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Introduction: Population aging is a global concern, with the World Health 
Organization predicting that by 2030, one in six individuals worldwide will 
be 60 years or older. Ethylene oxide (EO) is a widely used industrial chemical 
with potential health risks, including associations with age-related diseases. This 
study investigates the relationship between EO exposure and biological age 
acceleration.

Method: Data from the National Health and Nutrition Examination Survey 
(NHANES) 2013–2016 were analyzed, including 3,155 participants after 
exclusions. Blood EO levels were measured using hemoglobin adducts (HbEO). 
Biological age acceleration was assessed using two methods: Phenotypic Age 
Acceleration (PhenoAgeAccel) and Klemera-Doubal Method Age Acceleration 
(KDM-AA). Linear and logistic regression models were applied, adjusting for 
various covariates, and restricted cubic spline (RCS) regression was used to 
explore non-linear associations.

Results: Higher EO exposure was significantly associated with increased 
PhenoAgeAccel and KDM-AA across all models. In the continuous model, 
substantial positive associations were observed (PhenoAgeAccel: β = 0.73, 
p < 0.001; KDM-AA: β = 0.66, p < 0.001) in Model 3. Quintile analysis indicated 
a trend of increasing biological age acceleration with higher EO exposure. RCS 
regression demonstrated a significant linear relationship between EO exposure 
and PhenoAgeAccel (p for non-linearity = 0.067), as well as with KDM-AA (p for 
non-linearity = 0.083). Subgroup and interaction analyses revealed significant 
modifying effects by factors such as body mass index, gender, diabetes status, 
and physical activity level.

Conclusion: Our study demonstrates a significant association between EO 
exposure and accelerated biological aging. These findings highlight the need 
for further prospective and mechanistic studies to validate and explore this 
phenomenon.
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1 Introduction

Population aging is a global challenge, with the World Health 
Organization predicting that by 2030, approximately one in six 
individuals worldwide will be 60 years or older.1 As the population 
ages, the prevalence of age-related conditions such as cardiovascular 
disease, diabetes, and cancer is expected to rise, placing increasing 
pressure on healthcare systems and society (1). Aging is a complex 
process marked by progressive changes in tissue structure and 
physiological function, yet the rate and nature of these changes can 
differ substantially across individuals. Chronological age (CA), which 
simply measures the number of years a person has lived, does not fully 
capture the biological processes driving aging (2). In contrast, 
biological age (BA), also referred to as physiological age, serves as a 
more accurate indicator of an individual’s true aging status and 
associated health risks (3). BA reflects the cumulative impact of 
genetic, lifestyle, and environmental factors on the body, providing 
insights into the functional state of organs and systems. This makes it 
a more refined measure of health status and a better predictor of 
susceptibility to age-related conditions compared to CA. Assessing BA 
can therefore inform personalized health interventions, track the 
effectiveness of lifestyle modifications or treatments, and improve 
predictions of life expectancy and quality of life. Given the expected 
rise in age-related diseases as the global population continues to age 
(4, 5), understanding the factors that influence BA and identifying 
modifiable elements that can decelerate its progression are crucial for 
reducing the impact of aging on public health, increasing longevity, 
and enhancing quality of life.

The relationship between ethylene oxide (EO) exposure and BA 
has gained increasing attention in environmental health research due 
to the potential health risks associated with this highly reactive 
compound. EO is a versatile and widely utilized chemical in various 
industrial processes, including the production of ethoxylated 
compounds, ethanolamines, and ethylene glycol ethers (6). It is also 
commonly used in industries such as cleaning, pharmaceuticals, and 
printing and dyeing. Additionally, EO serves as an effective 
bactericidal agent, frequently applied in medical disinfection and 
industrial sterilization (7). EO exists as a gas at room temperature, 
making inhalation the primary route of exposure for humans. The 
general population is mainly exposed to EO through contaminated 
air, cigarette smoke, and vehicle exhaust (8). Once inhaled, EO rapidly 
enters the bloodstream, where it is distributed throughout the body 
(9, 10). As a highly reactive compound, EO readily interacts with 
nucleic acids and proteins, leading to the formation of hemoglobin 
adducts of ethylene oxide (HbEO), which are considered reliable 
biomarkers for assessing EO exposure (11, 12).

The reactivity of EO also induces the formation of reactive oxygen 
species (ROS), contributing to oxidative stress and potentially 
accelerating biological aging processes (13). Its interactions with 
nucleic acids can form DNA adducts and activate DNA repair 
mechanisms, which may lead to telomere shortening and other 
markers of accelerated aging (14). Furthermore, EO functions as an 
alkylating agent, inducing gene mutations and chromosomal 
aberrations by forming adducts with DNA, thereby increasing the risk 

1 https://www.who.int/news-room/fact-sheets/detail/ageing-and-health

of genotoxic effects (15, 16). Prolonged exposure to EO, particularly 
in industrial settings, has been linked to an elevated risk of 
hematopoietic system tumors and breast cancer (17, 18). Additionally, 
studies suggest potential associations between EO exposure and 
age-related diseases, such as cardiovascular diseases (CVD), chronic 
obstructive pulmonary disease (COPD), and diabetes mellitus (DM) 
(8, 19, 20). Despite these findings, research has not yet directly 
examined the correlation between EO exposure and the biological 
aging process, highlighting a critical gap in understanding the long-
term health impacts of EO.

Given the increasing worries about the effects of environmental 
pollution on public health, this study sought to investigate the 
potential link between EO exposure and the acceleration of BA 
utilizing data of the National Health and Nutrition Examination 
Survey (NHANES), a comprehensive survey conducted in the 
United States, from 2013 to 2016. The research aimed to provide novel 
insights into the environmental risk factors contributing to aging.

2 Materials and methods

2.1 Study population

The NHANES is an extensive series of cross-sectional studies that 
focus on the population of the United States.2 Data are gathered via 
in-person interviews, physical and physiological evaluations, and 
detailed laboratory tests. 20,146 participants were enrolled from 2013 
to 2016. However, 15,286 participants were excluded due to missing 
data on EO. Furthermore, 1,654 participants were excluded because 
of incomplete data on biological age (Phenotypic age (PhenoAge) and 
Klemera–Doubal Method biological age (KDM-BA)). After also 
excluding pregnant women and individuals younger than 20 years, the 
final sample included 3,155 individuals (Figure 1).

2.2 Data collection

2.2.1 Blood ethylene oxide levels
HbEO is a highly sensitive method for detecting ethylene oxide 

(EO) exposure by quantifying hemoglobin adducts. In this study, 
morning blood samples were collected from participants who had 
fasted for at least 9 h at Mobile Examination Centers (MECs). The 
samples were drawn into ethylenediaminetetraacetic acid (EDTA) 
tubes and transported to the laboratory for processing. Upon arrival, 
red blood cells were thoroughly washed with isotonic saline to remove 
plasma and buffy coat, leaving only packed red blood cells. These cells 
were then stored at −30°C to preserve their integrity and prevent 
hemoglobin adduct degradation.

The detection process involved derivatizing the N-terminal valine 
of hemoglobin protein chains that had reacted with EO, forming N-[2-
carbamoyl ethyl] valine and N-[2-hydroxycarbamoyl-ethyl] valine 
adducts. This derivatization was achieved using a modified Edman 
reaction, which specifically targeted valine adducts. The reagents 
reacted with the hemoglobin adducts to form stable derivatives, which 

2 https://www.cdc.gov/nchs/nhanes/
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were then separated and quantified using High-Performance Liquid 
Chromatography coupled with Tandem Mass Spectrometry 
(HPLC-MS/MS). The HPLC-MS/MS system provided high-precision 
separation of derivatives through liquid chromatography, followed by 
mass spectrometric detection to identify and quantify the specific 
adducts based on their mass-to-charge ratio. The system was calibrated 
using EO standards to ensure accurate quantification.

A commercial assay kit from Tech Diagnostics (Anaheim, CA) 
was used for derivatization and detection, providing all necessary 
reagents and standardized instructions. For further methodological 
details, including calibration curves, sensitivity, and reproducibility, 
please refer to: https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/
ETHOX_I.htm.

2.2.2 Outcome variable
The BioAge R package offers a suite of algorithms designed for 

calculating biological aging using NHANES data (21).3 This study 
utilized two specific methods: PhenoAge and KDM-BA. PhenoAge is 
derived from an algorithm that assesses mortality risk based on a 
range of biomarkers, providing a comprehensive evaluation of an 
individual’s aging pace and susceptibility to age-related diseases (22). 
KDM-BA employs regression analysis of biomarkers against 
chronological age to understand health status and the risk of 
age-related conditions (23). In this study, various biological markers, 
including systolic blood pressure, blood creatinine, urea nitrogen, 
albumin, total cholesterol, glycated hemoglobin, lymphocyte 
percentage, mean erythrocyte volume, leukocyte count, and alkaline 
phosphatase, were used to assess the aging phenotype.

To assess the rate of aging, this study employed two indicators of 
accelerated biological aging: Phenotypic Age Acceleration 

3 http://github.com/dayoonkwon/BioAge

(PhenoAgeAccel) and Klemera-Doubal Method Age Acceleration 
(KDM-AA). PhenoAgeAccel is calculated as the residual from 
regressing PhenoAge on chronological age, where a positive residual 
reflects accelerated aging and a negative residual indicates decelerated 
aging. To enhance the robustness of the findings, KDM-AA was 
included as an additional metric. Similar to PhenoAgeAccel, 
KDM-AA is derived from the residual of regressing KDM-BA on 
chronological age. By incorporating KDM-AA, which utilizes a 
distinct methodological approach to estimate biological age, this study 
provides an extra layer of validation, ensuring that the observed 
associations with accelerated aging are not reliant on a single 
aging metric.

2.2.3 Assessment of covariates
Covariate data were collected through a combination of surveys, 

physical examinations, and laboratory tests. The surveys gathered 
information on participants’ age, sex, ethnicity, smoking status, 
alcohol consumption, caloric intake, and health conditions, including 
DM, hypertension, CVD, and cancer. Poverty income ratio (PIR) is a 
ratio of family income to poverty threshold. Physical assessments 
involved measuring parameters such as blood pressure. Education 
levels were grouped into below high school, high school graduates, 
and above high school education. CVD was determined in participants 
with a history of congestive heart failure, coronary artery disease, 
angina, or myocardial infarction (24). Hypertension was defined as 
having a systolic pressure of ≥130 mmHg, diastolic pressure of 
≥90 mmHg, a medical diagnosis of hypertension, or the use of 
antihypertensive medications (25). DM was diagnosed based on a 
previous diagnosis, use of diabetes medication or insulin, fasting 
blood glucose levels of ≥126 mg/dL, glucose levels of ≥200 mg/dL 
after 2 h oral glucose intake, or HbA1c levels of ≥6.5% (26).

Alcohol consumption was classified into three groups: never 
(fewer than 12 drinks in a lifetime), low-to-moderate (up to one drink 
per day for women and up to two drinks per day for men in the past 

FIGURE 1

Flowchart depicting the selection process of study participants.
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year), and high (more than one drink per day for women and more 
than two drinks per day for men in the past year) (27). Smoking status 
was categorized as never (fewer than 100 cigarettes in a lifetime), 
former (over 100 cigarettes in a lifetime but not currently smoking), 
and current smokers (over 100 cigarettes in a lifetime and currently 
smoking) (28). Physical activity levels were quantified by assigning a 
metabolic equivalent (MET) value to each activity listed in the 
questionnaire, based on the compendium of activity energy costs (29).

2.3 Statistical analyses

Continuous variables were presented as adjusted means ± 
standard deviations or medians with interquartile ranges, while 
categorical variables were represented using unweighted counts and 
weighted percentages. Group differences were evaluated using χ2 tests 
and one-way ANOVA. To address missing values in various covariates, 
multivariate imputation by chained equations was applied, using 
random forest methods to complete the dataset (30). Weighted 
multiple linear regression was employed to estimate regression 
coefficients (β) and 95% confidence intervals (95% CI) for EO 
exposure in relation to biological age acceleration. Both 
PhenoAgeAccel and KDM-AA were used as outcome variables in 
these analyses, with KDM-AA specifically incorporated as a 
robustness check to ensure the consistency of the results. Weighted 
logistic regression models were used with PhenoAgeAccel and 
KDM-AA values greater than zero as the outcome variables. Model 1 
included no confounders. Model 2 adjusted for age, sex, and ethnicity. 
Model 3 included additional adjustments for lifestyle factors such as 
alcohol consumption (31), smoking status (32), education level (33), 
body mass index (BMI) (34), physical activity (35), and medical 
history [CVD (36), hypertension (37), DM (38), and cancer (39)]. 
Restricted Cubic Spline (RCS) regression with four knots was used to 
examine potential non-linear associations between EO exposure and 
PhenoAgeAccel (40). Subgroup and interaction analyses were 
conducted to explore the interactive effects of various covariates 
identified as potential effect modifiers (40). All statistical analyses 
were carried out using R software, version 4.2.2 (R Foundation, 
Austria).4 A p-value of less than 0.05 was considered 
statistically significant.

3 Results

3.1 Participant characteristics

The baseline characteristics of 3,155 participants were divided 
into three tertiles based on PhenoAgeAccel, with an average age of 
47.63 years and 50.5% male (Table  1). Participants in Tertile 3 
tended to be older, more likely to be male, have a lower poverty 
income ratio, be less educated, have a higher BMI, smoke more, 
have lower levels of physical activity, and have higher rates of CVD, 
hypertension, and DM. Laboratory measures indicate that 
participants in Tertile 3 are prone to elevated serum creatinine 

4 https://www.R-project.org

levels and lower albumin levels. Additionally, EO levels 
progressively rise across the tertiles, highlighting a potential 
association between higher phenotypic aging and increased 
EO exposure.

3.2 Relationship between ethylene oxide 
exposure and biological age acceleration

Table  2 presents the linear regression analysis examining the 
associations between EO exposure and PhenoAgeAccel. In the 
continuous model, a significant positive association is observed across 
all models (Model 1: β = 1.05, Model 2: β = 0.97, Model 3: β = 0.73, 
all p-values <0.001). When categorized into quintiles, the analysis 
reveals a trend of increasing PhenoAgeAccel with higher EO 
exposure. Participants in Quintile 4 have a significantly higher 
PhenoAgeAccel compared to those in Quintile 1 across all models 
(Model 1: β = 2.66, Model 2: β = 2.43, Model 3: β = 1.42, all p-values 
<0.001). The trend test confirms the robustness of this association (p 
for trend <0.001 in all models). Table 3 presents the results of logistic 
regression analysis. Higher EO exposure is linked to increased odds 
of elevated PhenoAgeAccel across all three models (Model 1: 
OR = 1.54, Model 2: OR = 1.53, Model 3: OR = 1.42, all p-values 
<0.001). When categorized into quintiles, Quintile 4 shows 
significantly higher odds compared to Quintile 1 across all models 
(Model 1: OR = 3.03, Model 2: OR = 2.94, Model 3: OR = 2.02, all 
p-values <0.01).

To verify the robustness of the results, we  further calculated 
biological aging acceleration using another method, the KDM-AA 
(Supplementary Tables S1, S2). Higher EO exposure is significantly 
associated with increased KDM-AA across all models (Model 1: 
β = 0.63, Model 2: β = 0.51, Model 3: β = 0.66, all p-values <0.001). 
Quintile analyses indicate significantly higher KDM-AA in the highest 
exposure groups, with significant trends across all models (p for trend 
<0.001). Logistic regression reveals similar associations, where higher 
EO exposure is linked to increased odds of KDM-AA in both 
continuous and quintile analyses. All these demonstrate the robustness 
of the association between EO exposure and biological age 
acceleration, even after adjusting for various covariates. It is important 
to note that other harmful physical and chemical factors, which could 
have additive or synergistic effects on biological aging, were not 
considered in the analysis, potentially affecting the 
observed associations.

3.3 Restricted cubic spline regression 
analysis

The RCS analyses demonstrate significant overall associations 
between EO exposure and both PhenoAgeAccel (p < 0.001) and 
KDMAC (p = 0.006), indicating a meaningful impact of EO exposure 
on these biological markers (Figure  2). However, the non-linear 
components for PhenoAgeAccel (p = 0.067) and KDMAC (p = 0.083) 
were not statistically significant, suggesting that the associations may 
be adequately represented by linear relationships rather than complex 
non-linear trends. These results highlight the significant but 
potentially linear influence of EO exposure on biological age 
acceleration and kidney dysfunction markers.
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3.4 Subgroup analysis and interaction 
analyses

The subgroup and interaction analyses presented in Figure  3 
indicate the association between EO exposure and PhenoAgeAccel 

across different demographic and health-related subgroups. However, 
no significant associations were observed in participants over 60 years 
old or those with hypertension, diabetes, CVD or cancer. The 
interaction analyses reveal that BMI has a significant modifying effect 
(p for interaction <0.001). Supplementary Figure S1 shows the 
subgroup and interaction analyses between EO exposure and 

TABLE 1 Baseline characteristics of participants, weighted.

Total
n = 3,155

Phenotypic age acceleration

Tertiles 1
n = 1,052

Tertiles 2
n = 1,051

Tertiles 3
n = 1,052

p-value

Age, years 47.63 ± 16.96 48.80 ± 16.33 45.55 ± 17.17 48.59 ± 17.21 0.013

Male, n (%) 1,576 (50.5) 357 (35.3) 549 (53.5) 670 (64.2) <0.001

Race, n (%) <0.001

Mexican American 483 (9.1) 172 (9.5) 171 (9.7) 140 (7.9)

Non-Hispanic White 1,251 (66.2) 371 (65.2) 435 (66.9) 445 (66.5)

Non-Hispanic Black 618 (10.5) 160 (7.8) 200 (10.1) 258 (13.8)

Others 803 (14.2) 349 (17.5) 245 (13.3) 209 (11.7)

Poverty income ratio 2.96 (1.43, 5.00) 3.25 (1.59, 5.00) 3.11 (1.45, 5.00) 2.58 (1.26, 4.48) 0.002

Education, n (%) <0.001

Less than high school 318 (5.5) 115 (6.1) 99 (5.2) 104 (5.2)

High school 1,077 (30.1) 302 (23.8) 348 (28.7) 427 (38.4)

More than high school 1,760 (64.4) 635 (70.1) 604 (66.0) 521 (56.4)

Cardiovascular disease, n (%) 312 (8.0) 62 (5.3) 79 (6.5) 171 (12.8) <0.001

Hypertension, n (%) 1,125 (31.4) 272 (25.0) 342 (27.3) 511 (43.0) <0.001

Diabetes, n (%) 570 (15.0) 95 (8.4) 130 (9.2) 345 (28.7) <0.001

Cancer, n (%) 300 (10.6) 85 (10.3) 105 (11.1) 110 (10.5) 0.877

Diet energy, kcal/day 1974 (1,520, 2,467) 1906 (1,467, 2,356) 1992 (1,549, 2,530) 2043 (1,549, 2,543) 0.003

Body mass index, kg/m2 29.21 ± 6.83 27.25 ± 5.64 29.23 ± 6.51 31.38 ± 7.66 <0.001

Smoking, n (%) <0.001

No 1,778 (55.9) 683 (61.8) 622 (60.1) 473 (44.7)

Former 748 (25.6) 243 (27.0) 245 (23.7) 260 (26.0)

Current 629 (18.6) 126 (11.3) 184 (16.3) 319 (29.2)

Drinking, n (%) 0.235

No 1,000 (23.8) 396 (27.0) 306 (21.2) 298 (23.2)

Former 1,936 (68.0) 601 (65.7) 660 (69.3) 675 (69.1)

Current 219 (8.2) 55 (7.4) 85 (9.5) 79 (7.8)

MET, n (%) 0.021

<600 min/week 1,251 (35.5) 404 (34.7) 393 (32.2) 454 (40.1)

600–3,999 min/week 1,122 (37.2) 423 (41.0) 366 (37.4) 333 (32.9)

≥4,000 min/week 782 (27.2) 225 (24.3) 292 (30.4) 265 (27.0)

WBC, 1000 cells/μL 7.35 ± 2.14 6.21 ± 1.48 7.21 ± 1.74 8.78 ± 2.34 <0.001

Albumin, g/L 43.38 ± 3.13 44.20 ± 2.86 43.52 ± 2.97 42.33 ± 3.29 <0.001

Total cholesterol, mmol/L 4.91 ± 1.04 5.05 ± 0.98 4.93 ± 1.03 4.72 ± 1.07 0.001

Alkaline phosphatase, U/L 62.00 (51.00, 76.00) 59.00 (49.00, 71.00) 62.00 (51.00, 75.00) 67.00 (54.00, 82.00) <0.001

Serum creatinine, μmol/L 75.14 (63.65, 88.40) 66.30 (57.46, 76.02) 77.79 (66.30, 87.52) 86.63 (73.37, 101.66) <0.001

Klotho, pg/mL 782.50 (641.00, 973.09) 800.12 (652.56, 977.00) 792.16 (644.86, 981.98) 757.51 (613.52, 957.36) 0.005

Ethylene oxide (pmol/g Hb) 19.58 (14.12, 36.63) 18.02 (13.13, 25.31) 19.39 (14.18, 32.91) 23.22 (15.36, 108.85) <0.001

n (%), Unweighted numbers (weighted percentage); MET, Metabolic Equivalent of Task; WBC, White Blood Cell.
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FIGURE 2

The restricted cubic spline regression between ethylene oxide exposure and the risk of biological age acceleration, weighted. The dose–response 
relationship was assessed using restricted cubic spline regression, with ethylene oxide exposure (log-transformed) as the predictor, and Phenotypic 
Age Acceleration (A) and Klemera-Doubal Method Age Acceleration (B) as the outcomes, adjusted according to Model 3.

TABLE 2 Linear regression analysis for the associations between ethylene oxide exposure and Phenotypic Age Acceleration, weighted.

Phenotypic age acceleration

Model 1 Model 2 Model 3

β (95%CI) p-value β (95%CI) p-value β (95%CI) p-value

Continuous† 1.05 (0.90, 1.20) <0.001 0.97 (0.83, 1.12) <0.001 0.73 (0.52, 0.94) <0.001

Categories

Quintiles 1 Reference Reference Reference

Quintiles 2 0.42 (0.01, 0.84) 0.046 0.40 (−0.01, 0.80) 0.052 0.27 (−0.11, 0.65) 0.166

Quintiles 3 0.75 (0.31,1.20) <0.001 0.70 (0.27, 1.13) 0.001 0.44 (0.03, 0.85) 0.035

Quintiles 4 2.66 (2.24, 3.10) <0.001 2.43 (2.01, 2.86) <0.001 1.42 (0.84, 2.00) <0.001

p for trend <0.001 <0.001 <0.001

Model 1 was unadjusted. Model 2 was adjusted for age, sex, and race. Model 3 was further adjusted for the variables in Model 2, along with education level, alcohol consumption, smoking 
status, physical activity, cardiovascular disease (CVD), hypertension, diabetes, cancer, occupation, and poverty income ratio (PIR). Continuous†, ln-transformed concentration of ethylene 
oxide. p for trend was tested by incorporating the variables of the median of each quartile into the regression model.

TABLE 3 Logistic regression analysis for the associations between ethylene oxide exposure and the risk of Phenotypic Age Acceleration, weighted.

Phenotypic age acceleration

Model 1 Model 2 Model 3

OR (95%CI) p-value OR (95%CI) p-value OR (95%CI) p-value

Continuous† 1.54 (1.41, 1.69) <0.001 1.53 (1.39, 1.69) <0.001 1.42 (1.19, 1.70) 0.002

Categories

Quintiles 1 Reference Reference Reference

Quintiles 2 1.24 (0.85, 1.80) 0.254 1.22 (0.82, 1.80) 0.305 1.16 (0.71, 1.88) 0.490

Quintiles 3 1.35 (0.95, 1.91) 0.091 1.30 (0.92, 1.83) 0.125 1.16 (0.88, 1.72) 0.386

Quintiles 4 3.03 (2.33, 3.93) <0.001 2.94 (2.22, 3.89) <0.001 2.02 (1.30, 3.13) 0.008

p for trend <0.001 <0.001 0.011

OR: weighted odds ratio. Model 1 was unadjusted. Model 2 was adjusted for age, sex, and race. Model 3 was further adjusted for the variables in Model 2, along with education level, alcohol 
consumption, smoking status, physical activity, cardiovascular disease (CVD), hypertension, diabetes, cancer, occupation, and poverty income ratio (PIR). p for trend was tested by 
incorporating the variables of the median of each quartile into the regression model.
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KDM-AA. Significant associations are observed in several subgroups, 
including those under 60 years, non-Hispanic Blacks, participants 
without hypertension, diabetes or CVD, those with a BMI of 25 or 
greater, and those with 600–4,000 min of physical activity per week. 
Interaction analyses reveal significant modifying effects for race, BMI, 
and physical activity levels.

4 Discussion

Our study reveals significant positive associations between EO 
exposure and accelerated biological aging, even after adjusting for 
numerous covariates. This suggests that increased EO exposure 
correlates with heightened biological aging. The consistency of 
these findings across both PhenoAgeAccel and KDM-AA metrics 
indicates that EO exposure influences multiple aspects of 
biological aging. By employing these two distinct metrics, 
we added an additional layer of validation, demonstrating that the 
observed associations are not confined to a single method of age 
estimation. This robustness is further supported by logistic 
regression analyses, which showed higher odds of accelerated 
biological aging with increased EO exposure, irrespective of the 
aging metric employed.

Furthermore, the restricted cubic spline regression analysis in 
our study indicated a non-linear relationship between EO exposure 
and PhenoAgeAccel, with a marginally significant non-linear 
component (p = 0.067). This non-linearity suggests a potential 
threshold effect, where EO exposure may accelerate biological aging 
particularly at higher levels of exposure. Similar non-linear 

relationships have been documented in the literature for EO exposure 
and other diseases. For example, Jiang et al. reported a non-linear 
dose–response association between EO exposure and epigenetic age 
acceleration, with more pronounced effects at higher pollutant 
concentrations (41). This observation is consistent with our findings, 
indicating that EO exposure may disproportionately intensify its 
biological impact at elevated levels. In terms of subgroup differences, 
our study identified significant modifying effects among participants 
over 60 years old and those with hypertension, cardiovascular 
disease, or cancer, underscoring the need to consider individual 
variability in susceptibility to EO exposure. The effect of metabolic 
health factors, such as diabetes, is closely linked to biological aging, 
which may be explained by increased vulnerability to oxidative stress 
and impaired detoxification mechanisms.

The findings of this study align with previous research 
indicating that environmental pollutants contribute to biological 
aging. For instance, significant associations have been observed 
between air pollution exposure and biological aging, as measured 
by DNA methylation markers (42). Similarly, exposure to 
polycyclic aromatic hydrocarbons (PAHs) has been linked to 
reductions in biological age indicators, such as leukocyte telomere 
length and mitochondrial DNA copy number (43). Additionally, 
metals like strontium, molybdenum, copper, rubidium, and cobalt 
have been associated with accelerated aging (44). These findings 
emphasize the impact of environmental pollutants on biological 
aging and highlight the importance of preventing exposure to these 
harmful substances.

The biological mechanisms linking high EO exposure levels to 
accelerated biological aging are currently unknown. One key aspect 
of EO’s harmful effects involves its interaction with nucleophilic 
sites in nucleic acids and proteins (45). HbEO, being electrophilic, 
reacts with these nucleophilic sites. This covalent binding with 
nucleophilic groups in DNA can occur after exposure to chemicals 
or metabolites like EO, acrylamide, and glycidamide, leading to 
genetic mutations and cancer (10, 45). EO’s role as an alkylating 
agent capable of inducing DNA damage and mutations may 
contribute significantly to its impact on biological aging. 
Additionally, long-term chronic exposure to EO can also lead to 
reduced glutathione reductase activity and increased hepatic lipid 
peroxidation, which are associated with oxidative stress in vivo (46, 
47). Oxidative stress is a well-documented pathway contributing to 
aging and age-related diseases. The imbalance between the 
production of ROS and the body’s ability to detoxify these reactive 
intermediates or repair the resulting damage can accelerate cellular 
aging processes. Reduced glutathione reductase activity, observed 
with EO exposure, compromises the cellular antioxidant defense 
system, thereby increasing vulnerability to oxidative damage. 
Exposure to EO can also cause an inflammatory response in rodent 
organs (48). Additionally, the inflammatory response induced by 
EO exposure could further contribute to aging acceleration. 
Chronic inflammation is recognized as a hallmark of aging, often 
referred to as “inflammaging.” Inflammatory cytokines and other 
mediators can promote cellular senescence, tissue degradation, and 
various age-related pathologies. Studies have shown that EO 
exposure can upregulate pro-inflammatory markers, suggesting that 
inflammation might be  a critical mediator in EO-induced 
biological aging.

FIGURE 3

Association between ethylene oxide exposure and Phenotypic Age 
Acceleration in subgroup and interactive analyses.
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The strengths of this study are underscored by the use of a large, 
nationally representative NHANES dataset, which enhances both the 
statistical power and generalizability of the findings. Incorporating 
multiple biological age acceleration metrics, namely PhenoAgeAccel 
and KDM-AA, strengthens the study’s validity through cross-
validation, thereby improving the reliability and robustness of the 
observed associations. Additionally, subgroup and interaction analyses 
reveal factors that may influence the relationship between EO 
exposure and age acceleration, highlighting significant associations 
within specific demographics. These findings could help guide the 
development of targeted interventions.

Several limitations should be  acknowledged. The cross-
sectional design of NHANES limits the ability of this study to 
establish causality, meaning that the observed associations 
between EO exposure and biological age acceleration cannot 
confirm a causal relationship due to the indeterminate temporal 
sequence between exposure and outcome. Additionally, the 
inclusion of numerous covariates introduces the risk of 
multicollinearity, which constrained the number of factors 
adjusted for in the analysis. Unmeasured confounders may still 
influence the association between EO exposure and age 
acceleration. For instance, exposure to other harmful physical and 
chemical pollutants with potential additive or synergistic effects 
on biological aging was not accounted for. Furthermore, 
geographical location, which affects EO exposure through factors 
such as proximity to industrial facilities, regulatory enforcement, 
and access to healthcare, was not adjusted for, as NHANES does 
not provide detailed geographical data. The study also lacks a 
proposed mechanism for EO’s impact on biological aging. 
Although existing literature suggests EO’s role in generating 
reactive oxygen species and its potential genotoxic effects, these 
mechanisms were not directly measured. Future research should 
confirm these findings using prospective study designs. 
Additionally, mechanistic studies are needed to elucidate the 
underlying biological pathways by which EO exerts its effects on 
aging. Understanding these pathways could pave the way for 
targeted interventions to reduce the health burden of EO 
exposure. Moreover, comparing EO’s effects with those of other 
environmental pollutants could help contextualize its impact 
within the broader spectrum of environmental health risks and 
inform policy decisions aimed at minimizing exposure in both 
occupational and community settings.

5 Conclusion

A significant positive association between EO exposure and 
biological age acceleration, as measured by both PhenoAgeAccel and 
KDM-AA after adjusting for various covariates. The RCS analysis 
suggests a significant, likely linear, association between EO exposure 
and biological age acceleration. Interaction analyses show that factors 
such as BMI, race, and physical activity significantly modify the 
association. These findings collectively underscore the role of EO as a 
significant factor in biological aging, although other unmeasured 
factors could contribute to the observed effects.
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