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Background: Dengue fever is a serious public health issue in Bangladesh, where

its incidence rises with the monsoon. Meteorological variables are believed to

be responsible factors among others. Therefore, this study examines the e�ects

of meteorological variables (temperature, rainfall, and humidity) on dengue

incidence in Bangladesh. While previous studies have examined the relationship

between dengue and meteorological variables using single model approaches,

this study employs advanced econometric techniques to capture dynamic

interactions. Furthermore, in the case of Bangladesh, this type of analysis is

necessary due to the fact that dengue outbreak become one of the major issues.

However, the analysis related to this issue is not available.

Methods: For estimation purposes, the Augmented Dickey-Fuller (ADF) test,

Vector Autoregressive (VAR) model, Granger causality tests, Impulse Response

Function (IRF), Variance Decomposition (VDC), and Vector Error Correction

Model (VECM) are employed.

Results: Rainfall has a significant impact on dengue incidence compared

to temperature and humidity. The Granger causality test demonstrates that

rainfall and dengue incidence are causally related unidirectionally. Rainfall can

potentially have a short-term and long-term e�ect on the incidence of dengue,

as per the estimates of the VECM model.

Conclusions: These findingswill assist policymakers in Bangladesh in developing

a dengue fever early warning system depending on climate change. In order to

e�ciently avoid the spread of dengue in Bangladesh’s dengue-endemic urban

areas, this study suggests societal monitoring.

KEYWORDS

VAR model, Granger causality, meteorological variables, dengue fever, VECM model,

impulse response function

1 Introduction

In recent decades, dengue incidence has dramatically surged globally,

putting approximately half of the world’s population at risk. There is a major

health concern to Bangladesh (1) and other countries due to the spread of

a mosquito-borne arbovirus that causes dengue fever (DF) from urban to
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rural areas. Mostly Aedes aegypti and a smaller amount of Aedes

albopictus, female mosquitoes carrying the dengue virus are the

vectors that spread the infection to people (WHO, 20241). This

is a disease that might affect 50% of people on the planet,

which affects over 390 million people annually (WHO, 2024, see

text footnote1). Aedes albopictus also contributes significantly to

dengue spread in Europe, and the United States, whereas Aedes

aegypti is more prevalent in Asia. High temperatures aid mosquito

development, and increased rainfall creates more habitats for

vectors (2). Seasonal outbreaks of dengue are common, with higher

case counts during the rainier and warmer months. Rainfall and

the density of population are other important considerations, as

Aedes mosquitoes fancy to lay their eggs in artificial vessels, which

are more commonly seen in metropolitan areas (3). Globally, there

were 30.67 million DF cases in 1990 and 56.88 million cases in

2019 (4, 5). Comparatively speaking to other nations, over half of

the global cases of DF illness are found in South Asian countries,

with the Western Pacific, America, and Southeast Asia areas most

at risk from DF illness (2). The lengthened rainy seasons and rising

temperatures in Southeast Asia’s subtropical zones may provide

favorable conditions for the growth of Aedesmosquito populations,

which transmit dengue (6). Furthermore, there has recently been

an increase in dengue incidence reported in temperate regions,

such as Nepal (7), indicating that the disease may be moving

from subtropical to colder climates and endangering northern

parts of India, Pakistan, and the neighboring countries. The first

known dengue epidemic in Bangladesh’s capital city of Dhaka

was described in 1964 (8), and there were occasional instances

of dengue fever throughout the years 1977–1978 and 1996–1997,

however the magnitude of dengue incidence in Bangladesh was

not well documented. In 2019, the country had its biggest-ever

epidemic, while the second-biggest one happened in 2018, only a

year before. The unprecedented rise in epidemic size in 2018 and

2019 may have been influenced by climate variability, although

this is still completely unknown (9). Consequently, there is notable

seasonality and year-to-year fluctuation in the number of dengue

outbreaks in Bangladesh.

Polwiang (10) examined the epidemiology of dengue and

its association with weather circumstances in Bangkok. The

findings reveal that Bangkok’s dengue transmissibility is positively

correlated with humidity and rainfall. A study conducted in

Brazil found that using the temperature of the city level as a

parameter makes the seasonal pattern of the Aedes mosquito’s

profusion visible (11). Chaves et al. (12) examined that temperature

change significantly alters Aedes mosquito abundance in Thailand.

Cheng et al. (13) studied the connection between climate and

vector abundance in relation to the threat of dengue outbreaks

in Guangzhou, China. They found that while heavy monsoon

precipitation enhances the number of vectors, early and frequent

intervention together with reduced vertical spread can eventually

reduce the probability of a dengue epidemic. According to Tosepu

et al. (14), in the Kolaka region the climate has a significant

impact on the occurrence of Dengue hemorrhagic fever. It was

discovered from a study of historical data that the weather variables,

1 https://www.who.int/news-room/fact-sheets/detail/dengue-and-

severe-dengue

particularly temperature, rainfall, and humidity, have suddenly

changed over the last several years (15). Several studies have been

performed to investigate the dengue occurrence in Bangladesh

using historical climate data (16, 17). It was found in these

previous studies that temperature and rainfall were significant

contributing factors (18, 19). Zahirul Islam et al. (20) used

time series monthly data from 2000 to 2009 to investigate the

connection between dengue disease and climatic variability in

two major Bangladeshi cities, Dhaka and Chittagong. According

to the research, dengue incidence in Dhaka and Chittagong

was substantially correlated with the yearly average rainfall and

humidity. The association was examined using the ARIMA model.

Islam et al. (21) explored how climate influences vector abundance,

which has an impact on dengue incidence in Dhaka, Bangladesh.

The findings reveal that the impact of average humidity and

lag average rainfall on dengue transmission was shown to be

considerable. The generalized linear model (GLM) was employed

to estimate and analyze the data. Karim et al. (22) discovered

that rainfall has the greatest impact on dengue occurrence in

Dhaka out of all climatic factors. They used Analysis of Variance

(ANOVA) to study the correlation between climate variables

and dengue transmission. Aedes profusion was researched by

Paul et al. (23) in the city of Dhaka, Bangladesh, focusing

solely on the correlation between weather circumstances and

vector abundance. They came to the conclusion that rainfall,

temperature, and humidity had a substantial impact on the average

mosquito abundance.

There has been a significant number of studies done

to explore the effect of meteorological variables on dengue

incidence using single model approaches; however, none of

them consider advanced econometric techniques such as the

VAR model, Granger causality tests, Impulse Response function,

Variance Decomposition, and VECM for cross-validation and

incorporation of significant findings. These models have a very

strong ability to identify associations between the variables.

Specially previous studies on the influence of dengue occurrence

by the meteorological factors in Bangladesh have not incorporated

these methodologies.

Bangladesh is a home of dengue incidence. Last year many

people died due to this viral fever. Therefore it’s important

to identify meteorological effects on dengue incidence so that

we can make appropriate decisions to minimize risk. The VAR

model enables a more thorough understanding of the dynamic

interactions between the relevant variables. The Granger causality

test captures the causal connections between the variables.

Additionally, the use of the VAR model in conjunction with

the VECM model approach is also unique to this study.

This combination enables us to capture both the short-term

interdependencies and the long-term effects of climate factors

on dengue incidence. Here, we investigated the impact of

meteorological variables on dengue incidence in Bangladesh

using a time-series analysis approach. Further, we explore the

possibility of the Granger causality methodology to establish

causal links between climatic variables and the epidemiology

of infectious diseases for the first time to our knowledge.

The Granger causality test is used to elucidate underlying

causal mechanisms in this model, which is enormously popular

in economics.
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FIGURE 1

The map located 35 weather stations in Bangladesh (source: BMD).

2 Methods

2.1 Data collection and study area

The present research includes meteorological and dengue

occurrence data spanning 9 years, from 2012 to 2020.

Monthly dengue statistics were obtained from Bangladesh’s

Directorate General of Health Services (DGHS). The Bangladesh

Meteorological Department (BMD) provided monthly average

temperatures, rainfall, and humidity data. The BMD maintained

and managed accumulated weather data at 35 different weather

stations across the nation. While humidity is recorded in (%),

temperature and rainfall are measured in degrees Celsius (◦C)

and millimeters (mm), respectively. To obtain monthly data

for each station, monthly information for each month was

averaged. The monthly averages of temperature, precipitation,

and humidity across the country were calculated by averaging

the data from all 35 weather stations for the years 2012 to

2020. The data was collected monthly basis due to the fact

that the availability of data from BMD and DGHS. Another

factor was that dengue incidence were discovered practically

year-round in Bangladesh. One probable explanation for

this event is because Bangladesh’s rainy season lasts roughly

4 to 6 months. Furthermore, on a 1-month scale, monthly

averaged climate variable can provide information about monthly

dengue incidence.

Bangladesh is located at 20◦590N to 26◦630N and 88◦030 E to

92◦670 E. When the Tropic of Cancer crosses Bangladesh from east

to west, it is at coordinates 23◦260N and 88◦470 E. Figure 1 shows

the 35 weather stations in Bangladesh.

2.2 Stationary time series

According to Nelson and Ploser (39), the majority of time series

data have a unit root problem, which skews the results of regression

analysis. Additionally, in order to examine the cointegration among

the model’s variables, the time series data must be stationary.

Dengue is the dependent variable in this study, and temperature,

rainfall, and humidity are the independent variables. For removing

the non-stationarity issue in time series data, this study took first

difference and used the ADF (1981) test to eliminate unit root

issues. ADF uses an additional lag of dependent variables as an

explanatory variable to lessen autocorrelation.

2.3 VAR model specification

The Vector Autoregressive (VAR) model is practical,

dependable, and simple to modify in multivariate analysis. A

method for describing how variables interact over time in a

complex multivariate system is the VAR model. It is a dynamic

multivariate time series annex to the univariate model. The

functional relationship between Dengue, Temp, RF, and HD of

Bangladesh can be expressed in the following way:

Dengue = f (Temp,RF,HD)

The model will test the effect of Temp, RF, and HD on Dengue

Denguet = β0 + β1Tempt + β2RFt + β3HDt + εt

where, Dengue = dengue incidence in Bangladesh, Temp =

Temperature, RF= Rainfall, and HD=Humidity.

In this model β0 is the current time period of the observation

of each variable based on the lag values. β1, β2 and β3 are the

coefficients of all those independent variables. This paper has been

conducted on the following hypothesis:

H0= Temp has no significant impact on Dengue.

H1= Temp has a significant impact on Dengue.

H0= RF has no significant impact on Dengue.

H2= RF has a significant impact on Dengue.

H0=HD has no significant impact on Dengue.

H3=HD has a significant impact on Dengue.

The coefficient of regression, β represents how much the

dependent variable changes when the independent variable changes

by one unit. The Cholesky decomposition of the contemporaneous

covariancematrix served as the foundation for the forecast variance

decompositions and impulse responses.

2.4 Structural analysis by Granger causality

The Granger causality test was developed by (24) after being

introduced by (25). In this study, we will investigate the causal

association between dengue, temperature, rainfall, and humidity
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in the context of Bangladesh. The following technique should be

used while using the linear Granger causality tests to determine the

causal link between the system’s variables. Examine and contrast

the unconstrained models:

1Yt = α1 +

m∑

i=1

β1i1Yt−i +

∑m

j=1
θ1j1Yj−i + e1t (1)

1Xt = α2 +

m∑

i=1

β2i1Yt−i +

∑m

j=1
θ2j1Xj−i + e2t (2)

with the restricted models:

1Yt = α1 +

m∑

i=1

β1i1Yt−i

1Xt = α2 +

m∑

i=1

β2i1Yt−i

where,1Yt and1Xt first-order forward differences of the variables;

α,β , and θ are the parameters to be estimated; and e1 and e2 are

standard random errors. If statistically θ1 is significant and θ2 is

not, then changes of Yt Granger causes changes of Xt or vice-versa.

Bivariate causality exists between the variables if both of them are

statistically significant; if insignificant, neither changes of Yt nor

changes of Xt have any consequence on other variables.

2.5 Statistical analysis

TheVector Autoregressivemodel (VAR)methodwas applied in

this research to investigate the relationship between meteorological

factors and the occurrence of dengue. One of the most adaptable

models for multivariate time series analysis is VAR. The main

benefit of VAR is the simultaneous explanation and explanatory

nature of multivariate variables. As a result, this model makes

predictions that are more accurate by taking into account the

relationships between various variables. This model, which uses the

Granger causality test to explain underlying causal mechanisms,

is very well-liked in the field of economics. Additionally, this

study used the IRF to pinpoint shock responses to changes

in temperature, rainfall, and humidity. IRF monitors how each

variable affects the other variables in the system. Variance

decomposition (VDC) was employed in order to forecast the

incidence of dengue incidence in the upcoming year. Lastly, we use

the vector error correction model (VECM) to discover a long-term

correlation between weather variables and dengue incidence.

3 Results

Dengue fever transmission in Bangladesh typically starts in

June, peaks in July and August then starts to decline gradually

in October (90 cases), reaching its lowest point by December

in 2012. The time series plot of dengue incidence, temperature,

rainfall, and humidity has been shown from January 2012 to

December 2020 in Figure 2. A total of 127,693 dengue incidence

were reported in Bangladesh from 2012 to 2020. The maximum

(101,354) number of cases was reported in 2019, while the

minimum (375) number of cases was obtained in 2014. Contrary

to the total monthly cases, which indicates that September had

the highest number of dengue incidence reported, the highest

monthly number of dengue incidence (52,636 cases) was reported

in August 2019. The monsoon season (June to September) has

the highest number of dengue incidence each year (38,087 cases),

followed by the summer/pre-monsoon season (February–May) and

the winter/post-monsoon season (October–January) with 11,032

cases each.

The descriptive statistics of monthly weather variables and

dengue incidence are shown in Table 1. Dengue incidence have

a mean of 1,182.343, standard deviation (SD) of 5,543.198,

minimum of 3,162, and maximum of 52,636. The largest number

of cases in Bangladesh is 52,636. The monthly averages for

temperature, rainfall, and humidity are 27.02◦C, 191.98%, and

79.57mm respectively, while the average number of confirmed

cases is ∼1,182.343. According to this study’s descriptive

statistic, the lowest temperature recorded was 17.39◦C, while the

maximum recorded temperature was 31.86◦C. Furthermore,

a low of 175.05mm and a high of 432.2mm of rainfall

are recorded.

According to the ADF test results (in Table 2), all variables are

non-stationary at the level. All the variables are found stationary

after the first difference; thus we accept the alternative hypothesis

in place of the null hypothesis.

OLS regression analysis is not applicable when all of the

variables are correlated. Temperature, Rainfall, and Humidity

were serially correlated, as shown by the Durbin-Watson statistics

(DW = 0.939). Low Durbin Watson statistics show a positive

serial correlation between variables and dengue incidence. Both

the Breusch-Godfrey test (Prob > chi2 = 0.000) and Durbin’s

alternative test (Prob > chi2 = 0.000) were used to find serial

correlations. The Breusch-Godfrey test (Prob > chi2 = 0.000) and

Durbin’s alternative test (Prob > chi2= 0.000) both detected serial

correlations in the analysis of OLS regression using the lag model.

OLS regression analyses were therefore not appropriate for this

study. As a result, the VAR model was used due to the presence

of serial correlations.

3.1 VAR model

Choosing the true lag lengths has a significant influence on

the forecasting accuracy of VAR models. The number of prior

observations that are utilized to forecast the variable’s present

value is referred to as the lag length. Likelihood Ratio (LR),

Final Prediction Error (FPE), Akaike Information Criterion (AIC),

Schwarz information standard (SC), and the Hannan Quinn (HQ)

information standard were used to determine the ideal latency.

This analysis shows that the order five lag length yielded the LR,

minimum FPE, and AIC value when compared to other order lag

lengths. The outcomes of the selection criterion are displayed in

Table 3.
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FIGURE 2

The Time series plot of monthly dengue incidence, temperature, rainfall, and humidity from January 2012 to December 2020. (a) Number of dengue

cases. (b) Monthly average temperature. (c) Monthly total rainfall. (d) Monthly average humidity.

TABLE 1 Descriptive statistics of monthly weather variables and dengue incidence.

Variables Numbers of
months

Mean SD Minimum Maximum

Dengue 108 1,182.343 5,543.198 3,162 52,636

Temperature 108 27.01662 6.421443 17.39 31.86

Rainfall 108 191.9788 197.7561 175.05 432.2

Humidity 108 79.57204 5.256397 41.35 91.52

TABLE 2 Augmented Dickey-Fuller (ADF) test for unit root.

Variables Test statistic 1% critical
value

5% critical
value

10% critical
value

p-value Remarks

Dengue −1.381 −3.508 −2.890 −2.580 0.4410 Non-stationary

dDengue −11.653 −3.508 −2.890 −2.580 0.0000 Stationary

Temperature −1.588 −3.508 −2.890 −2.580 0.4897 Non-stationary

dTemperature −17.874 −3.508 −2.890 −2.580 0.0000 Stationary

Rainfall −1.917 −3.508 −2.890 −2.580 0.3239 Non-stationary

dRainfall −9.242 −3.508 −2.890 −2.580 0.0000 Stationary

Humidity −1.953 −3.508 −2.890 −2.580 0.3075 Non-stationary

dHumidity −8.737 −3.508 −2.890 −2.580 0.0000 Stationary

Since there is a serial correlation of up to five lags, we can

reject the null hypothesis and accept the alternative hypothesis.

As a result, we made the choice to employ a VAR model with an

order-five lag. The degree to which past data might impact the

future results of the variables is indicated by the lag order of a

VAR model. In this case, the fifth lag indicates that meteorological

factors from the preceding 5 months will affect the incidence of

dengue in the future. This finding is supported by Figure 2, which
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TABLE 3 VAR(p) model lag selection criterion.

Lag LR FPE AIC SC HQ

0 Na 3.56e+14 44.85660 44.96145∗ 44.89902

1 63.99158 2.49e+14 44.49907 45.02334 44.71119

2 33.32500 2.38e+14 44.45203 45.39571 44.83384

3 48.57521 1.88e+14 44.21043 45.57352 44.76194

4 57.45117 1.30e+14 43.83304 45.61555 44.55424∗

5 30.46479∗ 1.23e+14∗ 43.76570∗ 45.96762 44.65660

6 20.13399 1.31e+14 43.81685 46.33818 44.87744

7 17.13895 1.46e+14 43.89524 46.93599 45.12553

8 20.42294 1.53e+14 43.90903 47.36919 45.30902

∗Denotes significance at 10% significance levels.

shows that dengue incidence in Bangladesh is present nearly year-

round. Bangladesh experiences 4–6 months of rainy season. Aedes

mosquitoes breed during this time, lay their eggs, develop during

this time, and continue to spread dengue incidence.

3.1.1 Estimation of the VAR model
The VAR model is used to predict the relationship that

affects each other. p-value for the 5% level of significance

is 0.05. If this value is <0.05 the variable at lag 1, 2,

3, 4, and 5 is significant. If this value is >0.05 the

variable at lag 1, 2, 3, 4, and 5 is insignificant at that

lag length.

Based on the findings of the p-value (in Table 4), the VAR

model results demonstrate that dengue is not greatly influenced

by temperature or humidity. Additionally, the results show

that rainfall has a notable influence on dengue incidence in

Bangladesh. This means that rainfall has more influence on

Dengue counter to temperature or humidity. From a practical

standpoint, this indicates that Aedes mosquitoes develop, lay

their eggs, hatch, mature, and propagate incidents of dengue

during the rainfall increase. However, there are additional elements

that contribute to the occurrence of dengue, including still

water, inadequate sanitation, mosquitos’ bites, and population

density. Since meteorological factors greatly affect the Aedes

mosquitos’ population which then affect the incidence of dengue,

we wanted to examine meteorological factors effects here.

We discovered that rainfall significantly affects the incidence

of dengue.

The VAR system must be stationary to become stable. Figure 3

shows the Inverse Root of Auto Regression (AR) Characteristic

Polynomial using a complex coordinate system. AR roots are

used to report the inverse root of the AR polynomial’s properties.

The estimated VAR is stable if every root of the characteristic

AR polynomial has a modulus of less than one and lies

inside the unit circle. If any of the estimated roots have a

modulus greater than one and are outside the unit circle the

estimated VAR is not stable. Since no root lies outside the

unit circle, therefore, VAR satisfies the stability condition. This

means that the assumption of this study is right and produced

accurate results.

TABLE 4 Estimated results from the VAR model.

Variables Coe�cient Standard
error

z-ratio p-
value

Temperature

Lag 1 −16.6288 91.307 −0.18 0.855

Lag 2 70.876 113.39 0.63 0.532

Lag 3 101.833 107.55 0.95 0.344

Lag 4 27.280 108.07 0.25 0.801

Lag 5 53.511 92.73 0.58 0.564

Rainfall

Lag 1 18.4631 5.3844 3.43 0.001

Lag 2 −4.696 5.1403 −0.91 0.361

Lag 3 1.631 5.5437 0.29 0.769

Lag 4 −6.837 5.5469 −1.23 0.218

Lag 5 −2.473 5.5419 −0.45 0.655

Humidity

Lag 1 −180.4344 196.665 −0.92 0.359

Lag 2 208.8375 197.28 1.06 0.290

Lag 3 77.3843 198.370 0.39 0.696

Lag 4 323.5588 178.646 1.81 0.070

Lag 5 194.5566 203.747 0.95 0.340

Constant −67.87002 450.615 −0.15 0.880

3.2 The result of Granger causality test

The Granger causality technique was used to study the

formation of the causal associations among the variables (26, 27).

If the probability value falls below a certain α level, the hypothesis

is rejected. The Granger causality test allows for only two variables

to be investigated at once.

Ho: Xt does not Granger cause Yt .
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FIGURE 3

Inverse root of AR characteristic polynomial.

TABLE 5 Pair-wise Granger causality test results.

Null
hypothesis

F-Statistic Probability Decision

HD does not Granger

cause DENGUE

0.11231 0.8939 No causality

DENGUE does not

Granger cause HD

0.16540 0.8478

RF does not Granger

cause DENGUE

6.79116∗ 0.0017 RF→DENGUE

(Unidirectional

causality)

DENGUE does not

Granger cause RF

0.06758 0.9347

TEMP does not

Granger cause

DENGUE

1.35082 0.2637 No causality

DENGUE does not

Granger cause TEMP

0.42810 0.6529

∗Denotes significance at 10% significance levels.

If the p-value is >0.05, accept Ho. It means no causality.

If the p-value is <0.05, reject Ho. It means causality exists.

The Granger causality test was used in this study to identify

the causal connection between climate conditions and dengue

incidence, as shown in Table 5. The Granger causality test confirms

that rainfall in Bangladesh affects the prevalence of dengue.

Consequently, rainfall plays a significant role in dengue prevalence

in Bangladesh. The VAR-Granger supports the idea that rainfall

causes dengue to occur in Bangladesh.

A shock’s impact on a series’ behavior is tracked over time using

an impulse response function (28). The period is indicated on the

x-axis, and the percentage variation is indicated on the y-axis. The

black line represents the impulse response function, and the red line

represents the confidence interval. IRF monitors the impact of a

shock of one standard deviation on the present and future values of

the endogenous variable for one of the innovations. The results of

the IRF are displayed in Figure 4.

FIGURE 4

Impulse response function.

3.3 Interpretation of a standard deviation
(SD) shock to dengue

• Response on temperature (Temp):A one SD shock (innovation)

to Temp has no appreciable effects on dengue in periods

1 through 10. Be aware that there have been relatively few

advancements in dengue over the years. That means there has

been little influence over the course of time.

• Response on humidity (HD): A one SD shock (innovation) to

HD in periods 1 and 4 has no appreciable impact on dengue.

The response stays in the negative region from the seventh

period to roughly the eighth period, though with increasing

tendencies, before increasing sharply in the positive region

from the fourth period until the sixth period, when it reaches

its steady-state value. This indicates both the immediate and

long-term impacts of dengue shocks would be varied.

• Response on rainfall (RF): A one SD shock (innovation) to

RF in periods 1 and 7 has no appreciable impact on dengue.

Beginning in the eighth period and continuing until the ninth

period, the response gradually declines in the negative region

until it reaches its steady state value, however with stronger

tendencies. This suggests that the short and long-term impacts

of dengue shocks would vary.

The variance decomposition (VDC) of the forecast error yields

the proportion of each variable’s unexpected variation that is caused

by shocks from other variables. It demonstrates the relative impact

of one variable on another. The results of the VDC are shown in

Table 6.

To find the amount of the forecast error variance for each

explanatory variable in the model that may be accounted for

by innovations, the VDC is computed over a 10-year prediction

horizon. The VDC results demonstrate how well the explanatory

variables explain the data. In the short run, over a period of 2
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TABLE 6 Estimated results using the VDC method.

Variance decomposition of dengue

Period Standard
error

Temperature Humidity Rainfall

1 5,081.234 0.000000 0.000000 0.000000

2 5,471.425 0.333033 1.691872 8.458025

3 5,817.624 0.407248 1.551124 12.31113

4 5,839.749 0.625178 1.685690 12.26568

5 5,843.276 0.693874 1.686830 12.26130

6 5,878.707 0.820317 2.556840 12.28947

7 5,892.172 0.823477 2.550356 12.25050

8 5,913.360 0.820392 2.797026 12.20005

9 5,933.140 0.889799 2.787868 12.51933

10 5,939.771 0.951484 2.830274 12.55278

TABLE 7 The estimated results of the VECMmodel.

Variables Coe�cient Standard
error

z-ratio p-
value

Temperature −21.95 119.40 −0.18 0.854

Rainfall 28.02∗∗∗ 10.89 2.57 0.010

Humidity −397.38 258.98 −1.53 0.125

Error

correction

term (−1)

−0.42396∗∗∗ 0.15034 −2.82 0.005

∗∗∗Denotes significance at 1% significance levels.

years, temperature, humidity, and rainfall can each independently

explain 0.33%, 1.69%, and 8.45% of the variation in dengue

influence. Therefore, rainfall is better able to account for variations

in the dengue influence over the short term. Again, over a 10-

year (long-term) period, temperature, humidity, and rainfall are

all responsible for varying amounts of dengue effect, with each

factor accounting for 0.95%, 2.83%, and 12.55% of the fluctuation.

We may conclude that rainfall in Bangladesh has more ability

to account for both the immediate and long-term consequences

of dengue.

The VECM also evaluates the robustness of the VAR model’s

baseline results; the results are shown in Table 7.

The results reveal that the Error Correction Term (ECT)

is negative (−0.42) and significant as the short-term shock

is corrected over time. The fact that the value is in the

range of 0 to −1 suggests that the equilibrium criterion is

satisfied by the error correction process. The outcomes of

the VECM model demonstrate that there are short-term

connections between dengue-temperature and dengue-

humidity. Rainfall can also have a long-term impact on the

incidence of dengue. Therefore, even though the level of

significance varies, we can say that the results of the VECM

are trustworthy and largely correspond to those of the primary

VAR model.

4 Discussion

The health burden of dengue fever has been rising globally,

including in South and Southeast Asian nations. The incidence of

dengue is caused by female Aedes aegypti mosquitoes carrying the

dengue virus, which they then transmit to humans. Since mosquito

bites are the primary cause of dengue, both biological and physical

phenomena play a significant role in its spread. To incorporate

these two phenomena in a single model is complicated. Thus, we

simply take into account the influence of physical phenomena

(such as meteorological variables). Previous research has been

done in these areas to look into how climate change may affect

the spread of dengue fever (10, 29). Rainfall, temperature, and

humidity were the most frequently utilized weather predictors in

these studies that may have an impact on dengue outbreaks. These

studies demonstrated the cumulative impact of various climate

variables over time. In contrast, this study uses time series analysis

to show how meteorological factors affect dengue incidence in

Bangladesh. The conclusion drawn from this study’s analyses is

that dengue incidence in Bangladesh was significantly influenced by

total rainfall. The results of this study are almost identical to earlier

studies’ conclusions, which point to a connection between dengue

incidence and meteorological conditions. The majority of previous

studies argue that temperature or rainfall, especially increased

rainfall, influences the prevalence of dengue. However, the study

area and country have an impact on these results. Similarly, the

current study shows that there is a significant effect on dengue

incidence and rainfall. According to numerous studies, the impact

of rainfall on the incidence of dengue can vary throughout the

year (30). These findings illustrate that rainfall has the greatest

impact on dengue incidence in Bangladesh out of all climatic

parameters. Karim et al. (22) revealed similar findings in Dhaka,

Bangladesh. According to the concept, the effect of rainfall on

the risk of contracting DF changes according to the amount of

rainfall (31). When there is no rain, the environment of the

drought offers fewer places for eggs to breed, and the mosquito

population decreases. However, as new dwelling locations become

available after a moderate quantity of rainfall, the vector population

will grow. Cheng et al. (32, 33) found that DF was generally

positively correlated with intense rainfall; the research carried out

in Barbados (34) produced findings that were consistent with this.

Both Johansson et al. (35) and Arcari et al. (36) in Puerto Rico and

Indonesia noted a significant positive correlation between rainfall

and dengue occurrence. In the past, studies from Sri Lanka and

Bangladesh (37) indicate both short and extensive lag times among

weather conditions and enhancing dengue occurrence.

Our study had two significant strengths. Firstly, this study

investigated the effect of meteorological variables on dengue

occurrence in Bangladesh using a time-series analysis approach.

The VAR model can flexibly examine the dynamic interaction

between a number of time series variables. VAR is widely used

in time series forecasting and in analyzing the dynamic impact

of random shocks on connections of variables. Because all the

variables are regarded as endogenous, this is a straightforward

model without any exogenous or endogenous complexity.

Secondly, our findings revealed an unidirectional connection
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between rainfall and dengue incidence, according to the Granger

causality test, which is unreported in earlier investigations.

5 Conclusion

The fastest-moving vector-borne illness in the world is

dengue (38). In conclusion, this study’s main objective is to

investigate the effect of meteorological variables on dengue

occurrence in Bangladesh. The VAR model indicates that there

is a strong relation between rainfall and dengue occurrence

in Bangladesh. Otherwise, neither the temperature nor the

humidity have a substantial influence on the incidence of dengue.

Further, The Granger causality analysis reveals that there is a

unidirectional association between rainfall and dengue incidence.

Rainfall consequently has a large impact on dengue incidence

in Bangladesh. The findings of VDC, IRF, and VECM suggest

that rainfall is the most plausible explanation for the short

and long-term effects of dengue incidence in Bangladesh. The

study’s conclusions will be useful for establishing a weather-based

dengue early warning system in Bangladesh for policymakers

and practitioners. Additionally, this study advises municipal-

based supervision for creating a successful dengue prevention

tactic in Bangladesh’s dengue-endemic cities. Researchers, planners,

and public health authorities will find these findings useful

for effectively managing services and setting up the necessary

medical infrastructure.

This approach has typically been used to identify a causal

relationship between variables. Although this study has

implications, it also has some drawbacks. For example, the

dynamic aspect of the model may not be well-covered because

of the lack of weekly availability of data. Data are only available

monthly, which has been used in the study. Furthermore, at

the time of this study, monthly weather data for 2021 and 2022

were not made publicly available. Consequently, they weren’t

incorporated into the models. Due to the fact that migration

data were not supplied at monthly intervals, we were not able to

incorporate information on immigration-to-emigration ratios or

density of population in our time-series analysis. The regional

and other complicated variables that affect dengue incidence

are likely too complicated for meteorological data to fully

explain. In order to further analyze the connections between

climatic variables and dengue fever at a larger scale and for

various Asiatic countries, future work will make extensive use

of Granger causality on a much larger Asian dataset. Future

research is advised to take socio-demographic factors like

population growth, migration or travel rates, and water storage

practices into account when examining the relationship between

dengue incidence.
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