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Introduction: Polychlorinated Biphenyls (PCBs) persist in the environment and

accumulate in humans. Currently, there is a lack of understanding about the

overall impact of PCBs on human health, and e�ective interventions for exposed

populations are insu�cient.

Methods: Our study aimed to assess the impact of PCBs on various

diseases and mortality risks using data from the National Health and

Nutrition Examination Survey, while proposing lifestyle adjustments, particularly

dietary modifications, to mitigate mortality risk. Statistical analyses employed

principal component analysis, multifactorial logistic regression, multifactorial

Cox regression, comorbidity network analysis, and machine learning prediction

models.

Results: Results indicated significant associations between 7 types of PCBs and

12 diseases (p < 0.05), with 6 diseases showing significant positive correlations

(OR > 1, p < 0.05), along with listing the 25 most relevant diseases, such as

asthma and chronic bronchitis (OR [95% CI] = 5.85 [4.37, 7.83], p < 0.0001),

arthritis and osteoporosis (OR [95% CI] = 6.27 [5.23, 7.55], p < 0.0001). This

suggested that PCBs may be intimately involved in the development and

progression of multiple diseases. By constructing multidimensional machine

learning models and conducting multiple iterations for precision and error

measurement, PCBs may have the potential to become specific biomarkers for

certain diseases in the future. Building upon this, we further suggested that

controlling dietary intake to reduce dietary inflammatory index (DII) could lower

mortality and disease risks.

Discussion: While PCBs were independent risk factors for mortality, substantial

evidence suggested that adjusting DII might mitigate the adverse e�ects of PCBs

to some extent. Further physiological mechanisms require deeper exploration

through additional research.
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1 Introduction

Due to the significant adverse effects of PCBs on human health and ecosystems,

the United States banned the production of PCBs in 1979 under the Toxic Substances

Control Act. However, production continued in other parts of the world. Consequently,

the United Nations Environment Program (UNEP) established the Stockholm Convention

in May 2001, aiming to eliminate PCB-containing products in an environmentally sound

manner by 2028 (1). As part of this effort, the 2001 Stockholm Convention on Persistent

Organic Pollutants prohibited the production and use of PCBs—substances once widely

used in electrical manufacturing and construction materials due to their lipophilicity,
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environmental persistence, and bioaccumulation in animal tissues.

Despite this, the lingering effects of PCBs in the environment

remain a significant concern (2–4). PCBs continue to enter the

human body through the food chain and environmental exposure,

persisting in various settings (5). Multiple studies have shown that

PCBs tend to accumulate significantly in high-fat, high-protein

foods that are commonly consumed, such as eggs (6), mussels (7, 8)

and dairy products (9). They have also been widely detected in

animal feed. Pollution surveys in China have identified significant

PCB contamination in electronic waste dismantling areas such

as Taizhou City in Zhejiang Province, Qingyuan City and Guiyu

Town in Guangdong Province, as well as in major urban and

industrial areas, particularly in East China. This contamination

largely stems from inadvertent production during industrial heat

treatment processes. Furthermore, epidemiological studies indicate

detectable levels of PCBs in the human body, underscoring the

ongoing potential pollution and hazards associated with these

compounds (10, 11).

It should be noted that previous studies indicate that the

209 possible PCB congeners are generally divided into two

main categories: “coplanar” and “non-coplanar.” Coplanar PCBs

have a more planar molecular structure due to the absence of

chlorine substitution at the ortho positions (12). Their molecular

planarity resembles that of dioxins, enabling them to bind to

the aryl hydrocarbon receptor (AhR) in the body, similarly

to dioxin-like substances. This interaction can induce oxidative

stress, inflammatory responses, and alterations in gene expression,

potentially leading to cancer, immune suppression, and endocrine

disruption (13). Dioxin-like PCBs exhibit higher toxicity and

may result in chronic toxicity, liver damage, and reproductive

and developmental issues (14). In contrast, non-coplanar PCBs

have chlorine atoms substituted at the ortho positions, which

disrupts their planar structure. This prevents them from binding

to the AhR receptor, leading to a different toxicity mechanism

compared to coplanar PCBs. The toxicity of non-coplanar PCBs

primarily operates through other pathways, such as affecting

calcium metabolism and interfering with cell membrane functions

(15). They have significant impacts on the nervous system, with

studies indicating that these PCBs may influence neurotransmitter

transmission, resulting in neurotoxicity, particularly affecting the

developing brain and nervous system. Although their toxicity is

lower than that of coplanar PCBs, long-term exposure can still

lead to cardiovascular diseases, liver issues, and immune system

suppression (16).

Previous research has highlighted the potential links between

PCB exposure and human health, primarily examining the

relationship between PCBs and individual medical conditions such

as hypertension, diabetes, pulmonary arterial hypertension,

and liver diseases (17). These studies generally focus on

the effects of PCBs on specific systems, while neglecting

the comprehensive analysis of their impact across multiple

biological systems in humans, a complex organism. Moreover,

although these studies have identified potential adverse

effects of PCBs on human health, solutions for mitigating

or preventing these environmental sequelae have been

inadequately proposed, even in developed countries where

their use has already been banned. This lack of effective

strategies leaves public health scholars and clinicians feeling

powerless in addressing the ongoing challenges posed by PCB

contamination (18–21).

Considering that analyses focusing on individual diseases fail

to account for interactions between diseases and that traditional

methods for assessing mortality risk do not adequately address

issues related to common exposure and risk confounding,

comprehensive analyses of PCBs and their impact on comorbidity

networks are still lacking (3, 22). To bridge this gap, our study

combined traditional statistical analysis with recent machine

learning models and utilized data from the National Health and

Nutrition Examination Survey (NHANES) to comprehensively

investigate the integrated impact of PCB exposure on multiple

disease categories and its relationship with mortality. We

discovered that PCB exposure contributes to a chronic state of

inflammation and disease in the body. For the first time, we

propose a strategy to mitigate the adverse effects of PCBs through

an anti-inflammatory diet, which can counteract the detrimental

consequences of PCBs exposure.

2 Materials

2.1 Study design and participants

As of March 1, 2024, all data used in our study were

publicly accessible and sourced from the NHANES, managed by

the National Center for Health Statistics (NCHS). Since 1999,

data collection from participants has been conducted through

questionnaire interviews, physical examinations, and laboratory

tests. NHANES received approval from the NCHS Institutional

Review Board, and all participants have provided written informed

consent. Survival status data of NHANES participants were derived

from the National Death Index (NDI).

Our study selected 69 congeners of persistent organic

pollutants detected and validated in the NHANES database

(1999–2004), including dioxins, furans, and PCBs. Through

data screening and analysis, we identified seven PCBs—PCB074,

PCB170, PCB178, PCB180, PCB156, PCB157, and PCB146—as

noteworthy compounds. We have provided specific nomenclature

and abbreviations for these compounds:

LBX074, representing PCB074(2,4,4′,5-Tetrachlorobiphenyl).

LBX170, representing PCB170(2,2′,3,3′,4,4′,5-

Heptachlorobiphenyl).

LBX178, representing PCB178(2,2′,3,3′,5,5′,6-

Heptachlorobiphenyl).

LBX180, representing PCB180(2,2′,3,4,4′,5,5′-

Heptachlorobiphenyl).

LBX156, representing PCB156(2,3,3′,4,4′,5-

Hexachlorobiphenyl).

LBX157, representing PCB157(2,3,3′,4,4′,5′-

Hexachlorobiphenyl).

LBX146, representing PCB146(2,3,3′,4,4′,5′-

Hexachlorobiphenyl).

It is important to note that these seven PCBs were all non-

dioxin-like PCBs. The completeness of the data and the limitations

of the detection equipment and methods at the time may have

contributed to the underrepresentation of dioxin-like PCBs in the

data analysis.
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We matched the NHANES data from 1999 to 2004 with

mortality data from the NDI website, excluding participants

with missing mortality data and incomplete data for the seven

PCBs. Additionally, the NHANES database provides a weight

for each participant to account for the complex survey design,

including oversampling, non-response adjustments, and post-

stratification to align with the total census population. When

weighted, the sample in NHANES represents the civilian, non-

institutionalized population of the United States. Each participant

is assigned a sample weight, which reflects the number of

individuals represented by that sample. Therefore, we also excluded

participants with missing weights. However, for comprehensive

network analysis, we refrained from further data exclusion. This

meticulous curation resulted in a final cohort of 10,961 participants.

At different analysis stages, data were selected based on varying

data requirements.

2.2 Methodology for measuring serum
levels of PCBs

The analyses were quantified in serum using high-resolution

gas chromatography and isotope-dilution high-resolution mass

spectrometry (HRGS/ID-HRMS). Serum samples were fortified

with 13C12-labeled internal standards and extracted through

either C18 solid-phase extraction (SPE) or liquid-liquid extraction.

Chromatographic separation occurred on a DB-5ms capillary

column employing a Hewlett-Packard 6890 gas chromatograph.

Quantification was achieved by ID-HRMS using selected ion

monitoring (SIM) at a resolving power of 10,000 with either

a Micromass AutoSpec ULTIMA or Finnigan MAT95 mass

spectrometer in electron ionization (EI) mode. Detection limits

were reported for each sample, accounting for sample weight and

analyte recovery.

From the entire persistent organic pollutant (POP) library, we

ultimately identified 18 PCBs, with data for these substances in

the NHANES cycles from 1999–2000, 2001–2002, and 2003–2004

accounting for over 75% of the total data. Further analysis of the

18 POPs using weighted quantile sum (WQS) analysis identified

seven PCBs with the greatest impact onmortality risk, cumulatively

contributing to 95% of the total weight. As per NHANES guidelines,

values falling below the limit of detection (LOD) were imputed with

a value equivalent to the LOD divided by the square root of 2.

2.3 Diagnosis of medical conditions and DII

As NHANES does not directly record mortality data, mortality

information in this study was obtained through a probabilistic

match between NHANES and NDI, following procedures validated

by the National Center for Health Statistics (NCHS). Mortality data

from the NDI were available for analysis until December 31, 2019.

All diseases available in NHANES were included in our

analysis, encompassing Angina, Heart attack (HA), Heart disease

(HD), Heart failure (HF), Hypertension, Stroke, Alcoholic fatty

liver disease (ALD), Hepatitis B virus (HBV), Hepatitis C

virus (HCV), Hepatitis D virus (HDV), Non-alcoholic fatty

liver disease (NAFLD), Hyperlipidemia, Diabetes, Osteoporosis,

Hyperuricemia, Thyroid disease (TD), Human Immunodeficiency

Virus (HIV), Arthritis, Depression, Cancer, Chronic bronchitis

(CB), Emphysema, Asthma, Chronic kidney disease (CKD), and

Proteinuria, totaling 25 diseases. Diabetes was defined as self-

reported diabetes diagnosis, use of oral antidiabetic drugs or

insulin, glycated hemoglobin (HbA1c) levels ≥6.5%, plasma

glucose levels ≥200 mg/dL 2 h after an oral glucose tolerance

test (OGTT), or fasting plasma glucose levels ≥126 mg/dL (23).

Hypertension was determined based on self-reported hypertension

or NHANES-measured data: an average systolic blood pressure

≥130mm Hg or diastolic blood pressure ≥80mm Hg from

three measurements (24, 25). To assess CKD, essential indicators

including estimated glomerular filtration rate (eGFR) and urine

albumin-to-creatinine ratio (UACR) were relied upon. UACR

(mg/g) was calculated as the ratio of urine albumin (mg/dL) to

urine creatinine (g/dL), with a UACR value exceeding 30 mg/g

indicating “proteinuria.” eGFR was computed using the CKD-EPI

formula, expressed as:

GFR = 175 × standardized serum creatinine(−1.154) ×

age(−0.203) × 1.212 [if Black] × 0.742 [if female], where serum

creatinine is measured in mg/dL.

CKD was defined as eGFR < 60 mL/min/1.73 m2 the presence

of renal damage markers (such as proteinuria), or both, persisting

for at least 3 months, regardless of the underlying etiology (26).

In line with previous publications, NAFLD was defined by hepatic

steatosis index (HSI) and US fatty liver index (USFLI). The

formulas are as follows:

HIS = 8 × (alanine aminotransferase/aspartate

aminotransferase ratio) + body mass index (+2 for female;

+2 for diabetes);

USFLI = (e−0.8073 × Non–Hispanic Black+0.3458×Mexican

American+0.0093×Age+0.6151 × loge (Gamma

glutamyltransferase) +0.0249 × Waist Circumference+1.1792 ×

loge (Insulin)+0.8242 × loge (Glucose)−14.7812)/ (1 + e−0.8073

× Non–Hispanic Black+0.3458 ×Mexican American+0.0093

× Age+0.6151 × loge (Gamma glutamyltransferase) +0.0249

× waist circumference+1.1792 × loge (Insulin)+0.8242 × loge

(Glucose) – 14.7812)× 100.

USFLI cutoff value ≥ 30 or HSI value > 36 was diagnosed as

NAFLD (27). ALD was defined by a combination of an evidence

of excessive alcohol consumption (≥ 210 g/week for men and ≥

140 g/week for women) and an ALD/NAFLD index > 0, which was

calculated as:

−58.5 + 0.637 (Mean Corpuscular Volume) + 3.91 (Aspartate

Aminotransferase [AST]/Alanine Aminotransferase [ALT]) – 0.406

(Body Mass Index)+ 6.35 for Male Gender.

In the subpopulation with ALD, the AST-to-platelet ratio index

(APRI) and FIB-4 score were used to evaluate ALD FIB. The

formula is as follows:

APRI = (AST/Upper Limit of Normal/Platelet Count [109/L])

× 100, where the upper limits of normal AST levels were set at 37

IU/L for men and 29 IU/L for women;

FIB-4= Age× AST/[Platelets in 109/L× (ALT)1/2].

Cut-off values for advanced fibrosis (≥ F3) were set at 1.5 for
APRI and 3.25 for FIB-4 (28, 29). HBV, HCV, HDV, and HIV-

positive patients were determined based on antigen measurements

and quantification of relevant viral DNA or RNA levels in NHANES
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laboratories. Hyperlipidemia was defined as fasting triglyceride

values ≥ 200 ng/dl. Smokers were defined as individuals who

have smoked more than 100 cigarettes in their lifetime and

currently smoke on some days or every day, while nonsmokers

are those who have smoked <100 cigarettes in their lifetime

(30). Hyperuricemia was defined dichotomously with serum uric

acid (SUA) levels ≥416 µmol/L (7.0 mg/dL) for males and ≥357

µmol/L (6.0 mg/dL) for females (31). Apart from the diseases

mentioned above, data onHeart attack, Heart disease, Heart failure,

Stroke, Osteoporosis, Thyroid disease, Emphysema, Arthritis,

Depression, Cancer, Chronic bronchitis, andAsthmawere obtained

from questionnaire data provided by NHANES. These indices

were derived from comprehensive full blood cell count tests,

the details of which can be found in the “Questionnaire” data

within the NHANES dataset. Participants who answered “Yes” were

considered to have that condition. Finally, we categorized these

diseases into seven major classes based on disease type: Circulatory

system diseases, Digestive system diseases, Endocrine/Metabolic

diseases, Immune system diseases, Respiratory system diseases,

Urinary system diseases, and Others.

The DII assesses the inflammatory effect of diet using 45 dietary

parameters, normalizing individual intake of each food parameter

to global intake. Standardized intake scores (Z-scores) are

converted to proportions and centered. The centered proportions

of these specific food intakes are multiplied by their inflammation

effect scores and summed to obtain an individual’s overall DII

score. Participants’ DII scores represent the sum of each DII score.

Higher DII scores indicate a pro-inflammatory diet, while lower

scores indicate an anti-inflammatory diet. In this study, 28 out of

45 food parameters were utilized for DII calculation: carbohydrates,

protein, total fat, alcohol, fiber, cholesterol, saturated fatty acids,

monounsaturated fatty acids, polyunsaturated fatty acids, n-3 fatty

acids, n-6 fatty acids, niacin, vitamin A, thiamine, vitamin B2,

vitamin B6, vitamin B12, vitamin C, vitamin D, vitamin E, iron,

magnesium, zinc, selenium, folic acid, carotene, caffeine, and

energy (32, 33).

2.4 Covariates

We included C-reactive protein (CRP) and the systemic

immune-inflammation index (SII) as covariates in our analysis. We

selected and utilized data on platelet count (PC), neutrophil count

(NC), and lymphocyte count (LC) in the computation, with SII

calculated as SII= PC ∗ (NC/LC) (34).

Other covariates included Age, Poverty Income Ratio (PIR),

Body Mass Index (BMI), Gender, Race, Education, Smoking

Exposure, and Alcohol Exposure. BMI was categorized into three

groups: normal (BMI < 25 kg/m²), overweight (25 ≤ BMI ≤ 30

kg/m²), and obese (BMI > 30 kg/m²), based on participants’ BMI

values (35). Alcohol consumption was assessed using data from

NHANES questionnaires. Participants who had consumed fewer

than 12 alcoholic drinks in their lifetime were classified as non-

drinkers. Former drinkers were individuals who had consumed

≥12 drinks at any point in their lifetime but had not consumed

alcohol in the past year. To minimize recall bias, smoking exposure

was evaluated based on serum cotinine levels rather than relying

solely on the “smoking history questionnaire”. Current smokers

were identified by serum cotinine levels >10 ng/mg, former

smokers had serum cotinine levels ≤ 10 ng/mg, and non-smokers

exhibited serum cotinine levels < 0.011 ng/mg (36).

2.5 Statistical analysis

In accordance with Centers for Disease Control and Prevention

(CDC) guidelines, our statistical analyses adhered to stipulated

principles. To address the complex multi-stage cluster survey

design inherent to NHANES, appropriate sample weights were

meticulously applied to each participant. Categorical variables

were expressed as proportions, while continuous variables were

presented as means (mean ± standard deviation). Descriptive

statistics comprehensively summarized participants’ demographic

characteristics and biomarker concentrations. Specifically, for each

selected PCB, analysis was conducted after stratifying into three

groups based on quartiles, and for substances exhibiting highly

right-skewed distributions, analysis was stratified into two groups

based on the median.

A total of 69 POPs were initially identified in NHANES data

(1999–2004), encompassing dioxins, furans, and PCBs. From these,

18 persistent organic pollutants with valid data representing 75% of

the total data were selected for further analysis. WQS regression,

focusing on mortality risk, was performed on these 18 substances,

with the top seven substances selected based on their cumulative

contribution rate to the preceding 95%, all of which were PCBs.

Correlation heatmaps were employed to illustrate the

interrelationships among the 7 PCBs and their associations with

various diseases. Principal component analysis (PCA) was utilized

to visualize the relationship between PCBs and mortality risk

in two dimensions. Additionally, five diseases highly correlated

with PCBs (Hyperuricemia, Hypertension, Diabetes, CKD, and

Arthritis) were included in the machine learning algorithm model,

while Cancer, Osteoporosis, and Hepatitis C (HCV) were excluded

due to either their broad spectrum or insufficient data volume.

Further, multivariable logistic regression was employed to evaluate

the associations between these substances and 25 diseases adjusted

for Age, Gender, Race, BMI, Social Inequality Index (SII), smoking

exposure, and alcohol exposure. We analyzed each of the seven

PCBs separately for each disease outcome, calculating the effect of

each PCB on a specific disease outcome individually. To illustrate

the interrelationships among different diseases, logistic regression

and comorbidity network analysis were also performed on the

25 diseases, with the most relevant diseases determined based on

Odds Ratios (ORs) and p-values, and results presented via network

analysis diagrams.

Furthermore, based on the above analysis, we used both

traditional Cox regression and machine learning models to

investigate whether PCBs act as independent risk factors for

mortality. In the Cox regression analysis, after adjusting for baseline

and disease data, we found a significant positive correlation

between each PCB and mortality risk (HR > 1). Simultaneously,

we developed a high-precision mortality risk prediction model.

After incorporating PCB data into the baseline and disease data, the

model showed a significant improvement in predictive accuracy.
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The study further demonstrated that PCBs are independent risk

factors for mortality, even after adjusting for confounding factors

such as diseases. We constructed five individual machine learning

models: Support Vector Machine (SVM), Naïve Bayes, Decision

Tree, Stochastic Gradient Descent (SGD), and Gradient Boosting

Decision Tree (GBDT), as well as four ensemble models: Random

Forest, Histogram-based GBDT (Hist GBDT), Bagging, and Neural

Networks. Additionally, a voting algorithm was developed for

outputting results, which were evaluated using ROC curves and

confusion matrices. Moreover, we divided the participants into

three groups based on their level of pollutant exposure and

then further stratified each group into two subgroups according

to whether their DII was >0. Survival curves were plotted for

each subgroup, and multivariable Cox regression models were

constructed for each group to explore the differential Hazard Ratios

(HR) of mortality outcomes associated with the DII, after adjusting

for baseline data. Our results effectively demonstrated that dietary

patterns modulated by the DII can mitigate the adverse health

effects of high PCB exposure in populations with elevated levels of

PCB exposure.

3 Results

3.1 Unveiling the relationship between
PCBs and diseases and mortality risk

Table 1, Supplementary Table 1 present the essential

characteristics of our study cohort. The mean age of participants

was 40.99 years. Regarding gender distribution, females slightly

outnumbered males, constituting 50.2% compared to 49.8%.

Additionally, we categorized the 10,961 participants into three

groups–low, moderate, and high–based on tertiles reflecting PCB

concentrations. Notably, individuals in the high LBX074 group

displayed distinct characteristics compared to those in the low

and moderate groups (Table 1). Specifically, the high LBX074

group exhibited a higher proportion of females, a significantly

greater mean age, and a substantially elevated percentage of active

smokers. Similar trends were observed for other comprehensive

PCB data, as outlined in Supplementary Table 1.

Figures 1A, B depict the results of WQS and weighting analysis

for the 18 PCBs and 25 diseases. By calculating the cumulative

contribution rate, we identified the top seven substances, ranked in

descending order based on their contribution rate, accounting for

95% of the cumulative contribution rate:

LBX074, representing PCB074(denoting 2,4,4′,5-

Tetrachlorobiphenyl).

LBX170, representing PCB170(2,2′,3,3′,4,4′,5-

Heptachlorobiphenyl).

LBX178, representing PCB178(2,2′,3,3′,5,5′,6-

Heptachlorobiphenyl).

LBX180, representing PCB180(2,2′,3,4,4′,5,5′-

Heptachlorobiphenyl).

LBX156, representing PCB156(2,3,3′,4,4′,5-

Hexachlorobiphenyl).

LBX157, representing PCB157(2,3,3′,4,4′,5′-

Hexachlorobiphenyl).

LBX146, representing PCB146(2,3,3′,4,4′,5′-

Hexachlorobiphenyl).

In line with this, the main text primarily focused on

LBX074 data, aimed at representing this category of substances,

while additional data were predominantly included in the

Supplementary material.

Figures 1C, D illustrate, in the form of heatmaps, the

interrelationships among the seven PCBs and between PCBs and

the 25 diseases, respectively. Significant positive correlations were

observed among all seven PCBs (p < 0.0001), with LBX146

exhibiting the strongest correlation with the other six substances.

The seven PCBs demonstrated significant positive correlations

with most diseases, including arthritis, cardiovascular diseases,

respiratory disorders, endocrine diseases, chronic hepatitis, and

chronic kidney disease (p < 0.0001). However, all seven PCBs were

negatively correlated with Asthma, and LBX178 and LBX167 were

negatively correlated with Chronic bronchitis and Hyperlipidemia.

Notably, Alcoholic fatty liver showed almost no correlation with

any of the PCBs. These findings suggest that PCBs might be

important environmental factors associated with the development

of most diseases, affecting multiple systems in the body.

Figure 2 employed principal component analysis (PCA) to

illustrate the relationship between PCBs and the risk of death in a

two-dimensional format. Pairwise combinations of the seven PCBs

were analyzed, and the PCA two-dimensional plot indicates that for

each pair of PCBs, higher PCB levels correspond to increased risk

of death. Thus, all seven PCBs are important factors in increasing

the mortality risk.

Multivariable logistic regression was employed to analyze the

summarized 25 diseases, adjusting for Age, Gender, Race, BMI,

SII, smoking exposure, and alcohol exposure. Each of the seven

PCBs was individually analyzed in relation to each specific disease

outcome, with the impact of each PCB on a given disease outcome

calculated separately. Among them, 12 diseases showed significant

associations with PCBs (p < 0.05), with six diseases significantly

positively correlated with PCBs (OR>1, p < 0.05) (Figure 3A),

including Hyperuricemia (OR > 6.0, p < 0.001), Diabetes (OR

> 6.0, p < 0.0001), HCV (OR > 6, p = 0.0071), Hyperlipidemia

(OR > 6, p = 0.016), HIV (OR > 6, p = 0.0005), and Arthritis

(OR = 5.42, p = 0.0065). Adjusting for covariates, it could be

demonstrated that PCBs were independent influencing factors for

multiple diseases.

Logistic regression was used to compute the odds ratio (OR)

and p-values for each pair of the 25 diseases to determine disease

associations. Each disease outcome was paired with the remaining

24 disease outcomes, and by continuing to adjust for covariates

consistent with the previous models, 600 different paired models

were generated. We calculated the OR values for all disease pairs

(Supplementary Table 2) and presented the disease pairs most

closely related to each disease (p < 0.05) (Supplementary Table 3).

Among these pairs, Depression and Stroke emerged as the most

correlated diseases (OR [95%CI]: 40.21[5.83, 794.00], p = 0.001),

while the association between Thyroid disease and Angina was

the least significant (OR [95%CI]: 3.60 [2.76, 4.66], p < 0.0001).

Diseases of the circulatory system tend to be interrelated, with

diseases highly correlated with diabetes and proteinuria, typical of

the urinary system, accounting for the majority of associations.

Depression is strongly associated with some common chronic
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TABLE 1 Baseline demographic characteristics divided by LBX074 levels.

Overall LBX074 p-value

Low Moderate High

Number 10,961 4,015 3,304 3,642

Age 40.99 (21.36) 25.80 (12.77) 37.78 (18.11) 61.98 (14.25) <0.001

Gender (%) <0.001

Male 5,457 (49.8) 2,128 (53.0) 1,847 (55.9) 1,482 (40.7)

Female 5,504 (50.2) 1,887 (47.0) 1,457 (44.1) 2,160 (59.3)

Race (%) <0.001

Mexican American 2,692 (24.6) 1,351 (33.6) 824 (24.9) 517 (14.2)

Non-Hispanic Black 2,353 (21.5) 1,021 (25.4) 679 (20.6) 653 (17.9)

Non-Hispanic White 5,069 (46.2) 1,295 (32.3) 1,484 (44.9) 2,290 (62.9)

Other Hispanic 438 (4.0) 176 (4.4) 161 (4.9) 101 (2.8)

Other races 409 (3.7) 172 (4.3) 156 (4.7) 81 (2.2)

Education (%) <0.001

<9th grade 1,530 (14.4) 600 (15.4) 439 (13.7) 491 (13.8)

9–11th grade 1,942 (18.2) 829 (21.3) 533 (16.6) 580 (16.3)

High-school graduate 2,454 (23.0) 889 (22.9) 748 (23.3) 817 (23.0)

College graduate or above 1,995 (18.7) 581 (14.9) 673 (20.9) 741 (20.9)

Some college or AA degree 2,679 (25.1) 968 (24.9) 810 (25.2) 901 (25.4)

Others 56 (0.5) 20 (0.5) 13 (0.4) 23 (0.6)

PIR 2.50 (1.60) 2.17 (1.56) 2.61 (1.63) 2.77 (1.56) <0.001

BMI stage (%) <0.001

<25 4,488 (42.5) 2,158 (55.1) 1,361 (42.1) 969 (28.4)

>30 2,776 (26.3) 724 (18.5) 852 (26.4) 1,200 (35.1)

25–30 3,300 (31.2) 1,035 (26.4) 1,020 (31.5) 1,245 (36.5)

Smoking exposure (%) <0.001

Current smoker 2,596 (23.8) 934 (23.4) 938 (28.6) 724 (20.0)

Former smoker 6,646 (61.0) 2,529 (63.2) 2,003 (61.1) 2,114 (58.5)

Non smoker 1,649 (15.1) 537 (13.4) 338 (10.3) 774 (21.4)

Alcohol intake (%) <0.001

Current drinker 497 (21.0) 136 (23.7) 128 (22.0) 233 (19.3)

Former drinker 696 (29.4) 107 (18.6) 170 (29.2) 419 (34.7)

Non drinker 1,173 (49.6) 331 (57.7) 285 (48.9) 557 (46.1)

SII 582.86 (367.92) 557.14 (340.40) 583.96 (395.89) 610.40 (368.91) <0.001

CRP 0.38 (0.81) 0.26 (0.56) 0.38 (0.93) 0.52 (0.89) <0.001

WBC 7.09 (2.18) 7.04 (2.03) 7.18 (2.12) 7.07 (2.39) 0.018

Lymphocyte 2.13 (1.01) 2.18 (0.62) 2.15 (0.67) 2.07 (1.49) <0.001

Monocyte 0.56 (0.18) 0.55 (0.18) 0.56 (0.18) 0.57 (0.19) <0.001

Neutrophils 4.16 (1.65) 4.08 (1.68) 4.22 (1.75) 4.18 (1.51) <0.001

Platelet count 272.08 (67.52) 277.92 (63.12) 274.24 (72.13) 263.63 (67.08) <0.001

Red blood cell 4.74 (0.50) 4.81 (0.49) 4.79 (0.48) 4.60 (0.51) <0.001

Hemoglobin 14.28 (1.51) 14.38 (1.53) 14.43 (1.55) 14.05 (1.40) <0.001

(Continued)
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TABLE 1 (Continued)

Overall LBX074 p-value

Low Moderate High

Alkaline phosphatase 90.57 (62.34) 102.04 (76.08) 94.53 (68.44) 74.22 (24.98) <0.001

Albumin 4.32 (0.33) 4.38 (0.29) 4.39 (0.36) 4.20 (0.30) <0.001

Bilirubin 0.72 (0.29) 0.74 (0.30) 0.71 (0.33) 0.71 (0.25) <0.001

Iron 88.34 (37.89) 90.12 (40.00) 90.86 (38.84) 84.06 (34.05) <0.001

The baseline table is a calculation from NHANES 1999–2000, 2001–2002, 2003–2004. For categorical variables, the p-value was calculated by the chi-square test. For continuous variables, the

p-value was calculated by t-test. SII, systemic immune-inflammation index; CRP, C-reactive protein; WBC, white blood cell.

FIGURE 1

Selection of PCBs and heat map analysis of the relationship between PCBs and disease. (A) Progressive weighted quantile and regression (WQS) for

POPs with a valid data volume >75%. Seven PCBs with the top 95% cumulative weight were selected. (B) The prevalence of each disease was ranked

among all participants. (C) Correlation heat map analysis of seven types of PCBs. The graph shows that the content of each PCBs in the human body

is highly positively correlated. (D) Heatmap analysis of the correlation between 7 PCBs and diseases. Lesions were expressed as 1 and 0, both using

Spearman correlation analysis. The images showed that the seven PCBs were significantly positively correlated with most diseases (p < 0.0001),

however, all seven PCBs were negatively correlated with Asthma, and LBX178 and LBX167 were negatively correlated with Chronic bronchitis and

Hyperlipidemia. But alcoholic fatty liver is almost unrelated to all PCBs. HA, heart attack; HD, heart disease; HF, heart failure; ALD, alcoholic fatty liver

disease; HBV, hepatitis B virus; HCV, hepatitis C virus; HDV, hepatitis D virus; NAFLD, non-alcoholic fatty liver disease; TD, thyroid disease; HIV, human

immunodeficiency virus; CB, chronic bronchitis; CKD, chronic kidney disease. *0.001 < P ≤ 0.05. **0.0001 < P ≤ 0.01. ***P ≤ 0.0001.

clinical conditions. Based on comorbidity network analysis, we

identified 283 potential links, with the number of related links,

OR values, and comorbidity network analysis results shown in

Figure 3B. Each node represents a medical condition, and the

thickness of the connecting lines reflects the strength of the disease

pairs’ association. Nodes closer to the network center have stronger

centrality, indicating a greater number of connections with other

diseases. Hypertension exhibits the strongest centrality and the

highest number of connections, significantly influencing most

other diseases. It is also notable that diseases of the circulatory

system are often closely associated with other diseases. Depression,

ALD, HIV, and HPL are distanced from the center, showing fewer

associations with other diseases and smaller impact.

3.2 Unveiling the association between
PCBs with mortality using machine
learning, introducing DII for correction

Before conducting machine learning predictions, we first

applied the traditional Cox regression method for analysis

(Supplementary Figure 2). The model was adjusted for baseline

demographic and disease data, consistent with the data included

in the predictive model. This analysis successfully validated the

independent effect of PCBs on mortality risk. A significant positive

correlation was observed between most PCBs and mortality risk,

with increased PCB exposure corresponding to a notable rise in

mortality risk. For example, PCB74 (HR [95% CI]: 1.990 [1.288,
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FIGURE 2

Principal component analysis (PCA) of 7 PCBs and mortality risk. Principal component analysis was used to reduce the dimensionality of the

seven-dimensional data that a�ects the mortality risk, i.e., seven kinds of PCBs, and the seven kinds of PCBs were paired in pairs into

two-dimensional graphics. The images show that the higher the PCBs, the greater the mortality risk, and all seven PCBs are important factors that

increase the mortality risk.

3.074], p = 0.002, group of “High”), PCB170 (HR [95% CI]: 2.015

[1.039, 3.909], p = 0.038, group of “High”), and PCB180 (HR [95%

CI]: 3.090 [1.667, 5.729], p= 0.0003, group of “High”).

After that, we constructed nine learning models, including

five individual models: Support Vector Machine (SVM), Naïve

Bayes, Decision Tree (Tree), Stochastic Gradient Descent (SGD),

and Gradient Boosting Decision Tree (GBDT). Additionally, we

developed four ensemble models: Random Forest, Histogram

Gradient Boosting Decision Tree (hist GBDT), Bagging, andNeural

Network. Furthermore, we incorporated a Voting algorithm for

result output. Two types of models were added to the algorithm:

one containing Age, gender, race, hyperuricemia, hypertension,

diabetes, CKD, and arthritis, and the other adding PCBs data.

The AUC values of these two types of models, representing

predictive accuracy, were compared (Figures 4A, B). It is evident

that models incorporating PCBs data exhibited varying degrees
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FIGURE 3

Logistic regression and comorbid network analysis. PCBs are independent influencing factors for a variety of diseases. (A) Taking LBX074 as the

representative of PCBs, multivariable logistic regression was performed with 25 diseases, and Age, Gender, Race, BMI, SII, smoking exposure and

alcohol exposure were adjusted. The color of the inner circle was derived from the p-value obtained by logistic regression, and the color of the inner

circle was gray when p < 0.05, and the color of the inner circle was white when p > 0.05. (B) 25 disease comorbidity network diagrams. Each node

represents a disease, and the width of the link represents the strength of the comorbid association. According to the comorbid network analysis, we

constructed 283 possible links, performed logistic regression on the disease pairs, and the OR values and the results of the comorbid network

analysis were displayed in the figure. The closer you are to the center of the network, the more central it is, and the more nodes are associated with

other diseases. HA, heart attack; HD, heart disease; HF, heart failure; ALD, alcoholic fatty liver disease; HBV, hepatitis B virus; HCV, hepatitis C virus;

HDV, hepatitis D virus; NAFLD, non-alcoholic fatty liver disease; TD, thyroid disease; HIV, human immunodeficiency virus; CB, chronic bronchitis;

CKD, chronic kidney disease.

of improvement in accuracy compared to the baseline models.

Overall, ensemble models outperformed individual models, with

Random Forests showing significant advantages in prediction.

Prior to incorporating PCBs data, the accuracy rates were as

follows: SVM (0.86), SGD (0.88), Naïve Bayes (0.85), Decision Tree

(0.88), GBDT (0.91), hist GBDT (0.89), Random Forests (0.98),

Bagging (0.92), Neural Network (0.91), and the final Voting model

(0.94). After incorporating PCBs data, the accuracy rates were:

SVM (0.89), SGD (0.90), Naïve Bayes (0.86), Decision Tree (0.90),

GBDT (0.94), hist GBDT (0.91), Random Forests (1.0), Bagging

(0.95), Neural Network (0.95), and the final Voting model (0.96).

Figures 4C, D illustrate the comparison of ROC curves before and

after applying the Voting algorithm. Figures 4E, F illustrate the

comparison of the confusion matrices for the Voting algorithm

before and after. These results strongly demonstrate a substantive

positive correlation between PCBs and mortality risk, even after

controlling for baseline data and confounding factors such as

diseases. The ROC curves and confusion matrices of the other

algorithms are presented in Supplementary Figure 1.

Furthermore, in Figure 5, we demonstrated through survival

curves that we could mitigate the impact of DII by adjusting

lifestyle habits. We first continued to utilize the previously built

machine learning models to calculate the accuracy and errors of the

predictive model containing population baseline data (Age, gender,

race) and 5 diseases (hyperuricemia, hypertension, diabetes, CKD,

arthritis), along with 7 PCBs data (Figure 5A). Furthermore, we

incorporated DII data of each participant into the aforementioned

model for prediction and recalculated the accuracy and errors of

the newmodel (Figure 5B). The results indicated that the DII index

effectively enhanced the accuracy of the model, highlighting its

significance as a contributing factor to increased mortality risk. In

Figure 5C, participants were categorized into low, medium, and

high groups based on the quartiles of the total amount of seven

PCBs in their bodies, and survival curves were plotted accordingly.

Participants with high levels of PCBs showed a significantly

increased risk of mortality, while participants with medium and

low levels exhibited progressively lower risks of mortality (p <

0.0001). In Figure 5D, participants with high levels of PCBs were

further classified based on their DII scores: those with DII scores

>0 were defined as “positive,” while those with DII scores ≤0 were

defined as “negative.” In comparison with Figure 5C, it is evident

that a DII score >0 (indicating reduced inflammation) effectively

reduces the risk of mortality among participants with higher levels

of PCBs. Figures 5E, F depict similar classifications for participants

with medium and low levels of PCBs, respectively. However, the

conclusions drawn from participants with high levels of PCBs

were not statistically significant in these two groups, indicating no

significant differences.
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FIGURE 4

Comparison of the accuracy di�erences between di�erent machine learning models before and after adding PCBs. Classifying machine learning

models into single models and composite models, as well as a Voting model for the final output, radial histograms integrate data from ROC curves

across multiple models. (A) The data models including population baseline data Age, gender, race and five diseases as hyperuricemia, hypertension,

diabetes, CKD, and arthritis. (B) The data models including population baseline data Age, gender, race and five diseases as hyperuricemia,

hypertension, diabetes, CKD, and arthritis, adding seven PCBs. (C) The ROC curve before the PCBs data is included in the Voting algorithm model. (D)

The ROC curve after the PCBs data is included in the Voting algorithm model. (E) The Confusion matrix before the PCBs data is included in the

Voting algorithm model. (F) The Confusion matrix after the PCBs data is included in the Voting algorithm model.
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FIGURE 5

Survival curves of di�erent categories of participants classified according to the total amount of 7 PCBs and the DII index. (A) The accuracy of the

machine learning prediction model when DII data is not included. The data models including population baseline data Age, gender, race and five

diseases as hyperuricemia, hypertension, diabetes, CKD, arthritis, and seven PCBs. (B) The accuracy of the machine learning prediction model when

DII data is included. The data models including population baseline data Age, gender, race and five diseases as hyperuricemia, hypertension, diabetes,

CKD, arthritis, and seven PCBs, adding DII index. (C) Survival curves for three types of participants classified according to PCBs. The total amount of 7

PCBs in the participants was calculated and divided into three categories: “Low”, “Moderate” and “High” according to the tripart. (D) Survival curves of

two types of participants classified according to the DII index. The DII index of the participants was calculated and the DII >0 was defined as

“positive” and the DII <0 was defined as “negative”, which was classified among the participants with Total PCBs as “High”. (E) Survival curves of two

types of participants classified according to the DII index. The DII index of the participants was calculated and the DII >0 was defined as “positive”

and the DII <0 was defined as “negative”, which was classified among the participants with Total PCBs as “Moderate”. (F) Survival curves of 2 types of

participants classified according to the DII index. The DII index of the participants was calculated and the DII >0 was defined as “positive” and the DII

<0 was defined as “negative”, which was classified among the participants with Total PCBs as “Low”. (G) Multifactorial Cox regression forest plot for

participants with high PCBs. DII scores below 1 are denoted as ’positive,’ while DII scores above 1 are denoted as ’negative.’ Factors adversely

a�ecting health are depicted in red, while factors beneficial to health are depicted in blue. The impact of DII on mortality among the high PCBs

population was explored, adjusting for age, gender, race, education, BMI, smoking exposure, and SII. (H) Multifactorial Cox regression forest plot for

participants with moderate PCBs. (I) Multifactorial Cox regression forest plot for participants with high PCBs. DII, dietary inflammatory index; BMI,

body mass index; SII, systemic immune-inflammation index. *0.001 < P ≤ 0.05. ** 0.0001 < P ≤ 0.01. *** P ≤ 0.0001.

In Figures 5G–I, we further constructed multifactor Cox

regression models to examine the association between DII

index and mortality, adjusting for age, gender, race, education,

BMI, smoking exposure, and SII covariates. Among the high

PCBs population, a DII index <1 (indicating inflammation

suppression) was significantly negatively correlated with

mortality (OR [95% CI] = 0.7151 [0.6683, 0.7651], p < 0.05).

However, in the medium PCBs and low PCBs populations,

the association between a DII index <1 and mortality was

not statistically significant (OR [95% CI] = 1.05689 [0.94773,

1.1786], p > 0.05) (OR [95% CI] = 1.125 [0.87141, 1.4525],

p > 0.05).
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Through the above analysis, we effectively demonstrated that

among the high PCBs population, modulation of dietary habits

and adjustment of DII can effectively counteract the adverse effects

of PCBs and similar environmental factors on human health.

However, in the medium PCBs and low PCBs populations, the

impact of DII adjustment on mortality is not evident.

4 Discussion

Our study revealed a profound connection between

PCBs, disease networks, and mortality risk. By constructing

a multidimensional machine learning model and conducting

multiple iterations to assess accuracy and error, we propose that

PCBs may become specific biomarkers for certain diseases in the

future. Additionally, we are the first to suggest that controlling the

DII could reduce mortality risk and potentially mitigate the impact

of environmental factors.

Taking LBX074 (2,4,4,5-Tetrachlorobiphenyl) as an example,

LBX074 exhibited significant positive correlations with seven

diseases (OR > 1, p <0.05). PCA revealed a notable increase in

mortality risk with increasing levels of LBX074, a trend observed

in other PCBs as well. Depression and Stroke emerged as the

most relevant disease pair in network analysis (OR [95%CI]: 40.21

[5.83, 794.00], p = 0.001). When testing mortality risk using

machine learning models, we controlled for confounding factors

and comorbidities, and incorporated PCBs data, which significantly

improved the prediction accuracy. This further confirmed that

PCBs are independent risk factors for mortality. The feasibility

of reducing mortality risk by lowering DII was validated through

survival curve plotting and multi-factor Cox regression analysis.

Although the specific pathogenic mechanisms linking coplanar

PCBs to mortality rates remain unclear, our study elucidated

associations between PCBs and the development of various

diseases, shedding light on the factors contributing to increased

mortality rates associated with coplanar PCB exposure.

To the best of our knowledge, our study possesses several

notable strengths. It is the first to rectify the limitations of

traditional methods using artificial intelligence-based big data

models to predict mortality risk associated with PCB exposure.

Our findings corroborate those of traditional data analysis, with

the addition of PCB data significantly enhancing the predictive

accuracy of multiple models compared to those without PCB

data, suggesting that various PCBs are independent influencing

factors on mortality. Additionally, precise measurements of

accuracy and errors through multiple iterations provided further

evidence of the detrimental effects of pro-inflammatory diets

on the body. Traditional statistical methods have limitations

in analyzing mortality risk, as they overlook issues of shared

exposure and multifactorial risk confounding, and are unable to

effectively address statistical errors. With the further development

of artificial intelligence, machine learning-based algorithm models

can effectively address these issues, with algorithmic results

becoming increasingly accurate over time, capable of handling

various data formats in dynamic, large-volume, and complex data

environments. Therefore, our study, through further data screening

and the construction of predictive models using machine learning

algorithms, analyzed the impact of PCBs on mortality risk.

Moreover, this study represents the first attempt to

comprehensively investigate the combined effects of PCBs on

various diseases and comorbidity networks using comorbidity

network analysis. Logistic regression was employed to calculate OR

values, while centrality and associated nodes were demonstrated

through comorbidity network visualization. Consistent with

past research, we found significant positive correlations between

PCBs and various diseases such as Hyperuricemia, Diabetes, and

Hyperlipidemia. Additionally, the comorbidity network analysis

indicated that hypertension is a significant trigger for multiple

systemic diseases, with circulatory system diseases often closely

associated with various other systemic diseases, exhibiting the

strongest centrality. Furthermore, through comorbidity network

analysis, we first discovered significant positive correlations

between PCB levels and HCV, HIV, and arthritis, likely attributable

to PCB-induced inflammation, immune suppression, and

apoptosis induction in cartilage cells via ROS-dependent pathways.

While the specific mechanisms by which PCBs contribute to

various diseases and mortality remain unclear, it is undeniable

that PCBs pose significant hazards to human health, serving as

independent risk factors for multiple diseases and mortality. The

impact weight of PCBs is higher than that of some conventional

detection substances, suggesting that PCBs may serve as specific

biomarkers for certain diseases, aiding in disease prediction in

the future. Moreover, further research is needed on the effects of

environmental pollutants on human health.

Furthermore, we have introduced for the first time the concept

that adverse effects of pollutants can potentially be counteracted

by altering dietary habits. Previous research indicates that higher

levels of inflammation lead to an increased risk of mortality.

Our study further demonstrates the significant role of DII in

triggering inflammation and oxidative stress in the disease and

mortality processes. Among populations with high PCB exposure,

significant reductions in mortality and morbidity risks can be

achieved through DII regulation. However, similar effects were

not significant among populations with moderate or low PCB

exposure. This suggests that PCBs may induce inflammation to a

certain threshold, and DII regulation can effectively suppress their

effects. Numerous studies have shown that diet, as the main source

of bioactive compounds, can mediate inflammatory responses,

with pro-inflammatory diets associated with increased white blood

cell counts. Pro-inflammatory diets exhibit significant positive

correlations with various diseases, including chronic obstructive

pulmonary disease, diabetes, depression, and cardiovascular

diseases, while high pro-inflammatory diets can increase the risk

of mortality, possibly by increasing white blood cell and CRP

levels, thereby inducing various diseases leading to mortality. One

possible mechanism is the close relationship between diet and

the human gut microbiota. Several animal studies have shown

that high-sugar diets lead to obesity, insulin resistance, increased

intestinal permeability, and low-grade inflammation. Microbial

metabolites (such as SCFA butyrates or tryptophan metabolites)

can control various physiological functions in the host, ranging

from inflammatory responses to energy metabolism in epithelial

cells. Bifidobacteria, Lactobacilli, Clostridia, Bacillus subtilis, and

fragile bacilli are closely related to specific immunity via MyD88,

transforming growth factor-β, IL-1, IL-6, IL-17, IL-22, γ-PgA, and

PSA. Fragile bacilli, plant bifidobacteria, and bifidobacteria can
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regulate inflammatory responses via TLR, NF-κB, and MyD88.

Inflammation is closely related to diseases, and therefore high DII

can induce diseases by triggering inflammation, while low DII

has the opposite effect. However, specific hypotheses cannot be

tested in current studies. Therefore, future longitudinal studies

could consider the potential mechanisms by which diet-driven

inflammation induces mortality or disease. Similarly, future

research could determine whether the use of anti-inflammatory

diets (such as increasing leafy vegetables, herbs, spices, and certain

fruits) can reduce WBC and CRP levels, decrease morbidity, and

reduce mortality risk.

However, this study has certain limitations. Firstly, although we

included all persistent organic pollutant data from the NHANES

database, the limitations of the database, including insufficient

sample size and the narrow focus of the study, meant that

we only investigated the seven substances contributing most

significantly to mortality, which accounted for 95% of the

cumulative contribution. Coincidentally, these seven substances are

all PCBs. However, we cannot rule out the potential harms caused

by other persistent organic pollutants, such as dioxins, furans,

organochlorine pesticides, and other types of PCBs, nor can we

exclude the possibility of co-exposure to these substances. This

limitation constrains the scope of our study. Secondly, due to the

recruitment strategy of this study, we might also miss the research

and discussion of some substances whose data were incomplete

but important enough. Because the NHANES database was limited

and unevenly sampled, the population and regional representation

of this study was limited. At the same time, the mechanisms by

which they cause multiple diseases leading to increased mortality

rates remain unknown. Additionally, DII was not compared with

energy-adjusted DII (E-DII), which constructs a reference database

for energy-adjusted nutritional scoring based on data from the

same 11 countries used to calculate DII. Without access to the

unique comparison database, E-DII cannot be calculated, so we

were unable to compare it in our study. Furthermore, the ubiquity

and complexity of exposure not only necessitate further research

on the effects of PCBs but also require further investigation

into the prevention and monitoring of PCBs, which may help

clinicians better understand and control exposure levels of these

organic pollutants. Finally, when using the NHANES database for

statistical analysis, we selected multiple variables. Indeed, when

lots of variables are tested, associations flourish, most are due to

chance, some are merely markers, some are due to common non-

investigated factors, and just a few are causal. The non-longitudinal

nature of these surveys is not helpful to discern whether the

statistical associations are meaningful enough. Therefore, we

cannot avoid the analysis bias caused by large databases.

5 Conclusion

Our study has demonstrated that PCBs are closely associated

with the occurrence and progression of various diseases and

act as independent risk factors, highlighting their potential

biotoxicity. Modifying dietary patterns, specifically through an

anti-inflammatory diet, may help mitigate PCB-induced toxicity.

This suggests that PCBs might exert their biotoxic effects by

activating inflammatory pathways, offering a potential intervention

strategy. However, a more comprehensive analysis is still lacking,

and further studies are needed to determine the specific

mechanisms involved in this process.
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