number of newly established enterprises per 100 people +
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measured by the ratio of total electricity consumption to the resident 
population. A stable power supply improves residents’ quality of life 
and public health resilience. Energy efficiency (eng) is measured by 
the ratio of standard coal consumption to GDP. Although 
improvements in energy efficiency may yield short-term benefits, 
they can have a long-term negative impact on urban public health 
resilience. The definitions of these variables are provided in Table 2.

3.3 Model construction

This study constructs the following basic regression model:

 
0 1it it j t i it

j
res a a AI a X u λ ε= + + × + + +∑

 
(1)

where res represents urban public health resilience, AI refers to 
artificial intelligence technology, which, during the analysis, can 
be  substituted by the natural logarithm of patent applications, 
authorizations, or categorized patents. The subscript i denotes the city, 
and t denotes the year. X represents the control variables, tu accounts 
for time-fixed effects, iλ  for individual-fixed effects, itå  is the random 
disturbance term, and α denotes the regression coefficients.

To explore the spatial effects of AI technology on urban public 
health resilience, the study employs a Spatial Autoregressive Model 
(SAR) Equation 2 and a Spatial Error Model (SEM) Equation 3:

Spatial Autoregressive Model (SAR):

 it it it t i itres W res Xρ β µ λ ε= + + + +  (2)

where ρ is the spatial autoregressive coefficient, W is the spatial 
weight matrix, β represents the corresponding influence coefficient, 
and the other variables retain the same meanings as in Equation 1.

Spatial Error Model (SEM):

 it it t i it it it itres X Wγ µ λ ε ε δ ε ν= + + + = +  (3)

where δ  is the spatial error coefficient, W is the spatial weight 
matrix, itε  represents the impact of error shocks from neighboring 
regions’ public health resilience on the current region, itν  is the 
random error term, γ  denotes the regression coefficients, and the 
other variables are defined as in Equation 1.

The statistical descriptions of the variables are presented in Table 3. 
The standard deviation of urban public health resilience is close to the 
mean, and there is a notable difference between the minimum and 
maximum values, indicating variability in the levels of public health 
resilience across the sample cities. For the AI technology variables—
including patent applications, invention patent applications, utility 
model patent applications, design patent applications, as well as patent 
authorizations, invention patent authorizations, utility model patent 
authorizations, and design patent authorizations—the standard 
deviations are smaller than the mean, with a noticeable difference 
between the minimum and maximum values. This suggests a degree 
of variation in AI technology across cities, aligning with the actual 
progress of AI development. Population density, resident income, and 
electricity consumption are at relatively high levels, while openness to 
trade and energy efficiency are at moderate levels. Government 
intervention is at a relatively low level, providing empirical support for 
the use of a two-way fixed effects model.

4 Estimation and result

4.1 Benchmark regression analysis

Before empirically examining the relationship between AI 
technology and urban public health resilience, it is essential to assess 
the multicollinearity and stationarity of the variables to avoid spurious 
regression. The variance inflation factor (VIF) results indicate an 
average VIF of 1.52, with a maximum value of 1.92, well below the 

TABLE 2 Main variable definition.

Variable type Variable name Abbreviation Definition

Dependent variable Urban public health resilience res Entropy-weighted composite index

Independent 

variables

AI patent applications lnaiat Logarithm of the number of AI patent applications

AI invention patent applications lnaiaf Logarithm of the number of AI invention patent applications

AI utility model patent applications lnaias Logarithm of the number of AI utility model patent applications

AI design patent applications lnaiaw Logarithm of the number of AI design patent applications

AI patents granted lnaigt Logarithm of the number of AI patents granted

AI invention patents granted lnaigf Logarithm of the number of AI invention patents granted

AI utility model patents granted lnaigs Logarithm of the number of AI utility model patents granted

AI design patents granted lnaigw Logarithm of the number of AI design patents granted

Control variables Government intervention gov Budgetary revenue to GDP

Openness to trade tra Total imports and exports to GDP

Population density pop Logarithm of the resident population

Residents income town Per capita disposable income of residents to Resident population

Electricity consumption elec Total electricity consumption to Resident population

Energy efficiency eng Standard coal consumption to GDP
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threshold of 10, suggesting no multicollinearity among the variables. 
The Hausman test results reject the null hypothesis at the 1% 
significance level, confirming that the two-way fixed effects model is 
appropriate for the benchmark regression analysis.

This study uses panel data from 284 cities between 2011 and 2021 
to conduct benchmark regression analysis with a two-way fixed 
effects model, as presented in Table 4. Columns (1) and (5) display 
the results of univariate regressions, where the regression coefficients 
are positive and significant at the 1% level, indicating that the number 
of AI patent applications and authorizations positively influences 
urban public health resilience. Studies have demonstrated that 
artificial intelligence (AI) technology significantly enhances urban 
public health resilience by leveraging data-driven methodologies, 
intelligent optimization, and advanced monitoring systems. These 
capabilities collectively improve the responsiveness, precision, and 
sustainability of public health infrastructures, enabling more effective 
management of emerging challenges in urban health ecosystems. 
Columns (2)–(4) and (6)–(8) apply stepwise regression, incorporating 
control variables such as government intervention, openness to trade, 
population density, resident income, electricity consumption, and 
energy efficiency. Table  4 shows that the regression coefficients 
remain positive and significant at the 1% level across these models. 
The findings demonstrate a significant and stable positive relationship 
between AI patent applications, authorizations, and urban public 
health resilience, which aligns with theoretical expectations. The 
study reveals that AI technology contributes to strengthening the 
public health resilience of urban entities by enhancing their ability to 
adapt to external environmental changes. In times of shock, cities can 
continuously adjust their operational models, utilizing AI to perceive 
changes in the external environment and make adaptive 
modifications, thereby enhancing resilience, flexibility, and gaining 
new developmental advantages, leading to quicker and more effective 
recovery from challenges (45).

Regarding the control variables, the coefficients for government 
intervention, population density, resident income, and electricity 

consumption are significantly positive, indicating their beneficial 
impact. High levels of government intervention can stabilize 
economic fluctuations through fiscal policies, thereby strengthening 
the stability and resilience of urban public health services. In cities 
with higher population density, healthcare resources tend to be more 
concentrated, creating agglomeration effects that enable faster and 
more convenient access to healthcare services, thus enhancing urban 
public health resilience. Higher resident income levels contribute to 
raising public health awareness and participation, further 
strengthening urban public health resilience. A reliable electricity 
supply improves cities’ ability to respond to public health emergencies, 
ensuring that public health activities can quickly return to normal. In 
contrast, the coefficients for openness to trade and energy efficiency 
are significantly negative, indicating an inhibitory effect. While 
openness to trade can drive economic growth, it also increases the 
risk of infectious disease transmission from external sources, creating 
more complex disease control challenges and weakening the 
adaptability of urban public health services. Excessive emphasis on 
energy efficiency can divert funds and resources from public health 
investments, leading to imbalanced resource allocation and reducing 
the emergency response capacity of public health services 
during crises.

4.2 Lagged effect analysis

As a new-generation digital economy innovation, AI technology 
has developed rapidly but faces delays in widespread practical 
application. This lag is attributed to several factors, including the 
inability of algorithmic models to fully keep pace with evolving 
business needs, the time required to accumulate complementary 
technological investments, and the lack of fully mature policies, 
regulations, and ethical frameworks necessary for widespread AI 
adoption across various sectors. To account for these factors, this 
study uses the one-period and two-period lags of the AI technology 
variable as explanatory variables in the regression analysis, with the 
results presented in Table 5. Columns (1)–(4) in Table 5 show that the 
one-period and two-period lagged regression results for AI patent 
applications and authorizations remain significantly positive. While 
the correlation coefficients decrease slightly, the results remain 
robust, indicating that AI technology continues to exert a sustained 
positive influence on the development of urban public health 
resilience. The influence of artificial intelligence (AI) technology 
variables is observed to diminish gradually over longer lag periods. 
This phenomenon can be  attributed to the initially pronounced 
impact of AI technologies, which tend to exhibit significant 
effectiveness during the early stages of adoption. However, as time 
progresses, their marginal benefits decrease, with subsequent effects 
increasingly dependent on the interplay of other evolving factors.

4.3 Endogeneity treatment: instrumental 
variable method

There may be an endogeneity issue in the relationship between AI 
technology and urban public health resilience. To address this, the 
study uses the average AI technology variable of different cities within 
the same province in the same year as an instrumental variable. The 

TABLE 3 Descriptive statistical analysis.

Variable Obs Mean Std. Dev. Min Max

res 3,124 0.038 0.044 0.009 0.656

lnaiat 3,124 7.530 1.296 2.773 12.476

lnaiaf 3,124 6.860 1.300 2.079 11.789

lnaias 3,124 6.313 1.306 1.386 11.352

lnaiaw 3,124 5.855 1.302 1.386 10.712

lnaigt 3,124 5.856 1.318 1.386 11.390

lnaigf 3,124 5.230 1.318 0.693 10.710

lnaigs 3,124 4.584 1.323 0.000 10.142

lnaigw 3,124 4.139 1.336 0.000 9.812

gov 3,124 0.077 0.027 0.023 0.227

tra 3,124 0.176 0.283 0.000 2.491

pop 3,124 5.725 0.990 1.736 9.420

town 3,124 2.338 0.476 1.207 4.626

elec 3,124 4.043 1.134 0.105 7.467

eng 3,124 0.136 0.150 0.008 2.283
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average level of artificial intelligence (AI) technology across cities 
within the same province reflects regional trends in AI development 
and is strongly correlated with the intensity of local economic 
activities. This alignment satisfies the relevance criterion for 
instrumental variables. Moreover, the average AI technology level in 
other cities within the province does not directly influence the 
dependent variable of the target city. Instead, its impact is mediated 
through its influence on the AI technology level of the target city, 
thereby meeting the exogeneity requirement for instrumental 
variables. Table 6 presents the results of the two-stage least squares 
(2SLS) regression. For the identification of the instrumental variable, 
the Anderson canon. Corr. LM statistic for AI patent applications and 
authorizations significantly rejects the null hypothesis of “under-
identification of the instrumental variable” at the 1% level. The Cragg-
Donald Wald F statistic for AI patent applications and authorizations 
passes the weak instrumental variable test, confirming that the chosen 
instrumental variable is valid. According to the second-stage 
regression results in Table 6, the coefficient for AI patent applications 
is 0.008 and significant at the 1% level, while the coefficient for AI 
patent authorizations is 0.015 and also significant at the 1% level. 
These findings indicate that AI technology positively contributes to 
urban public health resilience, confirming the robustness of the 
study’s conclusions.

4.4 Robustness tests

4.4.1 Static panel regression

4.4.1.1 Alternative estimation method
The previously calculated values of urban public health resilience 

are non-negative and exhibit a truncated distribution with a lower 
bound at zero. To address this, a two-way fixed-effects panel Tobit 
model was employed for re-estimation. As shown in column (1) of 
Table  7, the regression coefficient for the AI technology variable 
remains significantly positive at the 1% level, confirming the 
robustness of the baseline regression.

4.4.1.2 Excluding municipality samples
Given the substantial differences in economic scale between 

municipalities and regular prefecture-level cities, as well as the 
discrepancies in AI technology levels and urban public health 
resilience, excluding municipality samples minimizes the distortion 
caused by these economic differences and yields more targeted 
analysis. The results in column (2) of Table  7 indicate that after 
excluding the municipalities, the regression remains significant, with 
the positive influence of the AI technology variable on urban public 
health resilience unchanged. The regression coefficients show slight 

TABLE 4 Basic regression results.

Variables res

(1) (2) (3) (4) (5) (6) (7) (8)

lnaiat 0.007*** 0.007*** 0.008*** 0.007***

(0.003) (0.003) (0.003) (0.003)

lnaigt 0.014*** 0.015*** 0.016*** 0.014***

(0.004) (0.004) (0.004) (0.004)

gov 0.248*** 0.265*** 0.280*** 0.264*** 0.282*** 0.295***

(0.058) (0.057) (0.057) (0.058) (0.057) (0.057)

tra −0.025*** −0.021*** −0.017** −0.027*** −0.022*** −0.018**

(0.008) (0.008) (0.008) (0.008) (0.008)

pop 0.031*** 0.029*** 0.032*** 0.030***

(0.010) (0.010) (0.010) (0.010)

town 0.031*** 0.031*** 0.031*** 0.031***

(0.005) (0.005) (0.005) (0.005)

elec 0.008*** 0.007**

(0.003) (0.003)

eng −0.041*** −0.040***

(0.008) (0.008)

Constant −0.001 −0.012 −0.283*** −0.289*** −0.020 −0.041** −0.313*** −0.314***

(0.018) (0.018) (0.060) (0.060) (0.019) (0.020) (0.060) (0.061)

Observations 3,124 3,124 3,124 3,124 3,124 3,124 3,124 3,124

R-squared 0.392 0.494 0.667 0.753 0.408 0.513 0.695 0.776

Control variables YES YES YES YES YES YES YES YES

Individual effect YES YES YES YES YES YES YES YES

Time effect YES YES YES YES YES YES YES YES

Standard errors in parentheses (***p < 0.01, **p < 0.05, *p < 0.1).
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adjustments, suggesting that the inclusion of municipalities had some 
effect on the overall results.

4.4.1.3 Winsorization test
The Winsorization test aims to replace extreme values in the data 

with more reasonable upper and lower bounds to reduce the impact 

of outliers on the model results. Column (3) of Table 7 presents the 
regression results after Winsorization. The results remain significant, 
with minor changes to the coefficients compared to the original 
regression, indicating that the influence of extreme values on the 
original results has been mitigated after Winsorization.

4.4.2 Dynamic panel regression
To further verify the impact of AI technology on urban public 

health resilience, this study incorporates a lagged term of urban public 
health resilience to construct a dynamic panel, using the SYS-GMM 
method for regression. The results are presented in Table  8. The 
regression coefficient for the AI technology variable remains 
significantly positive, indicating a substantial positive effect of AI 
technology on urban public health resilience. The AR (1) 
autocorrelation is significant, while AR (2) autocorrelation is not, 
confirming the absence of second-order autocorrelation issues in the 
model. Furthermore, the results of the Sargan test indicate that the 
overall estimation possesses strong explanatory power and robustness, 
satisfying the requirements for causal statistical inference and aligning 
with theoretical expectations.

4.5 Heterogeneity analysis

4.5.1 Heterogeneity in the impact of AI 
technology on urban public health resilience

Based on the economic regional divisions provided by the 
National Bureau of Statistics, this study categorizes the 284 cities into 
eastern, central, and western regions, conducting group regressions 
according to model (1). The regression results for the AI technology 
variable are presented in Table 9. The heterogeneity analysis reveals 
significant differences in the impact of AI technology on urban public 

TABLE 5 Regression results of lagged variables on urban public health 
resilience.

(1) (2) (3) (4)

Variables res res res res

L.lnaiat 0.007***

(0.003)

L2.lnaiat 0.006**

(0.003)

L.lnaigt 0.010**

(0.004)

L2.lnaigt 0.008**

(0.004)

Constant −0.441*** −0.413*** −0.448*** −0.414***

(0.071) (0.073) (0.071) (0.073)

Observations 2,839 2,555 2,839 2,555

R-squared 0.638 0.657 0.638 0.657

Control variables YES YES YES YES

Individual Effect YES YES YES YES

Time Effect YES YES YES YES

Standard errors in parentheses (***p < 0.01, **p < 0.05, *p < 0.1).

TABLE 6 Instrumental variable: 2SLS regression results.

Variables IV1 IV2

First stage Second stage First stage Second stage

lnaiativ 0.996***

(0.003)

lnaiat 0.008***

(0.003)

lnaigtiv

lnaigt 0.092*** 0.015***

(0.005) (0.004)

F 77638.43 38392.04

Anderson canon. Corr. LM statistic 2692.854 1331.119

Cragg-Donald Wald F statistic 0 0

Observations 3,068 3,068 3,068 3,068

R-squared 0.992 0.782 0.993 0.793

Control variables YES YES YES YES

Individual Effect YES YES YES YES

Time Effect YES YES YES YES

Standard errors in parentheses (***p < 0.01, **p < 0.05, *p < 0.1).
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health resilience across China’s economic regions. In the eastern 
region, both AI patent applications and authorizations have a 
significantly positive effect on urban public health resilience. The 
central region demonstrates the most stable technological benefits, 
with both the current and lagged effects of patent applications and 
authorizations being significant. In contrast, no significant relationship 
is observed between AI patent applications, authorizations, and urban 
public health resilience in the western region.

4.5.2 Heterogeneity in the impact of AI 
technology categories’ patent authorizations on 
urban public health resilience

The regional heterogeneity of AI technology arises from 
differences in the dominant technology categories across regions and 
their respective mechanisms of influence. The distribution of AI 
technology patent authorizations by category from 2011 to 2021 is 
presented in Table 10. In the eastern region, due to factors such as the 

concentration of innovation resources, industrial structure, talent 
advantages, internationalization, and industrial cluster effects, patent 
authorizations across all three major categories hold a distinct 
advantage, significantly surpassing those in the central and western 
regions. The patent structures across regions are notably similar, with 
invention patents dominating in all areas, followed by utility model 
patents, and design patents representing the smallest proportion. The 
eastern region stands out with a substantially higher number of 
patents, particularly in invention patent authorizations, compared to 
the central and western regions.

To further understand the drivers and trends of AI technology 
development, this study conducts a detailed analysis using the number 
of patent authorizations across various AI technology categories, as 
shown in Table 11.

In the eastern region, the number of AI invention patent 
authorizations has a direct and positive impact on urban public 
health resilience in the current period. This may be due to the eastern 
region’s position as a core area for technological innovation and 
economic development, benefiting from well-established research 
infrastructure and industrial chains. In the central region, invention 
patent authorizations positively influence urban public health 
resilience both in the current period and in the first and second 
lagged periods. This can be attributed to the central region’s focus on 
patent technology layout, market demand, and application, coupled 
with relatively well-developed institutions, enabling the rapid 
realization of the economic value of invention patents. In contrast, in 
the western region, the benefits of AI invention patents remain 
minimal, resulting in an insignificant impact on urban public health 
resilience. This underscores the limited contribution of such patents 
to enhancing public health resilience at this stage. The likely reasons 
include insufficient innovation investment, constrained by weak 
economic foundations, underdeveloped technological infrastructure, 
and suboptimal policy implementation. These factors collectively 
impede the effective application of AI technologies and the 
advancement of management practices.

For AI utility model patent authorizations, no significant 
correlation is found with urban public health resilience in the eastern 

TABLE 7 Robustness tests of static panel regression.

Variables (1) (2) (3)

Change the estimation 
method

Exclude the municipality 
sample

Winsorization test

lnaiat 0.016*** 0.007*** 0.006***

(0.004) (0.003) (0.002)

lnaigt 0.011*** 0.014*** 0.012***

(0.003) (0.004) (0.002)

Constant −0.002*** −0.026*** −0.354*** −0.399*** −0.324*** −0.347***

(0.005) (0.004) (0.071) (0.072) (0.040) (0.041)

Observations 3,124 3,124 3,079 3,079 3,124 3,124

R-squared / / 0.775 0.792 0.781 0.786

Control variables YES YES YES YES YES YES

Individual Effect YES YES YES YES YES YES

Time Effect YES YES YES YES YES YES

Standard errors in parentheses (***p < 0.01, **p < 0.05, *p < 0.1).

TABLE 8 Robustness test of dynamic panel: SYS-GMM regression.

Variables res

(1) (2)

L.res 0.239*** 0.232***

(0.078) (0.083)

lnaiat 0.007*

(0.004)

lnaigt 0.018** (0.009)

Observations 2,833 2,833

Control variables YES YES

Number of Instrumental Variables 49 49

AR (1) −3.07 −3.18

AR (2) 0.27 −0.11

Sargan test of overid 2772.85 4.22

Standard errors in parentheses (***p < 0.01, **p < 0.05, *p < 0.1).
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TABLE 9 Heterogeneity analysis of AI technology variables.

(1) (2) (3) (4) (5) (6)

Variables res res res res res res

Eastern region Central region Western region

Number of AI patent 

applications

lnaiat 0.014*** 0.014*** −0.006

(0.005) (0.003) (0.006)

L.lnaiat 0.006 0.013*** 0.004

(0.005) (0.003) (0.006)

Constant −0.278*** −0.639*** −0.185*** −0.191*** −0.213 −0.416**

(0.090) (0.129) (0.070) (0.062) (0.186) (0.194)

Observations 1,099 999 1,100 1,000 924 840

R-squared 0.636 0.784 0.636 0.784 0.796 0.784

Number of AI patent 

authorizations

lnaigt 0.020** 0.019*** −0.008

(0.008) (0.004) (0.009)

L.lnaigt 0.011 0.012*** −0.003

(0.008) (0.004) (0.009)

Constant −0.296*** −0.679*** −0.206*** −0.196*** −0.219 −0.373**

(0.095) (0.134) (0.070) (0.063) (0.185) (0.190)

Observations 1,099 999 1,100 1,000 924 840

R-squared 0.587 0.678 0.742 0.689 0.786 0.875

Standard errors in parentheses (***p < 0.01, **p < 0.05, *p < 0.1).

TABLE 10 Regional distribution of patent authorizations by AI technology categories.

Invention patent Utility model patent Design patent

Number of 
authorizations

Percentage 
(%)

Number of 
authorizations

Percentage 
(%)

Number of 
authorizations

Percentage 
(%)

Eastern region 1,194,785 53.54 620,794 27.82 415,628 18.62

Central region 228,948 53.51 123,336 28.82 75,534 17.65

Western region 158,426 53.12 84,411 28.30 55,384 18.57

TABLE 11 Heterogeneity analysis of AI invention patents, utility model patents, and design patents authorizations.

Eastern region Central region Western 
region

(1) (2) (3) (4) (5) (6) (7)

Current 
period

First lag Current 
period

First lag Second lag Third lag Current 
period

lnaigf 0.016** 0.007 0.016*** 0.010*** 0.008*** 0.005 −0.007

(0.007) (0.007) (0.003) (0.003) (0.003) (0.005) (0.007)

lnaigs 0.005 / 0.012*** 0.008*** 0.011*** 0.005 −0.007

(0.006) / (0.003) (0.003) (0.003) (0.003) (0.007)

lnaigw 0.014** 0.003 0.012*** 0.004 / / −0.007

(0.005) (0.005) (0.003) (0.003) / / (0.007)

Observations 1,100 1,000 1,100 1,000 900 800 924

Control variables YES YES YES YES YES YES YES

Individual Effect YES YES YES YES YES YES YES

Time Effect YES YES YES YES YES YES YES

Standard errors in parentheses (***p < 0.01, **p < 0.05, *p < 0.1).
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region. In the central region, utility model patent authorizations 
positively impact urban public health resilience in the current period, 
as well as in the first and second lagged periods. In the western region, 
no correlation is observed between the two.

AI design patent authorizations positively affect urban public 
health resilience in the current period in the eastern region. Similarly, 
a positive effect is observed in the central region during the same 
period. However, no significant correlation is found between AI 
design patent authorizations and urban public health resilience in the 
western region.

5 Further analysis: spatial effects of AI 
technology on urban public health 
resilience

AI technology not only strengthens urban public health resilience 
by improving coordination and collaboration in public health 
activities within a region but also promotes cross-regional 
development through the free movement of production factors such 
as capital, labor, and technology. To verify this hypothesis, this study 
employs spatial econometric models to analyze the spatial effects of 
local AI technology development on the public health resilience of 
neighboring cities. The aim is to determine whether technological 
advancements can transcend geographic and economic boundaries, 
producing positive impacts on nearby cities.

5.1 Spatial autocorrelation test

In this study, a spatial inverse distance weight matrix is 
constructed. The spatial inverse distance weight matrix is a tool used 
in spatial econometrics to represent geographic relationships between 
regions, typically applied to describe spatial interdependencies 
among regions or cities. The core principle is that regions closer to 
one another exert a greater influence, while regions farther apart have 
a smaller impact. The weights are based on the geographic distance 
between regions, with weights inversely proportional to the distance. 
This method is widely used in spatial autoregressive models (SAR) 
and spatial error models (SEM) to capture the mutual influence and 
spatial dependence between regions. The calculation Equation 4 is 
as follows:

 1 / ,ij ij for i jω δ= ≠  (4)

where ijδ  represents the distance between region i and region j, 
and ijω  represents the spatial weight of region i  on region j. The 
smaller the distance, the greater the weight. When i = j(i.e., within the 
same region), the spatial weight is set to zero or omitted to ignore 
self-influence. To ensure suitability for spatial regression analysis, the 
weight matrix is typically normalized so that the sum of weights for 

each region equals 1, representing the relative strength of influence 
each region has on others.

Prior to spatial analysis, it is crucial to rigorously test for spatial 
autocorrelation to reveal spatial dependencies that may be overlooked 
in traditional econometric models, thus preventing biased estimation 
results. Moran’s I is frequently used for this purpose, as it effectively 
reflects the degree of spatial correlation. This study employs the 
Moran’s I index for the analysis. Table 12 presents the Moran’s I index 
for urban public health resilience from 2011 to 2021, using the spatial 
inverse distance weight matrix. The results indicate that the Moran’s 
I  index is consistently greater than 0 and statistically significant, 
suggesting a strong positive spatial autocorrelation in urban public 
health resilience. This underscores the necessity of applying spatial 
econometric models.

5.2 Spatial impact of AI technology on 
urban public health resilience

The spatial autocorrelation analysis confirms the presence of 
significant spatial dependence in urban public health resilience. To 
further explore this, spatial econometric models (2) and (3) were 
constructed for analysis. The regression results presented in Table 13 
indicate the following insights regarding AI patent applications and 
grants. For the number of AI patent applications, the Log-Likelihood 
statistic for the Spatial Autoregressive Model (SAR) is 6060.758, 
compared to 6036.019 for the Spatial Error Model (SEM), leading to 
the selection of the SAR model. The goodness of fit for the SAR 
model is 0.823, whereas for the SEM model, it is 0.752, further 
reinforcing the preference for the SAR model. For the number of AI 
patent grants, the Log-Likelihood statistic for the SAR model is 
6040.824, slightly higher than 6037.139 for the SEM model, once 
again supporting the selection of the SAR model. Additionally, the 
goodness of fit for the SAR model is 0.657, compared to 0.568 for the 
SEM model, confirming the SAR model as the better choice. Based 
on these results, this study employs the fixed-effects Spatial 
Autoregressive Model to analyze the impact of AI technology on 
urban public health resilience (46).

Following the setup of model (2), the regression results are shown 
in Table  13. Under the spatial inverse distance weight matrix, the 
coefficient for AI patent applications is 0.006 and significantly positive 
at the 5% level, while the coefficient for AI patent authorizations is 0.011 
and significantly positive at the 1% level. These findings align with the 
baseline regression, indicating that AI technology fosters the 
development of urban public health resilience. The spatial autoregressive 
coefficients (rho) for both AI patent applications and authorizations are 
significantly positive at the 1% level, suggesting a positive spatial 
spillover effect. The study finds that public health events, such as 
epidemics or environmental health issues, often have a cross-regional 
nature, requiring inter-regional cooperation in public health 
management and response. AI technology facilitates real-time 

TABLE 12 Moran’s I index.

Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Moran’s I 0.014 0.019 0.018 0.020 0.014 0.019 0.076 0.083 0.021 0.094 0.046

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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information sharing, data analysis, and emergency response across 
cities, thereby enhancing public health resilience throughout the region.

To further examine the spatial effects of AI technology on urban 
public health resilience, this study decomposes the spatial effects. 
Table 13 reports the direct, indirect, and total effects of AI technology 
on urban public health resilience under the spatial inverse distance 
weight matrix. The direct effect reflects the impact of AI technology 
on public health resilience within the local region, while the indirect 
effect captures its influence on neighboring regions. The regression 
results show that for the direct effect, AI patent applications are 
significantly positive at the 5% level, and AI patent authorizations are 
significantly positive at the 1% level, indicating that AI technology 
positively contributes to public health resilience in the local city. This 
may be because AI technology can analyze medical records, social 
media data, and environmental sensor data to predict disease 
transmission paths and affected areas, enabling public health 
institutions to respond more swiftly. Regarding the indirect effect, AI 
patent applications exhibit a positive but not significant impact, 
whereas AI patent authorizations are significantly positive at the 10% 
level. This suggests that AI patent authorizations have a significant 
positive impact on the public health resilience of neighboring cities, 
while the influence of AI patent applications, though positive, is not 
statistically significant. This could be because public health resilience 
depends on the reliability and stability of the technology. Unapproved 
patent technologies, lacking practical validation, may not function 
consistently in critical public health scenarios, limiting their spatial 
spillover effects. Conversely, authorized patents, having undergone 
rigorous review and validation, are more likely to provide stable and 
reliable public health support, helping cities respond effectively to 

emergencies such as pandemics or natural disasters, thereby 
demonstrating clear spatial spillover effects. For the total effect, both 
AI patent applications and authorizations are significantly positive at 
the 5 and 1% levels, respectively. This indicates that AI technology has 
an overall positive effect on urban public health resilience, reflecting 
the combined influence of direct and indirect effects. Research 
demonstrates that the adoption of artificial intelligence (AI) 
technology in a single city often extends to surrounding regions 
through mechanisms such as knowledge diffusion and talent mobility. 
By leveraging these successful implementations, neighboring cities 
can accelerate their own technological advancements, collectively 
strengthening regional public health resilience (47).

6 Research conclusions

This study analyzes the impact of AI technology on urban public 
health resilience using a sample of 284 prefecture-level and above 
cities in China from 2011 to 2021. The findings reveal that: (1) AI 
technology significantly enhances urban public health resilience, 
primarily by strengthening the public health system’s resistance, 
recovery, and innovation capabilities. (2) A regional heterogeneity 
analysis shows that AI technology has a significant positive effect on 
public health resilience in the eastern and central regions. In 
particular, the eastern region benefits most from its strong 
technological absorption capacity and effective allocation of public 
health resources. However, in the western region, where economic 
development and technological foundations are weaker, AI technology 
has not demonstrated a significant effect in enhancing resilience. (3) 
The spatial spillover effects indicate that AI technology exhibits a 
significant positive spillover effect, especially in the indirect effects of 
patent authorizations. This suggests that authorized patents are more 
likely to be  applied in neighboring cities, thereby improving the 
overall resilience of urban public health systems.

6.1 Theoretical and practical implications

This study highlights the pivotal role of artificial intelligence (AI) 
technology in bolstering urban public health resilience, offering 
valuable insights for policymakers seeking to enhance preparedness 
and response strategies. First, the accelerated development of AI 
technology is critical for mitigating external crises. AI-powered 
platforms for real-time health data collection and analysis can 
significantly improve the prediction and management of urban public 
health emergencies. Moreover, integrating AI into disease diagnosis, 
treatment planning, and the allocation of medical resources enhances 
healthcare efficiency and precision. Establishing dedicated funding 
streams and innovation hubs to support research and development in 
AI applications for public health is essential to sustain these 
advancements. Second, building human capital and ensuring a robust 
supply of AI talent are paramount. Tailored training programs for 
healthcare professionals and AI specialists should be implemented to 
enhance their technical expertise and interdisciplinary knowledge. 
Additionally, education initiatives that bridge urban public health, AI, 
and data science can foster the development of multifaceted 
professionals. Programs aimed at promoting diverse participation in 
AI research and applications are also necessary to ensure inclusivity 

TABLE 13 Spatial model regression results.

(1) (2) (3)

SAR model SEM model

Variables lnaiat lnaigt lnaiat lnaigt

Patent variables 0.006** 0.011*** 0.006** 0.011***

(0.002) (0.004) (0.003) (0.004)

rho 0.530*** 0.496***

(0.103) (0.108)

lambda 0.475*** 0.420***

(0.113) (0.124)

sigma2_e 0.001*** 0.001*** 0.001*** 0.001***

(0.000) (0.000) (0.000) (0.000)

Log-likelihood 6060.758 6040.824 6036.019 6037.139

Direct 0.006** 0.011***

(0.002) (0.004)

Indirect 0.007 0.011*

(0.004) (0.006)

Total 0.013** 0.022***

(0.006) (0.009)

Observations 3,124 3,124 3,124 3,124

R-squared 0.823 0.657 0.752 0.568

Standard errors in parentheses (***p < 0.01, **p < 0.05, *p < 0.1).
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and innovation in public health solutions. Third, robust intellectual 
property (IP) protection is indispensable. Simplifying and expediting 
patent application processes for AI and healthcare technologies can 
incentivize innovation. At the same time, strengthening enforcement 
mechanisms against IP violations offers crucial legal protections for 
innovators. Financial support and legal assistance should be extended 
to small and medium-sized enterprises to safeguard their AI-driven 
innovations in the public health sector. Finally, fostering cross-
regional collaboration and resource sharing is a strategic imperative 
for enhancing public health resilience at a broader scale. Cities can 
work together through information exchange, technological 
partnerships, and the seamless flow of resources to strengthen 
collective preparedness and adaptability in neighboring urban areas.

6.2 Limitations and future directions

While this study confirms the positive impact of AI technology on 
urban public health resilience, several limitations remain. First, as the 
sample data primarily focus on 284 Chinese cities, the findings may 
be most applicable to the Chinese context. Future research should 
extend to developed countries in Europe and the United States, as well 
as other emerging economies, for comparative analysis. Second, this 
study uses patent applications and authorizations as the main indicators 
of AI technology. Future studies could incorporate additional 
dimensions (e.g., technology application levels, mobility of scientific 
talent) to provide a more comprehensive picture of the impact of AI 
technology on public health resilience. Finally, this study primarily 
explores the direct and spatial spillover effects of AI technology on 
public health resilience. Future research could further analyze the 
impact of factors such as transportation barriers, political boundaries, 
and cultural differences on urban public health resilience. It would also 
be valuable to consider using effective distance as a spatial weight matrix 
to avoid the potential inaccuracies associated with purely relying on 
geographic distance, which might lead to misleading results.
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