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Background: Postoperative pneumonia, a prevalent form of hospital-acquired 
pneumonia, poses significant risks to patients’ prognosis and even their lives. 
This study aimed to develop and validate a predictive model for postoperative 
pneumonia in surgical patients using nine machine learning methods.

Objective: Our study aims to develop and validate a predictive model for POP 
in surgical patients using nine machine learning algorithms. By evaluating the 
performance differences among these machine learning models, this study aims 
to assist clinicians in early prediction and diagnosis of POP, providing optimal 
interventions and treatments.

Methods: Retrospective data from electronic medical records was collected for 
264 patients diagnosed with postoperative pneumonia and 264 healthy control 
surgical patients. Through correlation screening, chi-square tests, and feature 
importance ranking, 47 variables were narrowed down to 5 potential predictive 
factors based on the main cohort of 528 patients. Nine machine learning models, 
including k-nearest neighbors, support vector machine, random forest, decision 
tree, gradient boosting machine, adaptive boosting, naive bayes, general linear 
model, and linear discriminant analysis, were developed and validated to predict 
postoperative pneumonia. Model performance was evaluated using the area 
under the receiver operating curve, sensitivity, specificity, accuracy, precision, 
recall, and F1 score. A distribution plot of feature importance and feature 
interaction was obtained to interpret the machine learning models.

Results: Among 17,190 surgical patients, 264 (1.54%) experienced postoperative 
pneumonia, which resulted in adverse outcomes such as prolonged hospital 
stay, increased ICU admission rates, and mortality. We successfully established 
nine machine learning models for predicting postoperative pneumonia in 
surgical patients, with the general linear model demonstrating the best overall 
performance. The AUC of the general linear model on the testing set was 0.877, 
with an accuracy of 0.82, specificity of 0.89, sensitivity of 0.74, precision of 0.88, 
and F1 score of 0.80. Our study revealed that the duration of bed rest, unplanned 
re-operation, end-tidal CO2, postoperative albumin, and chest X-ray film were 
significant predictors of postoperative pneumonia.
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Conclusion: Our study firstly demonstrated that the general linear model based 
on 5 common variables might predict postoperative pneumonia in the general 
surgical population.
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Introduction

Currently, postoperative pneumonia (POP) is the most prevalent 
hospital-acquired pneumonia worldwide, accounting for 
approximately 50% of all nosocomial pneumonias (1). It is the third 
most common complication in all surgical procedures, with an 
incidence ranging from 1.5 to 15.8% (1–3). Postoperative pneumonia 
can cause significant harm to surgical patients’ prognosis, even 
jeopardizing their lives. Reported mortality rates associated with POP 
in surgical patients range from 9 to 50%, with significant variations 
depending on the type of surgery, and even after risk adjustment, the 
5-year survival rate for patients decreases by 66% (1, 2, 4). 
Furthermore, POP leads to a significant prolongation of hospital stay, 
a notable increase in postoperative ICU admission rate, readmission 
rate, reoperation rate, and mortality rate, greatly burdening patients 
and their families with additional medical expenses, which can 
increase by an average of 2 to 10 times (1–5).Early detection of POP 
is crucial for timely intervention to prevent complications. However, 
predicting POP has remained challenging (6).

With the rise of 21st-century computer technology and the advent 
of the big data era, machine learning (ML) have garnered increasing 
attention in the medical field (7). Research evidence indicates that ML 
is extensively employed in medicine to establish algorithms and 
models that effectively classify patients, thereby providing more 
accurate predictions and diagnoses for diseases, as well as identifying 
risk factors (8). Given the adverse outcomes, high mortality rates, and 
substantial healthcare resource consumption caused by postoperative 
pneumonia globally, further development and validation of predictive 
models for POP are clearly warranted.

Our study aims to develop and validate a predictive model for POP 
in surgical patients using nine machine learning algorithms, including 
K-Nearest Neighbors Classifier (KNN), Support Vector Machine-Radial 
Basis (SVM-Radial), Random Forest Classifier (RF), Decision Tree 
Classifier-RPART (RPART), Light Gradient Boosting Machine (GBM), 
Adaptive Boosting (ADA), Naive Bayes (NB), General Linear Model 
(GLM), and Linear Discriminant Analysis (LDA). By evaluating the 
performance differences among these machine learning models, this 
study aims to assist clinicians in early prediction and diagnosis of POP, 
providing optimal interventions and treatments. Additionally, it aims to 
establish a practical foundation for the application of machine learning 
algorithms in the field of anesthesiology and perioperative medicine.

Methods

Human subjects and study design

The study protocol was approved by the Ethics Committee of the 
Second Affiliated Hospital of Kunming Medical University (No. 

PJ202139). As this study design is retrospective, the ethics committee 
waived the requirement for informed consent and clinical trial 
registration. This study adhered to the applicable TRIPOD guidelines. 
The data were derived from 17,190 hospitalized patients who 
underwent surgical treatment at the Second Affiliated Hospital of 
Kunming Medical University in 2021. In the electronic patient record 
(EPR) systems of our hospital, a database platform was established by 
extracting medical records from hospital information system (HIS), 
anesthesia information management system (AIMS), nosocomial 
infections surveillance system (NISS), laboratory information system 
(LIS), picture archiving and communication system (PACS).

The inclusion criteria were used: (1) age over 18 years old; (2) 
newly developed pneumonia within 30 days after surgery. The patients 
with the following conditions were excluded from this study: (1) 
pre-existing pneumonia before operation; (2) tracheal intubation or 
tracheostomy before operation; (3) procedures outside an operating 
room; (4) outpatient procedures (hospital stay <24 h); (5) incomplete 
medical records. Postoperative pneumonia was defined on the basis 
of US Centers for Disease Control definition of pneumonia (9). Based 
on the inclusion and exclusion criteria, a total of 264 postoperative 
pneumonia diagnosed patients and 264 healthy control surgical 
patients during the same period were included to collect relevant 
information. Controls were matched by surgical specialty and 
randomly selected at 1:1 from the remaining surgical patients 
without pneumonia.

Variable selection

Based on the review of previous literature and expert 
recommendations, combined with the actual situation of our hospital, 
a total of 47 variables were collected through the database platform of 
the electronic medical record of our hospital: (1) Demographic 
characteristics: gender, height, weight, gender, and body mass index; 
(2) Patients’ past medical history: history of smoking, alcohol abuse, 
hypertension, diabetes, cancer, chronic obstructive pulmonary 
disease, heart failure, coronary heart disease, stroke, intracerebral 
hemorrhage, hepatitis, coma and infection; (3) Imaging and laboratory 
indicators (reviewed as last values before operation or first values after 
operation): chest X-ray film (mottled or vitreous shadows), pulmonary 
function test, serum albumin, hemoglobin, blood urea, nitrogen, and 
creatinine; (4) Surgery-related factors: surgical site, surgical difficulty 
classification, patient’s operative position (supine or prone), type of 
surgery (scheduled or emergency), surgery period (day or night), 
duration of surgery, unplanned re-operation, blood loss, duration of 
bed rest (duration until patients’ first off-bed activity), and 
preoperative prophylactic antimicrobial use; (5) Anesthesia-related 
factors: anesthesia method, ASA physical status, total volume of 
infusion, red blood cells transfusions, human albumin infusion, 
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duration of mechanical ventilation, mean airway pressure, end tidal 
CO2, and vasoactive drugs (long-term infusion); (6) Invasive 
procedures: deep vein catheterization, radial artery cannulation, 
gastric tube insertion, and indwelling urinary catheter; (7) Outcomes: 
ICU admission, length of hospital stay, mortality.

Statistical analysis

All collected raw data was entered into a pre-designed Excel 
spreadsheet, and statistical analysis were performed using SPSS 23.0. 
Continuous variables were expressed as mean along with standard 
deviation or median along with interquartile range. Independent 
sample t-tests were used for normally distributed data, while Mann–
Whitney U tests were used for non-normally distributed data. 
Categorical variables were expressed as numbers and percentages, and 
tested using Chi-square tests or Fisher’s exact test.

Data preprocessing

The original variables contain various data types, therefore, before 
conducting machine learning, the variables needed to be numerized 
and categorized, and the variables were analyzed to detect missing 
values and outliers. In our study, no variable had a missing percentage 
higher than 1%. For quantitative data, missing values were imputed 
using the median by group, and for qualitative data, missing values 
were imputed using the mode by group. The allocation of training and 
testing sets was randomly divided in a 3:1 ratio using the 
createDataPartition function in the Rstudio statistical software (R 
4.2.2) with the caret package. A predictive model was built based on 
the training set and externally validated using the testing set.

Feature selection

Since multicollinearity and confounding variables can affect the 
performance of the model, various methods were used to select 
variable features to prevent overfitting and enhance applicability (6). 
(1) Feature selection based on correlation: Calculate the correlation 
between features and POP, obtain the indices of feature columns with 
correlation greater than 0.1, and obtain the corresponding feature 
names. (2) Feature selection based on statistical analysis: For all 
categorical data features, calculate the chi-square test for two groups 
of samples separately, and obtain features with p < 0.05. (3) Feature 
selection based on feature importance: Use a random forest model to 
obtain feature importance, where a higher MeanDecreaseGini value 
indicates a higher importance of the feature in the model. Obtain the 
top  5 features with the highest MeanDecreaseGini. Take the 
intersection of the above three selection methods and output a Venn 
diagram to obtain the optimal predictive features.

Development of the ML model

The construction and validation of the model primarily rely on 
the “caret” package and “pROC” package in R. A total of nine machine 
learning classifiers are selected to initially train the training set data. 

The trainControl function is used to specify training parameters. To 
build more superior and stable training models, the tune_model 
function is employed for automatic parameter tuning. This study 
utilizes a 10-fold cross-validation method to evaluate the 
generalization performance of the models. This involves dividing the 
dataset into 10 equal parts, using 9 parts for model training and the 
remaining 1 part as the validation set to assess model performance 
and prevent overfitting. These models are evaluated using the receiver 
operating characteristic curve (ROC) and the area under the receiver 
operating characteristic curve (AUC) on the test set. The best-
performing predictive model is ultimately selected, and the 
distribution of feature importance is obtained. The interaction 
between these features is explored and visualized using the 
“interaction” package in R.

Performance assessment of the ML model

The Confusion Matrix is the most basic, intuitive, and 
computationally simple method for measuring the performance of 
classification models. It provides a more intuitive observation of the 
accuracy of different classifications, particularly in cases where there 
is an imbalance in the sample distribution. For binary classification 
models, the Confusion Matrix is represented by a 2×2 matrix. Our 
study adopts a 10-fold cross-validation to evaluate the generalization 
performance of the model. The probability at which the Youden Index 
is maximized is used as the threshold for classification. The AUC is the 
main indicator for evaluating the prediction performance of various 
classification models. Sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), accuracy, recall, F1 score, 
precision, prevalence, balanced accuracy, and threshold are auxiliary 
evaluation indicators used for performance comparison among 
different models.

Results

Patient characteristics

A total of 17,190 surgical patients were selected for the study, of 
which 457 patients were diagnosed with pneumonia. We excluded 129 
patient for pre-existing pneumonia before operation, 52 patients for 
procedures outside an operating room and 12 patients for tracheal 
intubation or tracheostomy before operation. 264 patients with 
postoperative pneumonia were included, along with 264 randomly 
selected healthy control surgical patients during the same period, 
resulting in a total of 528 patients finally enrolled in our study. The 
flowchart of the enrollment was shown in Figure 1. The demographic 
characteristics, laboratory test results, and clinical features of the 
enrolled patients are shown in Table 1.

Univariate analysis

A total of 47 variables were included in this study, 32 of which 
showed statistical differences in univariate analysis (p < 0.05), as 
follows: gender, age, smoking, drinking, body mass index, 
hypertension, diabetes, chronic obstructive pulmonary disease, 
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cancer, intracerebral hemorrhage, coma, chest X-ray film, pulmonary 
function test, surgical difficulty classification, duration of surgery, 
emergency surgery, night operation, unplanned re-operation, 
anesthesia method, ASA physical status, duration of ventilation, mean 
airway pressure, end-tidal CO2, intraoperative blood loss, RBC 
transfusion, total input, vasoactive agent, deep vein catheterization, 
gastric tube insertion, postoperative hemoglobin, postoperative 
albumin, duration of bed rest. These 32 variables were grouped, 
assigned and encoded as shown in Supplementary Table 1. Compared 
with the outcome of healthy control group, patients with POP had 
significantly prolonged hospital stay, increased postoperative ICU 
admission rate, and increased postoperative mortality rate (p < 0.05), 
as shown in Table 1.

Feature selection

For ML models such as support vector machines, unlike decision 
trees or random forests, they do not have the functionality of variable 
selection. Introducing too many potentially meaningless variables can 
greatly increase the complexity of the model, hinder algorithm 
convergence, and may even have a negative impact on the 
performance of ML models (9, 10). In our study, through correlation 
screening, chi-square test and feature importance ranking, 47 

variables were reduced to 5 potential predictive factors based on the 
528 patients in the main cohort. These five features were selected for 
developing ML models, including chest X-ray film, postoperative 
albumin, end-tidal CO2, duration of bed rest, and unplanned 
re-operation.

Development and performance assessment 
of the ML model

The ROC curve can measure and evaluate the performance of 
classification models, which are shown in Figure  2. The AUC, 
representing the area under the ROC curve, is the primary metric 
used to evaluate classification performance. The AUC typically ranges 
from 0.5 to 1, with higher values indicating better model performance. 
The results of the nine ML models on the training set demonstrate 
similar AUC values ranging from 0.8 to 0.9, indicating good predictive 
capabilities. GLM and LDA exhibit the highest AUC value of 0.877, 
followed by NB with 0.876, GBM with 0.864, ADA with 0.866, RF with 
0.867, KNN with 0.857, SVM-Radial with 0.854, and RPART with 
0.829. Additionally, these nine ML algorithms demonstrate favorable 
learning curves on the training set, effectively preventing overfitting. 
GLM and LDA exhibit the best predictive performance, with Youden 
indices of 0.64.

FIGURE 1

Flow chart of patient enrollment in this study.
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TABLE 1 Preoperative characteristics of the study patients.

Variables Patients with pneumonia 
(n = 264)

Patients without 
pneumonia (n = 264)

p_value

Gender

  Male 155(58.71%) 132(50.0%) 0.04

  Female 109(41.29%) 132(50.0%)

Weight (kg) 61.12 ± 10.88 60.35 ± 10.25 0.41

Age (yr) 54.70 ± 14.85 48.73 ± 14.86 <0.001

Body Mass Index

  ≥24 kg/m2 103(46.8%) 92(35.4%) 0.01

  <24 kg/m2 117(53.2%) 168(64.6%)

Hypertension 81(30.7%) 52(19.7%) 0.004

Diabetes mellitus 28(10.6%) 14(5.3%) 0.02

Malignancy 86(32.6%) 52(19.7%) 0.001

Chronic obstructive pulmonary disease 33(12.5%) 6(2.3%) <0.001

Coronary heart disease 7(2.7%) 6(2.3%) 0.78

Stroke 15(5.7%) 8(3.0%) 0.14

Intracerebral hemorrhage 31(11.7%) 14(5.3%) 0.008

Heart failure 3(1.1%) 0(0%) 0.08

Hypohepatia 7(2.7%) 10(3.8%) 0.46

Renal dysfunction 6(2.3%) 2(0.8%) 0.15

Hepatitis 6(2.3%) 12(4.5%) 0.15

Infection of other sites 23(8.7%) 12(4.5%) 0.05

Chest X-ray film

  Abnormal 136(51.5%) 85(32.2%) <0.001

  Normal 128(48.5%) 179(67.8%)

Pulmonary function test

  Abnormal 27(10.2%) 8(3.0%) <0.001

  Normal 237(89.8%) 256(97.0%)

  Coma (GCS<8) 34(12.9%) 5(1.9%) <0.001

History of smoking 112(42.4%) 83(31.4%) 0.009

Alcohol abuse 91(34.5%) 66(25.0%) 0.02

Emergency surgery 58(22.1%) 19(7.2%) <0.001

Preoperative hemoglobin

  <100 g/L 19(7.2%) 15(5.7%) 0.48

  ≥100 g/L 245(92.8%) 249(94.3%)

Postoperative hemoglobin

  <100 g/L 87(33.0%) 44(16.7%) <0.001

  ≥100 g/L 177(67.0%) 220(83.3%)

Preoperative albumin

  <35 g/L 47(17.8%) 40(15.2%) 0.41

  ≥35 g/L 217(82.2%) 224(84.8%)

Postoperative albumin

  <35 g/L 198(75.0%) 117(44.3%) <0.001

  ≥35 g/L 66(25.0%) 147(55.7%)

(Continued)
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TABLE 1 (Continued)

Variables Patients with pneumonia 
(n = 264)

Patients without 
pneumonia (n = 264)

p_value

ASA physical status

  ≥Grade III 143(54.2%) 106(40.2%) 0.001

  <Grade III 121(45.8%) 158(59.8%)

Anesthesia method

  General anesthesia 258(97.7) 252(95.5%) 0.15

  Others 6(2.3) 12(4.5%)

Duration of ventilation

  ≥24 h 81(30.7%) 16(6.1%) <0.001

  <24 h 183(69.3%) 248(93.9%)

Mean airway pressure

  ≥20cmH2O 120(45.5%) 62(23.5%) <0.001

  <20cmH2O 144(54.5%) 202(76.5%)

ETCO2

  ≥40 mmHg 91(34.5) 29(11.0%) <0.001

  <40 mmHg 173(65.5%) 235(89.0%)

Radial artery cannulation 239(90.5%) 233(88.3%) 0.40

Deep vein catheterization 196(74.2%) 148(56.1%) <0.001

Total volume of infusion

  ≥4,000 mL 104(39.4%) 56(21.2%) <0.001

  <4,000 mL 160(60.6%) 208(78.8%)

Vasoactive drugs 118(44.7%) 55(20.8%) <0.001

Red blood cells transfusions 48(18.2%) 19(7.2%) <0.001

Human albumin infusion 16(6.1%) 21(8.0%) 0.39

Duration of surgery (h) 4.67 ± 3.20 3.40 ± 2.18 <0.001

Intraoperative blood loss (ml) 586.05 ± 1428.03 243.2 ± 256.55 <0.001

Surgical difficulty classification criteria

  ≥Grade 4 182(68.9%) 151(57.2%) 0.005

  <Grade 3 82(31.1%) 113(42.8%)

Surgical site

  Thorax or abdomen 140(53.0%) 121(45.8%) 0.10

  Other site 124(47.0%) 143(54.2%)

Operative position

  Prone 17(6.4%) 22(8.3%) 0.41

  Supine or lateral 247(93.6%) 242(91.7%)

Unplanned re-operation 92(34.8%) 7(2.7%) <0.001

Night operation 66(25.0%) 12(4.5%) <0.001

Prophylactic antimicrobial use 254 (96.2%) 257 (97.3%) 0.46

Indwelling urinary catheter 209(79.2%) 193(73.1%) 0.10

Gastric tube insertion 84(31.8%) 52(19.7%) 0.001

Duration of bed rest

  ≥3 days 177(67.0%) 86(32.6%) <0.001

  <3 days 87(33.0%) 178(67.4%)

Hospital stay (days) 24.32 ± 14.64 16.16 ± 8.36 <0.001

ICU admission 123(46.6%) 49(18.6%) <0.001

Mortality 8(3.0%) 0(0%) 0.004
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The output of the classification models includes a probability 
value ranging from 0 to 1, representing the likelihood of a 
corresponding sample being predicted as a certain category. A 
threshold is used to classify the samples, where values greater than 
the threshold are considered positive and values less than the 
threshold are considered negative. The optimal thresholds for each 
ML model are shown in Figure 3. In addition, the Confusion Matrix 
for the nine ML models, a basic and intuitive visualization tool used 
in machine learning to showcase model performance, is presented 
in Figure 4.

Furthermore, we evaluate the models using multiple auxiliary 
metrics. Supplementary Table 2 reveals the sensitivity, specificity, 
accuracy, PPV, NPV, recall, F1 score, precision, prevalence, 
balanced accuracy, and threshold for all ML models on the 
training and testing sets. In the training set, GBM achieves the 
highest accuracy (0.80), NB achieves the highest specificity (0.99), 
SVM-Radial achieves the highest sensitivity (0.85) and the highest 
F1 score (0.80). In the testing set, RPART achieves the highest 
accuracy (0.83), the highest specificity (0.91) and the highest F1 
score (0.82), SVM-Radial achieves the highest sensitivity (0.85). 
Heat maps, a common method for visualizing model performance 

in machine learning, are generated based on the predictive 
performance of each model on the training and testing sets, as 
shown in Figure 5.

In addition, the calibration curves and decision curve analysis 
(DCA) of the validation set for all models are shown in Figures 6, 7. 
The GLM, LDA and RF models show a modest degree of agreement 
and fitting between the predicted values and actual values, while other 
models exhibit poorer agreement. The decision curve analysis of the 
GLM model suggests that the model yields a positive net benefit in 
predicting postoperative pneumonia when the probability threshold 
range is between 0.02 and 0.82.

In conclusion, the results from the training and testing sets 
indicate that the GLM model, based on five significant features, 
exhibits the best overall performance. The AUC value for GLM model 
is 0.877, with a Youden index of 0.64. The GLM model achieves an 
accuracy of 0.82, an F1 score of 0.80, a specificity of 0.89, and a 
sensitivity of 0.74. The calibration plot and decision curve analysis 
shows that the predicted probability of GLM model is in relatively 
better agreement with the actual probability, and there is a good net 
benefit in predicting postoperative pneumonia when the threshold 
probability range is 0.02 ~ 0.82.

FIGURE 2

ROC curve and AUC value of machine learning models.
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FIGURE 3

Threshold for all machine learning models.

FIGURE 4

Confusion matrix of training set and testing set.

Feature importance

To ascertain the impact of the five features and their respective 
attributes included in the predictive model, we obtained a distribution 
plot of feature importance. This plot illustrates the importance of each 
feature in correctly predicting positive outcomes (postoperative 

pneumonia) and negative outcomes (postoperative pneumonia-free), 
as shown in Figure  8. The features with the highest weights, in 
descending order, are duration of bed rest, unplanned re-operation, 
ETCO2, postoperative albumin and chest X-ray film. During the 
feature selection stage, we also identified other significant features, 
namely vasoactive agent, age, duration of ventilation, ASA physical 
status and postoperative hemoglobin. However, due to concerns about 
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FIGURE 5

Performance metrics for classification models.
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FIGURE 6

Calibration plot of each model.

introducing too many features and potentially destabilizing the model 
parameters, only the top five features were included.

In traditional statistical models such as logistic regression, the 
presence of strong correlations or multicollinearity between 
independent variables can lead to unstable model parameters, 
decreased interpretability, reduced predictive performance, and even 
conclusions that contradict fact. Through interaction analysis, we have 
shown that there is no strong correlation between these five features, 
as shown in Figure 9. Therefore, these five features can be used to 
develop the ML models.

Discussion

In this study, we successfully established nine machine learning 
models for predicting postoperative pneumonia in surgical patients. 

The GLM model demonstrated the best performance, with an AUC 
value of 0.877. The Youden index for this model was 0.63, with an 
accuracy of 0.82, specificity of 0.89, sensitivity of 0.74, precision of 
0.88, and F1 score of 0.80. It may exhibit even greater predictive and 
diagnostic advantages in future clinical practice. The calibration plot 
and decision curve analysis shows that the predicted probability of 
GLM model is in relatively better agreement with the actual 
probability, and there is a good net benefit in predicting postoperative 
pneumonia when the threshold probability range is 0.02 ~ 0.82. To 
the best of our knowledge, this is the first study utilizing machine 
learning to predict postoperative pneumonia in the general 
surgical population.

Currently, POP is still the most common hospital-acquired 
pneumonia in the world. Our study reports the incidence of 
postoperative pneumonia is 1.54%, which is closely associated with 
adverse postoperative outcomes, consistent with previous research 
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findings (2, 3). Thus far, predicting postoperative pneumonia has 
remained a challenging task, necessitating reliable and accurate 
predictive models for surgical patients. Considering the global 
prevalence of antibiotic-resistant bacteria due to antibiotic misuse (8), 
high specificity is particularly crucial in clinical practice. Therefore, 
the ML predictive models for postoperative pneumonia can identify 
high-risk patients promptly, enabling targeted antibiotic prophylaxis 
for those at high risk of pneumonia during the perioperative period 
(10). Simultaneously, considering the adverse outcomes and high 
mortality rates caused by postoperative pneumonia, using ML models 
to identify high-risk patients and actively formulating appropriate 
preventive strategies is evidently worthwhile. Therefore, the ML 
models established in this study can assist clinicians in optimal 
interventions and treatment, ultimately improving the prognosis of 
affected patients.

At present, a large number of studies on the risk factors of 
postoperative pneumonia have been reported. However, these studies 
have shown significant discrepancies in their findings, limiting the 
generalizability of their conclusions. Given the substantial variations 
in risk factors reported in different literature, we believe this further 
highlights the advantages of ML models in capturing previously 
unknown correlations within big data (6). Despite the unclear 
underlying mechanisms, the high clinical relevance of these factors 
provides a solid foundation for subsequent machine learning 
processes, enhancing the practicality and clinical value of the 
conclusions (11, 12). Throughout the perioperative management 
process, all features involved in the GLM model can be promptly 
collected, enabling surgeons and anesthesiologists to intervene early 
during the perioperative period. Additionally, we  discovered that 
factors such as duration of bed rest, unplanned re-operation, ETCO2, 

FIGURE 7

Decision curve analysis.
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FIGURE 8

Feature importance.

FIGURE 9

Feature interaction.

postoperative albumin, chest X-ray film, vasoactive agent, age, 
duration of ventilation, ASA physical status, and postoperative 
hemoglobin were closely associated with postoperative pneumonia. 
These findings hold significant clinical implications for perioperative 
management and contribute to improving clinical outcomes.

In this study, ML models predict postoperative pneumonia in 
surgical patients through multiple features, avoiding the 

subjectivity of relying solely on single criteria. Instead, a more 
comprehensive and objective evaluation of the likelihood of 
postoperative pneumonia in surgical patients is achieved. For 
feature selection, random forest can be employed to assess the 
importance of each feature. The principle behind random forest 
is based on the concept of ensemble learning (13). By examining 
the usage of features in different decision trees, the importance 
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score of each feature can be calculated. A higher score indicates a 
greater impact of the feature on the prediction outcome. The 
advantage of feature selection based on random forest lies in its 
ability to handle high-dimensional and sparse features, thereby 
circumventing the curse of dimensionality associated with 
traditional feature selection methods (14). Based on random 
forest, this study identified five features widely used and routinely 
recorded in clinical practice: chest X-ray film, postoperative 
albumin, ETCO2, duration of bed rest, and unplanned 
re-operation. These five features used in constructing the ML 
model are routinely recorded and widely employed, without 
requiring any special instruments or devices for acquisition. This 
indicates the feasibility of our model and its potential for 
widespread utilization in hospitals. In fact, we aim to utilize this 
model to calculate the predicted probability of postoperative 
pneumonia throughout the whole perioperative period. If the 
prediction result indicates a positive occurrence of postoperative 
pneumonia, doctors can combine their clinical experience and 
focus on high-risk patients, promptly providing antibiotic 
prophylaxis and treatment. This serves as an early warning signal 
for pneumonia after surgery, prompting surgeons to closely 
monitor these patients. For instance, it is recommended to 
conduct temperature checks and blood cultures, make early 
diagnoses, and select appropriate treatment strategies.

Certainly, the selection of an appropriate ML algorithm is a crucial 
step, as it depends on the utilized data and desired outcomes (11). It 
is also important to acknowledge that a single ML algorithm may not 
capture the interactions among multiple predictors. Therefore, 
predictive studies may require the comparison of multiple ML 
algorithms to identify the optimal model (15). In this study, the GLM 
model demonstrated the best overall performance in predicting 
postoperative pneumonia, with a maximum AUC value of 0.877, an 
accuracy of 0.82, an F1 score of 0.80, and a relatively balanced 
specificity and sensitivity.

In our study, due to the limitations of data set, we  finally 
selected only five features out of the 47 available features in the 
study, because too many features will affect the stability of the 
model, which could lead to loss of some important clinical 
information when using the models for prediction. Of course, 
since the sample size to develop the prediction model is relatively 
small, and the performance was evaluated using interval test set, 
whether the improvement in AUC is clinically significant should 
be further examined.

Conclusion

We have successfully developed and validated nine machine 
learning models for predicting postoperative pneumonia. Among 
them, the GLM model demonstrated the best overall performance, 
making it a promising tool for predicting postoperative pneumonia 
in clinical applications. To the best of our knowledge, this is the first 
study utilizing machine learning to predict postoperative 
pneumonia in the general surgical population, offering a novel 
approach for perioperative management. In the future, a multi-
center database containing a large number of medical data is 

expected to be  successfully established and machine learning 
prediction models for a variety of postoperative complications, 
including postoperative pneumonia, is looking forward to 
be constructed.
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Glossary

ML machine learning

SM statistical models

POP postoperative pneumonia

ICU intensive care unit

ROC the receiver operating characteristic curve

AUC the area under the receiver operating characteristic curve

KNN K-Nearest Neighbors Classifier

SVM-Radial support vector machine - radial basis

RF random forest classifier

RPART decision tree classifier - RPART

GBM light gradient boosting machine

ADA adaptive boosting

NB naive bayes

GLM general linear model

LDA linear discriminant analysis

EPR electronic patient record

HIS hospital information system

AIMS anesthesia information management system

NISS nosocomial Infections surveillance system

LIS laboratory information system

PACS picture archiving and communication system

PPV positive predictive value

NPV negative predictive value

DCA decision curve analysis

EHR electronic health records

EMR electronic medical records
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