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Background: Chronic kidney disease (CKD) is characterized by a decreased 
glomerular filtration rate or renal injury (especially proteinuria) for at least 
3  months. The early detection and treatment of CKD, a major global public 
health concern, before the onset of symptoms is important. This study aimed to 
develop machine learning models to predict the risk of developing CKD within 1 
and 5  years using health examination data.

Methods: Data were collected from patients who underwent annual health 
examinations between 2017 and 2022. Among the 30,273 participants included 
in the study, 1,372 had CKD. Demographic characteristics, body mass index, 
blood pressure, blood and urine test results, and questionnaire responses 
were used to predict the risk of CKD development at 1 and 5  years. This study 
examined three outcomes: incident estimated glomerular filtration rate (eGFR) 
<60  mL/min/1.73  m2, the development of proteinuria, and incident eGFR 
<60  mL/min/1.73  m2 or the development of proteinuria. Logistic regression (LR), 
conditional logistic regression, neural network, and recurrent neural network 
were used to develop the prediction models.

Results: All models had predictive values, sensitivities, and specificities >0.8 for 
predicting the onset of CKD in 1  year when the outcome was eGFR <60  mL/
min/1.73  m2. The area under the receiver operating characteristic curve 
(AUROC) was >0.9. With LR and a neural network, the specificities were 0.749 
and 0.739 and AUROCs were 0.889 and 0.890, respectively, for predicting onset 
within 5  years. The AUROCs of most models were approximately 0.65 when 
the outcome was eGFR <60  mL/min/1.73  m2 or proteinuria. The predictive 
performance of all models exhibited a significant decrease when eGFR was not 
included as an explanatory variable (AUROCs: 0.498–0.732).

Conclusion: Machine learning models can predict the risk of CKD, and eGFR 
plays a crucial role in predicting the onset of CKD. However, it is difficult to 
predict the onset of proteinuria based solely on health examination data. Further 
studies must be conducted to predict the decline in eGFR and increase in urine 
protein levels.
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1 Introduction

Chronic kidney disease (CKD) is characterized by a decreased 
glomerular filtration rate or renal injury (especially proteinuria) 
for at least 3 months and is a significant global public health 
concern. The number of patients with CKD worldwide reached 
697.5 million in 2017, yielding a prevalence rate of 9.1% (1). The 
number of patients with CKD has been increasing in Japan. 
Approximately 14.8 million individuals in Japan had CKD in 
2015, with a prevalence rate of 14.6% (2).

Symptoms such as edema and abnormal urine are usually not 
observed during the early stages of CKD. Notably, irreversible 
decline in renal function has already occurred in most patients by 
the time they experience symptoms. Dialysis is indicated in 
patients with a significant decline in renal function. Dialysis leads 
to a decline in quality of life. Furthermore, it creates social burden 
by increasing medical expenses. Thus, early detection and 
treatment of CKD before symptom onset are important.

Hypertension, diabetes, dyslipidemia, hyperuricemia, 
metabolic syndrome, and obesity are known risk factors for CKD 
(3–7) that are strongly associated with undesirable lifestyle habits, 
such as lack of exercise and physical activity, inappropriate eating 
habits, smoking, excessive drinking, and inadequate sleep (8–13). 
Many of these lifestyle factors affect the risk of developing CKD 
(3, 14–17).

Previous studies explored the development of CKD prediction 
models using machine learning. Shih et al. (18) predicted the risk 
of early CKD using a classification and regression tree (area 
under the receiver operating characteristics curve [AUROC]: 
0.779), C4.5 decision tree (decision tree algorithm; AUROC: 
0.788), linear discriminant analysis (AUROC: 0.773), and neural 
network (NN) (AUROC: 0.692). A lifestyle scoring system for 
identifying CKD risk was established using a light-gradient 
boosting machine algorithm in a previous study that investigated 
the relationship between CKD and lifestyle habits (19). The 
AUROC for predicting the incidence of CKD based on lifestyle 
scores was 0.710. Recurrent neural network (RNN), which is 
suitable for analyzing time-series data, was used to predict 
disease progression among patients with CKD in another 
study (20).

This study aimed to develop machine learning models to 
predict the risk of CKD onset within 1 and 5 years using health 
examination data. Many previous studies that predicted the risk 
of CKD attempted to predict only the risk of a decline in eGFR, 
which is not considered a strict predictor of the risk of CKD. Thus, 
three outcomes were analyzed in this study: decline in eGFR, 
presence of renal injury, and decline in eGFR or presence of renal 
injury. These outcomes were compared to determine their 
contribution to predicting renal function decline and renal injury 
toward CKD screening. Lifestyle questionnaire data were used 
along with demographic characteristics, physical measurements, 
and laboratory data to predict the risk of CKD. Individuals are 
expected to implement ideal lifestyle habits and avoid undesirable 
lifestyle habits when the risk of developing CKD is predicted using 
these variables. Finally, annual health examination data were used 
to determine the importance of undergoing annual 
health examinations.

2 Methods

2.1 Study participants

The Niigata Association of Occupational Health has multiple health 
examination centers in Niigata Prefecture, Japan, and provides routine 
health and complete medical examinations. The health examination 
data of individuals who underwent annual health examinations at the 
Niigata Association of Occupational Health between 2017 and 2022 
were used in this study. Data that met the following criteria were 
extracted from the Niigata Association of Occupational Health database.

Figure 1 illustrates the participant selection process. Participants 
who underwent health examinations every year for 6 years and had an 
eGFR of ≥60 mL/min/1.73 m2 and negative proteinuria from 2017 to 
2021 were included in the study (N = 40,021). They had complete data 
on eGFR, proteinuria, and the use of antihypertensive, antidiabetic, 
and anti-cholesterol drugs. Participants with a history of 
antihypertensive, antidiabetic, or anticholesterol drug use were 
excluded (N = 9,748). Therefore, 30,273 participants were included in 
the final analysis. Risk prediction models were created for the 
following outcomes (21): (i) incident eGFR of <60 mL/min/1.73 m2 in 
2022, (ii) development of proteinuria in 2022, and (iii) incident eGFR 
of <60 mL/min/1.73 m2 or development of proteinuria in 2022.

In addition, participants with and without CKD were matched 
according to age and sex in a 1:1 ratio. Each patient with CKD was 
matched with an age-and sex-matched participant without CKD, 
selected randomly and non-restoratively.

2.2 Data collection

Data regarding the following parameters were collected: (i) 
demographic characteristics, including age and sex; (ii) clinical 
parameters, such as body mass index (kg/m2), systolic blood pressure 
(mmHg), and diastolic blood pressure (mmHg); (iii) biochemical 
indicators, including fasting plasma glucose levels (mg/dL), hemoglobin 
A1c levels (%), total cholesterol levels (mg/dL), triglyceride levels (mg/
dL), high-density lipoprotein cholesterol levels (mg/dL), low-density 
lipoprotein cholesterol levels (mg/dL), uric acid levels (mg/dL), serum 
creatinine levels (mg/dL), eGFR (mL/min/1.73 m2; calculated using a 
formula for Japanese individuals (22)), and proteinuria (dipstick 
urinalysis); (iv) information obtained from a questionnaire, such as the 
use of antihypertensive drugs (yes or no), the use of antidiabetic drugs 
(yes or no), the use of anti-cholesterol drugs (yes or no), smoking status, 
exercise (yes or no), physical activity (yes or no), late dinner (eating dinner 
<2 h before bedtime) (yes or no), snacking (yes or no), skipping breakfast 
(yes or no), adequate sleep, i.e., getting enough rest through sleep (yes or 
no), eating speed, i.e., eating faster than others (fast or normal or slow), 
drinking frequency (seldom [cannot drink], sometimes, or every day), 
and alcohol intake (<20 g/day, 20–40 g/day, 40–60 g/day, or ≥ 60 g/day).

2.3 Statistical analysis and machine 
learning

Missing data were imputed using a multiple imputation method 
based on random forest (23).
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The machine learning methods, RNN and NN, and the 
traditional statistical methods logistic regression (LR) and 
conditional logistic regression (CLR) were used to construct the 
prediction models.

The NN and LR models were used for predictions based on 
unmatched data for 2017 and 2021. The RNN, NN, and LR models 
were used for predictions based on unmatched 5-year data from 2017 
to 2021. The LR model was substituted with the CLR model when the 
matched data were analyzed.

The outcome variables included incident eGFR <60 mL/
min/1.73 m2 in 2022, proteinuria in 2022, and incident eGFR <60 mL/
min/1.73 m2 or proteinuria in 2022. The candidate variables, except 
proteinuria, were treated as explanatory variables.

The training and testing samples used in this study comprised 80 
and 20% of the entire analyzed dataset, respectively. The prediction 

models were developed using training samples. The accuracy, 
sensitivity, specificity, and AUROC of the testing sample were used to 
evaluate the performance of the model.

The NN models were trained using three hidden layers with 256 
nodes in each hidden layer. The RNN models were trained using four 
hidden layers with 16 nodes in each hidden layer.

Tensorflow 2.15.0 and scikit-learn 1.3.2 (24) were used to 
implement the procedures for the development of the models.

3 Results

Tables 1–3 present the baseline characteristics (data from 2017) of 
the participants. Continuous variables are presented as mean ± standard 
deviation, whereas categorical variables are presented as frequencies 

FIGURE 1

Flow diagram for the selection of study participants eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease.
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TABLE 1 Baseline characteristics in the prediction of eGFR <60  mL/min/1.73  m2.

Before matching After matching

Variables CKD (n  =  672) Non-CKD (n  =  29,601) CKD (n  =  672) Non-CKD (n  =  672)

Age, years 50.1 ± 8.1 44.5 ± 9.4 50.1 ± 8.1 50.1 ± 8.1

Male, n (%) 396 (58.9) 18,748 (63.3) 396 (58.9) 396 (58.9)

eGFR, mL/min/m2 71.3 ± 6.6 88.4 ± 14.1 71.3 ± 6.6 85.6 ± 13.4

Body mass index, kg/m2 22.7 ± 3.3 22.2 ± 3.3 22.7 ± 3.3 22.1 ± 3.1

Systolic blood pressure, mmHg 121.6 ± 14.3 119.4 ± 13.4 121.6 ± 14.3 120.0 ± 14.4

Diastolic blood pressure, mmHg 76.7 ± 10.4 74.3 ± 10.2 76.7 ± 10.4 75.4 ± 10.2

Fasting plasma glucose, mg/dL 92.2 ± 8.5 91.0 ± 8.4 92.2 ± 8.5 92.7 ± 9.0

Hemoglobin A1c, % 5.5 ± 0.2 5.5 ± 0.2 5.5 ± 0.2 5.5 ± 0.2

Total cholesterol, mg/dL 211.9 ± 32.2 204.9 ± 33.3 211.9 ± 32.2 211.0 ± 31.9

Triglycerides, mg/dL 110.2 ± 89.3 98.4 ± 77.4 110.2 ± 89.3 96.4 ± 64.7

HDL-C, mg/dL 64.6 ± 16.5 64.9 ± 16.1 64.6 ± 16.5 66.0 ± 15.7

LDL-C, mg/dL 124.4 ± 30.5 119.8 ± 29.8 124.4 ± 30.5 124.3 ± 28.4

Uric acid, mg/dL 5.6 ± 1.4 5.4 ± 1.4 5.6 ± 1.4 5.2 ± 1.3

Smoking, n (%)

Yes 200 (29.8) 10,319 (34.9) 200 (29.8) 225 (33.5)

Exercise, n (%)

Yes 133 (19.8) 5,012 (16.9) 133 (19.8) 106 (15.8)

Physical activity, n (%)

Yes 218 (32.4) 10,222 (34.5) 218 (32.4) 232 (34.5)

Eating speed, n (%)

Slow 188 (28.0) 8,311 (28.1) 188 (28.0) 174 (25.9)

Normal 426 (63.4) 18,594 (62.8) 426 (63.4) 438 (65.2)

Fast 58 (8.6) 2,696 (9.1) 58 (8.6) 60 (8.9)

Late dinner, n (%)

Yes 180 (26.8) 9,153 (30.9) 180 (26.8) 190 (28.3)

Snacking, n (%)

Yes 126 (18.8) 5,594 (18.9) 126 (18.8) 130 (19.3)

Skipping breakfast, n (%)

Yes 107 (15.9) 6,631 (22.4) 107 (15.9) 140 (20.8)

Drinking frequency, n (%)

Seldom (cannot drink) 265 (39.4) 10,799 (36.5) 265 (39.4) 251 (37.4)

Sometimes 216 (32.1) 9,277 (31.3) 216 (32.1) 202 (30.1)

Every day 191 (28.4) 9,525 (32.2) 191 (28.4) 219 (32.6)

Alcohol intake, n (%)

<20 g/day 410 (61.0) 16,969 (57.3) 410 (61.0) 390 (58.0)

20–40 g/day 197 (29.3) 8,641 (29.2) 197 (29.3) 191 (28.4)

40–60 g/day 51 (7.6) 3,126 (10.6) 51 (7.6) 74 (11.0)

≥60 g/day 14 (2.1) 865 (2.9) 14 (2.1) 17 (2.5)

Adequate sleep, n (%)

Yes 439 (65.3) 18,855 (63.7) 439 (65.3) 437 (65.0)

Continuous variables are expressed as mean ± standard deviation. Categorical variables are expressed as frequencies and proportions.
CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.

https://doi.org/10.3389/fpubh.2024.1495054
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yoshizaki et al. 10.3389/fpubh.2024.1495054

Frontiers in Public Health 05 frontiersin.org

TABLE 2 Baseline characteristics in the prediction of proteinuria.

Before matching After matching

Variables CKD (n  =  743) Non-CKD (n  =  29,530) CKD (n  =  743) Non-CKD (n  =  743)

Age, years 44.3 ± 9.1 44.7 ± 9.4 44.3 ± 9.1 44.3 ± 9.1

Male, n (%) 488 (65.7) 18,656 (63.2) 488 (65.7) 488 (65.7)

eGFR, mL/min/m2 88.0 ± 13.6 88.0 ± 14.2 88.0 ± 13.6 88.4 ± 13.7

Body mass index, kg/m2 22.9 ± 3.6 22.2 ± 3.3 22.9 ± 3.6 22.2 ± 3.4

Systolic blood pressure, mmHg 121.1 ± 14.0 119.4 ± 13.4 121.1 ± 14.0 119.6 ± 14.0

Diastolic blood pressure, mmHg 75.5 ± 10.8 74.4 ± 10.2 75.5 ± 10.8 74.6 ± 10.0

Fasting plasma glucose, mg/dL 92.1 ± 9.5 91.0 ± 8.4 92.1 ± 9.5 91.3 ± 10.3

Hemoglobin A1c, % 5.5 ± 0.2 5.5 ± 0.2 5.5 ± 0.2 5.5 ± 0.2

Total cholesterol, mg/dL 205.0 ± 33.7 205.1 ± 33.3 205.0 ± 33.7 203.7 ± 33.0

Triglycerides, mg/dL 106.5 ± 78.2 98.5 ± 77.7 106.5 ± 78.2 105.5 ± 92.7

HDL-C, mg/dL 62.9 ± 16.3 65.0 ± 16.1 62.9 ± 16.3 64.1 ± 16.5

LDL-C, mg/dL 121.1 ± 31.3 119.9 ± 29.8 121.1 ± 31.3 118.9 ± 28.8

Uric acid, mg/dL 5.3 ± 1.3 5.4 ± 1.4 5.3 ± 1.3 5.4 ± 1.4

Smoking, n (%)

Yes 287 (38.6) 10,232 (34.6) 287 (38.6) 278 (37.4)

Exercise, n (%)

Yes 122 (16.4) 5,023 (17.0) 122 (16.4) 124 (16.7)

Physical activity, n (%)

Yes 245 (33.0) 10,195 (34.5) 245 (33.0) 257 (34.6)

Eating speed, n (%)

Slow 198 (26.6) 8,301 (28.1) 198 (26.6) 223 (30.0)

Normal 478 (64.3) 18,542 (62.8) 478 (64.3) 455 (61.2)

Fast 67 (9.0) 2,687 (9.1) 67 (9.0) 65 (8.7)

Late dinner, n (%)

Yes 234 (31.5) 9,099 (30.8) 234 (31.5) 241 (32.4)

Snacking, n (%)

Yes 140 (18.8) 5,580 (18.9) 140 (18.8) 140 (18.8)

Skipping breakfast, n (%)

Yes 195 (26.2) 6,543 (22.2) 195 (26.2) 160 (21.5)

Drinking frequency, n (%)

Seldom (cannot drink) 307 (41.3) 10,757 (36.4) 307 (41.3) 227 (37.3)

Sometimes 227 (30.6) 9,266 (31.4) 227 (30.6) 228 (30.7)

Every day 209 (28.1) 9,507 (32.2) 209 (28.1) 238 (32.0)

Alcohol intake, n (%)

<20 g/day 443 (59.6) 16,936 (57.4) 443 (59.6) 447 (60.2)

20–40 g/day 200 (26.9) 8,638 (29.3) 200 (26.9) 193 (26.0)

40–60 g/day 70 (9.4) 3,107 (10.5) 70 (9.4) 83 (11.2)

≥60 g/day 30 (4.0) 849 (2.9) 30 (4.0) 20 (2.7)

Adequate sleep, n (%)

Yes 465 (62.6) 18,829 (63.8) 465 (62.6) 462 (62.2)

Continuous variables are expressed as mean ± standard deviation. Categorical variables are expressed as frequencies and proportions.
CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.
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TABLE 3 Baseline characteristics in the prediction of eGFR <60  mL/min/1.73  m2 or proteinuria.

Before matching After matching

Variables CKD (n  =  1,372) Non-CKD (n  =  28,901) CKD (n  =  1,372) Non-CKD (n  =  1,372)

Age, years 47.0 ± 9.2 44.5 ± 9.4 47.0 ± 9.2 47.0 ± 9.2

Male, n (%) 854 (62.2) 18,290 (63.3) 854 (62.2) 854 (62.2)

eGFR, mL/min/m2 80.3 ± 13.8 88.4 ± 14.1 80.3 ± 13.8 86.6 ± 14.1

Body mass index, kg/m2 22.8 ± 3.5 22.1 ± 3.3 22.8 ± 3.5 22.2 ± 3.2

Systolic blood pressure, mmHg 121.2 ± 14.1 119.3 ± 13.4 121.2 ± 14.1 119.5 ± 13.3

Diastolic blood pressure, 

mmHg

75.9 ± 10.6 74.3 ± 10.2 75.9 ± 10.6 75.2 ± 10.3

Fasting plasma glucose, mg/dL 92.1 ± 9.0 91.0 ± 8.4 92.1 ± 9.0 91.7 ± 8.4

Hemoglobin A1c, % 5.5 ± 0.2 5.5 ± 0.2 5.5 ± 0.2 5.5 ± 0.2

Total cholesterol, mg/dL 208.0 ± 33.0 204.9 ± 33.3 208.0 ± 33.0 208.1 ± 33.8

Triglycerides, mg/dL 107.6 ± 83.6 98.3 ± 77.4 107.6 ± 83.6 100.4 ± 76.6

HDL-C, mg/dL 63.7 ± 16.4 65.0 ± 16.1 63.7 ± 16.4 65.4 ± 16.5

LDL-C, mg/dL 122.6 ± 30.8 119.8 ± 29.7 122.6 ± 30.8 121.6 ± 29.7

Uric acid, mg/dL 5.4 ± 1.4 5.4 ± 1.4 5.4 ± 1.4 5.4 ± 1.4

Smoking, n (%)

Yes 467 (34.0) 10,052 (34.8) 467 (34.0) 469 (34.2)

Exercise, n (%)

Yes 250 (18.2) 4,895 (16.9) 250 (18.2) 224 (16.3)

Physical activity, n (%)

Yes 449 (32.7) 9,991 (34.6) 449 (32.7) 432 (31.5)

Eating speed, n (%)

Slow 376 (27.4) 8,123 (28.1) 376 (27.4) 371 (27.0)

Normal 876 (63.8) 18,144 (62.8) 876 (63.8) 872 (63.6)

Fast 120 (8.7) 2,634 (9.1) 120 (8.7) 129 (9.4)

Late dinner, n (%)

Yes 405 (29.5) 8,928 (30.9) 405 (29.5) 404 (29.4)

Snacking, n (%)

Yes 256 (18.7) 5,464 (18.9) 256 (18.7) 265 (19.3)

Skipping breakfast, n (%)

Yes 288 (21.0) 6,450 (22.3) 288 (21.0) 289 (21.1)

Drinking frequency, n (%)

Seldom (cannot drink) 553 (40.3) 10,511 (36.4) 553 (40.3) 478 (34.8)

Sometimes 430 (31.3) 9,063 (31.4) 430 (31.3) 402 (29.3)

Every day 389 (28.4) 9,327 (32.3) 389 (28.4) 492 (35.9)

Alcohol intake, n (%)

<20 g/day 824 (60.1) 16,555 (57.3) 824 (60.1) 777 (56.6)

20–40 g/day 389 (28.4) 8,449 (29.2) 389 (28.4) 403 (29.4)

40–60 g/day 116 (8.5) 3,061 (10.6) 116 (8.5) 153 (11.2)

≥60 g/day 43 (3.1) 836 (2.9) 43 (3.1) 39 (2.8)

Adequate sleep, n (%)

Yes 872 (63.6) 18,422 (63.7) 872 (63.6) 871 (63.5)

Continuous variables are expressed as mean ± standard deviation. Categorical variables are expressed as frequencies and proportions.
CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.

https://doi.org/10.3389/fpubh.2024.1495054
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yoshizaki et al. 10.3389/fpubh.2024.1495054

Frontiers in Public Health 07 frontiersin.org

and proportions. All participants had a dipstick urinalysis score of (−); 
consequently, proteinuria was not included as an explanatory variable.

Tables 4–6 present the predictive performance of the models. 
Figures 2–7 present the ROC curves of the models.

3.1 Prediction of eGFR <60  mL/min/1.73  m2

The mean age of the participants with CKD was 50.1 years before 
matching, and 58.9% were men. The mean age of the participants 
without CKD was 44.5 years before matching, and 63.3% were men.

The accuracies, sensitivities, and specificities of all models 
were > 0.8 for predicting the onset of CKD in 1 year. The AUROCs of 
the models were > 0.9. However, the accuracy and specificity of the 
models were lower for predicting the onset of CKD within 5 years 
(<0.8). The models failed to attain AUROCs of 0.9, although the 
sensitivities were high (>0.9). The RNN and NN models with 5-year 
data and the NN model with 2021 data achieved AUROCs of >0.9 for 
matched data analysis; however, the AUROCs of all models were lower 
than those achieved for non-matched data analysis. All models 
exhibited accuracies of >0.8 for predicting the onset of CKD in 1 year. 
However, the sensitivity of the NN model with the 2021 data and the 

TABLE 4 Comparison between the predictive performance of models for the prediction of eGFR <60  mL/min/1.73  m2.

Non-matched data analysis

Model Explanatory 
variables

Accuracy Sensitivity Specificity AUROC

RNN
All 0.839 0.934 0.837 0.941

eGFR was excluded 0.659 0.653 0.659 0.703

NN with 5-year data
All 0.884 0.868 0.884 0.938

eGFR was excluded 0.554 0.793 0.549 0.716

NN with 2021 data
All 0.856 0.901 0.855 0.935

eGFR was excluded 0.766 0.554 0.771 0.722

NN with 2017 data
All 0.752 0.909 0.749 0.889

eGFR was excluded 0.640 0.496 0.643 0.571

LR with 5-year data
All 0.826 0.942 0.824 0.941

eGFR was excluded 0.519 0.860 0.512 0.732

LR with 2021 data
All 0.840 0.926 0.838 0.940

eGFR was excluded 0.565 0.785 0.561 0.727

LR with 2017 data
All 0.743 0.934 0.739 0.890

eGFR was excluded 0.559 0.793 0.554 0.729

Matched data analysis

Model Explanatory 
variables

Accuracy Sensitivity Specificity AUROC

RNN
All 0.852 0.919 0.785 0.917

eGFR was excluded 0.585 0.593 0.578 0.606

NN with 5-year data
All 0.844 0.904 0.785 0.908

eGFR was excluded 0.626 0.615 0.637 0.638

NN with 2021 data
All 0.833 0.793 0.874 0.909

eGFR was excluded 0.600 0.489 0.711 0.623

NN with 2017 data
All 0.759 0.770 0.748 0.810

eGFR was excluded 0.585 0.459 0.711 0.596

CLR with 5-year data
All 0.811 0.919 0.704 0.877

eGFR was excluded 0.556 0.378 0.733 0.507

CLR with 2021 data
All 0.819 0.844 0.793 0.887

eGFR was excluded 0.548 0.326 0.770 0.507

CLR with 2017 data
All 0.767 0.807 0.726 0.803

eGFR was excluded 0.570 0.385 0.756 0.563

Models with 5-year data are models with the summary statistics of data from 2017 to 2021.
AUROC, area under the receiver operating characteristic; RNN, recurrent neural network; eGFR, estimated glomerular filtration rate; NN, neural network; LR, logistic regression; CLR, 
conditional logistic regression.
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specificities of the models, except for this model, failed to reach 0.8. 
Both models exhibited lower sensitivity for predicting the onset of 
CKD within 5 years. The accuracy, sensitivity, specificity, and AUROC 
of the models, except for those of the CLR model with 2017 data in 
the matched data analysis, decreased when eGFR was not included as 
an explanatory variable. The NN model with the 2017 data exhibited 
a sensitivity of <0.5 in non-matched data analysis. The NN model with 
2021 data, CLR model with 5-year data, CLR model with 2021 data, 
NN model with 2017 data, and CLR model with 2017 data exhibited 
a sensitivity of <0.5 in matched data analysis.

3.2 Prediction of proteinuria

The mean age of the participants with CKD was 44.3 years before 
matching, and 65.7% were men. The mean age of the participants 
without CKD was 44.7 years before matching, and 63.2% were men.

The AUROCs of all the proteinuria prediction models were lower 
than those of the models for the prediction of eGFR <60 mL/
min/1.73 m2. The AUROCs of all models, except for those of the LR 
model with 5-year data and the LR model with 2021 data in the 
non-matched data analysis, were < 0.6. The sensitivity and specificity 
were also low. The sensitivities of the NN model with 5-year data, NN 
model with 2021 data, LR model with the 5-year data, LR model with 
2021 data, LR model with 2017 data in the non-matched data analysis, 
and NN model with the 5-year data in the matched data analysis 
were < 0.5. The specificities of the NN model with 2021 data, the NN 
model with 2017 data, the CLR model with 2021 data, and the CLR 
model with 2017 data in the matched data analysis were < 0.5. The 

accuracy of the NN model with 5-year data in the matched data 
analysis was the highest (0.800).

These results indicated that the predictive performance of the 
models for proteinuria was worse than that of the models for eGFR 
<60 mL/min/1.73 m2.

3.3 Prediction of eGFR <60  mL/min/1.73  m2 
or proteinuria

The mean age of the participants with CKD was 47.0 years before 
matching, and 62.2% were men. The mean age of the participants 
without CKD was 44.5 years before matching, and 63.3% were men.

Most models exhibited sensitivities of <0.6 and low AUROCs of 
approximately 0.65  in non-matched data analysis, even when all 
candidate variables were explanatory variables. The accuracies of the 
following models failed to reach 0.5 when eGFR was not included as 
an explanatory variable: the NN model with the 2017 data, LR model 
with the 5-year data, and LR model with the 2021 data in non-matched 
data analysis. The sensitivities of the following models failed to reach 
0.5 when eGFR was not included as an explanatory variable: the RNN 
model, NN model with 2021 data in the non-matched data analysis, 
NN model with 2017 data, and CLR model with 2017 data in the 
matched data analysis. The specificities of the following models failed 
to reach 0.5 when eGFR was not included as an explanatory variable: 
the NN model with the 2017 data, LR model with the 5-year data, and 
LR model with the 2021 data in the non-matched data analysis.

These results indicate that the models for the prediction of eGFR 
<60 mL/min/1.73 m2 or proteinuria performed better than those for 

TABLE 5 Comparison between the predictive performance of models for the prediction of proteinuria.

Non-matched data analysis

Model Explanatory 
variables

Accuracy Sensitivity Specificity AUROC

RNN All 0.588 0.584 0.588 0.590

NN with 5-year data All 0.800 0.311 0.813 0.573

NN with 2021 data All 0.736 0.435 0.744 0.594

NN with 2017 data All 0.526 0.640 0.523 0.587

LR with 5-year data All 0.725 0.491 0.731 0.621

LR with 2021 data All 0.770 0.404 0.780 0.607

LR with 2017 data All 0.714 0.453 0.721 0.595

Matched data analysis

Model Explanatory 
variables

Accuracy Sensitivity Specificity AUROC

RNN All 0.560 0.523 0.597 0.562

NN with 5-year data All 0.540 0.356 0.725 0.505

NN with 2021 data All 0.547 0.738 0.356 0.539

NN with 2017 data All 0.594 0.779 0.409 0.583

CLR with 5-year data All 0.523 0.517 0.530 0.499

CLR with 2021 data All 0.527 0.980 0.074 0.498

CLR with 2017 data All 0.537 0.973 0.101 0.512

Models with 5-year data are models with the summary statistics of data from 2017 to 2021.
AUROC, area under the receiver operating characteristic; RNN, recurrent neural network; NN, neural network; LR, logistic regression; CLR, conditional logistic regression.
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the prediction of proteinuria and worse than those for the prediction 
of eGFR <60 mL/min/1.73 m2.

4 Discussion

In this study, prediction models for the risk of incident CKD within 
1 and 5 years were developed based on health examination data using 
RNN, NN, LR, and CLR. The predictive performances of the models 
were evaluated in terms of accuracy, sensitivity, specificity, and AUROC.

The predictive performance of the models using non-matched 
data was better than that of the models using age-and sex-matched 
data. This finding indicates that the distribution of factors varied 
between the CKD and non-CKD groups before matching and that the 
power of each factor improved significantly with an increase in the 
number of cases.

The RNN model performed similarly to the commonly used 
LR and NN models. The predictive performance of the RNN 
model was good even when age-and sex-matched data were 
analyzed. In particular, the AUROC of the RNN model was 

TABLE 6 Comparison between the predictive performance of models for the prediction of eGFR <60  mL/min/1.73  m2 or proteinuria.

Non-matched data analysis

Model Explanatory 
variables

Accuracy Sensitivity Specificity AUROC

RNN
All 0.779 0.509 0.792 0.690

eGFR was excluded 0.642 0.480 0.649 0.582

NN with 5-year data
All 0.811 0.516 0.825 0.699

eGFR was excluded 0.572 0.600 0.571 0.585

NN with 2021 data
All 0.827 0.465 0.844 0.690

eGFR was excluded 0.686 0.444 0.698 0.589

NN with 2017 data
All 0.742 0.575 0.750 0.673

eGFR was excluded 0.267 0.796 0.242 0.514

LR with 5-year data
All 0.811 0.524 0.825 0.700

eGFR was excluded 0.463 0.709 0.451 0.596

LR with 2021 data
All 0.746 0.585 0.753 0.701

eGFR was excluded 0.438 0.716 0.425 0.594

LR with 2017 data
All 0.708 0.615 0.713 0.680

eGFR was excluded 0.621 0.538 0.625 0.600

Matched data analysis

Model Explanatory 
variables

Accuracy Sensitivity Specificity AUROC

RNN
All 0.620 0.505 0.735 0.646

eGFR was excluded 0.576 0.531 0.622 0.577

NN with 5-year data
All 0.629 0.575 0.684 0.651

eGFR was excluded 0.607 0.593 0.622 0.603

NN with 2021 data
All 0.636 0.462 0.811 0.664

eGFR was excluded 0.582 0.535 0.629 0.601

NN with 2017 data
All 0.604 0.553 0.655 0.629

eGFR was excluded 0.565 0.345 0.785 0.577

CLR with 5-year data
All 0.613 0.607 0.618 0.640

eGFR was excluded 0.571 0.593 0.549 0.574

CLR with 2021 data
All 0.624 0.567 0.680 0.642

eGFR was excluded 0.589 0.633 0.545 0.588

CLR with 2017 data
All 0.567 0.520 0.615 0.572

eGFR was excluded 0.538 0.276 0.800 0.511

Models with 5-year data are models with the summary statistics of data from 2017 to 2021.
AUROC, area under the receiver operating characteristic; RNN, recurrent neural network; eGFR, estimated glomerular filtration rate; NN, neural network; LR, logistic regression; CLR, 
conditional logistic regression.
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0.917 in the prediction of eGFR <60 mL/min/1.73 m2. In the NN 
model, the weights of the variables were calculated between the 
input and hidden layers, between the hidden layers, and between 
the hidden and output layers. In the RNN model, in addition to 
the above weights, the weights between the hidden layer of a time 
step before and that of the next time step were calculated because 
the hidden layers were used repeatedly. This enables the RNN 
model to capture the changes in time-series data without using 
summary statistics such as the mean, slope of the regression line, 
and standard deviation. Thus, it is implied that the RNN model 
could capture the changes in health examination data and achieve 
a good predictive performance, similar to other models that 
require the calculation of summary statistics. Zhu et al. (20) used 

longitudinal electronic health records from patients with 
CKD. An RNN model was developed based on demographic 
characteristics, physical measurements, laboratory test results, 
and health behaviors to predict the risk of CKD progression from 
stages II/III to IV/IV. This model achieved an AUROC of 0.967 
for predicting CKD progression within 1 year. These findings 
indicate that the RNN model and time-series data are highly 
effective tools for predicting future disease risk.

The predictive performance for predicting eGFR <60 mL/
min/1.73 m2 was the best, followed by that for predicting eGFR 
<60 mL/min/1.73 m2 or proteinuria. The predictive performance 
for proteinuria was the worst. Thus, the predictive performance 
worsened when proteinuria was included as an outcome. The low 

FIGURE 2

ROC curves of the models for the prediction of eGFR <60  mL/min/1.73  m2 in non-matched data analysis. (A) When all candidate variables are used as 
explanatory variables. (B) When eGFR was excluded from the explanatory variables. ROC, receiver operating characteristics; eGFR, estimated 
glomerular filtration rate; RNN, recurrent neural network; NN, neural network; LR, logistic regression.

FIGURE 3

ROC curves of the models for the prediction of eGFR <60  mL/min/1.73  m2 in matched data analysis. (A) When all candidate variables are used as 
explanatory variables. (B) When eGFR was excluded from the explanatory variables. ROC, receiver operating characteristics; eGFR, estimated 
glomerular filtration rate; RNN, recurrent neural network; NN, neural network; CLR, conditional logistic regression.
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sensitivity of dipstick tests used for the evaluation of proteinuria 
in health examinations was revealed by investigating the accuracy 
of the diagnosis of proteinuria using the dipstick test among 
Japanese workers (25). In addition, some individuals develop 
proteinuria without kidney injury (26). Therefore, many 
participants may have had false negatives on the dipstick test. 
Furthermore, as some participants developed proteinuria without 
kidney injury, it may be  difficult to identify the differences 
between participants with kidney injury and those without 
kidney injury when developing proteinuria was the outcome.

The NN and LR models with 2021 (fifth-year) data 
demonstrated predictive performances similar to those of the 
RNN, NN, and LR models, which used longitudinal data for 

5 years. In addition, when using all explanatory variables, the 
predictive performances of the NN and LR models with the 2017 
(5 years before) data were similar to those of the NN and LR 
models in predicting the incidence of CKD within 1 year. In 
contrast, the predictive performances of all the models worsened 
significantly when eGFR was not included as an explanatory 
variable. These findings indicate that the patients had remarkably 
lowered eGFR values at least 5 years before the onset of 
CKD. Nelson et al. (27) developed risk prediction equations for 
incident CKD using the data from over 5 million individuals 
across 34 multinational cohorts and predicted the risk of a 
decline in estimated glomerular filtration rate (eGFR) to <60 mL/
min/1.73 m2 within 5 years, based on demographic and clinical 
factors. The risk equations achieved a median C-statistic of 0.845, 
indicating good discrimination. Additionally, the findings 
indicated a significant association between low eGFR values and 
the incidence of eGFR falling to ≤60 mL/min/1.73 m2 in 5 years. 
These findings also suggest that the risk of developing CKD 
cannot be accurately predicted without eGFR. Miyakoshi et al. 
identified risk factors for CKD in Japan and reported that lowered 
eGFR (especially eGFR ≤70 mL/min/1.73 m2) was an 
overwhelmingly strong risk factor for predicting the incidence of 
CKD (28). In the present study, the predictive performances of 
models that predicted the risk of developing eGFR <60 mL/
min/1.73 m2 within 5 years were inferior to those of models that 
made predictions within 1 year (for example, AUROCs of 5-year 
risk predicting models were < 0.9). Some people with high eGFR 
values may develop eGFR <60 mL/min/1.73 m2 in 5 years because 
of acutely decreasing eGFR, while some people with low eGFR 
values may maintain these low eGFR values without developing 
eGFR<60 mL/min/1.73 m2.

This study has three strengths. First, a large amount of health 
examination data that were accurately recorded every year were 
used. Second, the risk of developing CKD can be predicted well 
without the calculation of summary statistics using the RNN 
model, which has rarely been used. Third, the risk of CKD was 
predicted from the perspectives of both eGFR decline and 
proteinuria development, which revealed that predicting the risk 
of developing proteinuria was challenging.

However, this study had some limitations. First, whether 
eGFR <60 mL/min/1.73 m2 or the presence of proteinuria persisted 
over 3 months could not be confirmed in this study. Second, the 
information obtained through health examinations was limited. 
This study could not obtain information on some factors [e.g., 
family history of diseases (29, 30) and dietary intake (20)] 
suggested to be associated with the incidence of CKD in a previous 
study. Third, the proteinuria test conducted during the health 
examination was semi-quantitative, making it difficult to include 
proteinuria as an explanatory variable. Finally, the analysis period 
was short.

Machine learning models can predict the risk of CKD, and 
eGFR is a crucial factor in predicting the onset of CKD. However, 
predicting the incidence of proteinuria based solely on health 
examination data is difficult. The prediction models developed in 
this study may lead to awareness of risks and help individuals 
manage their health. However, further studies must be conducted 
to predict the decline in eGFR and increase in urine protein levels.

FIGURE 4

ROC curves of the models for the prediction of proteinuria in non-
matched data analysis. ROC, receiver operating characteristics; RNN, 
recurrent neural network; NN, neural network; LR, logistic regression.

FIGURE 5

ROC curves of the models for the prediction of proteinuria in 
matched data analysis. ROC, receiver operating characteristics; RNN, 
recurrent neural network; NN, neural network; CLR, conditional 
logistic regression.
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