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Fetal health holds paramount importance in prenatal care and obstetrics, as

it directly impacts the wellbeing of mother and fetus. Monitoring fetal health

through pregnancy is crucial for identifying and addressing potential risks and

complications that may arise. Early detection of abnormalities and deviations

in fetal health can facilitate timely interventions to mitigate risks and improve

outcomes for the mother and fetus. Monitoring fetal health also provides

valuable insights into the e�ectiveness of prenatal interventions and treatments.

For fetal health classification, this research work makes use of cardiotocography

(CTG) data containing 21 features including fetal growth, development, and

physiological parameters such as heart rate and movement patterns with

three target classes “normal," “suspect," and “pathological." The proposed

methodology makes use of data upsampled using the synthetic minority

oversampling technique (SMOTE) to handle the class imbalance problem that

is very crucial in medical diagnosing with a light gradient boosting machine.

The results show that the proposed model gives 0.9989 accuracy, 0.9988 area

under the curve, 0.9832 recall, 0.9834 precision, 0.9832 F1 score, 0.9748 Kappa

score, and 0.9749 Matthews correlation coe�cient value on the test dataset. The

performance of the proposed model is compared with other machine learning

models to show the dominance of the proposed model. The proposed model’s

significance is further evaluated using 10-fold cross-validation and comparing

the proposed model with other state-of-the-art models.
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1 Introduction

The perinatal mortality rate refers t[o the total number

of stillbirths and deaths occurring within the first seven days

of life per 1,000 live births. The United Nations International

Children’s Emergency Fund (UNICEF) data from 2018 indicates

that in third-world countries, the perinatal mortality rate is

19, while in developed countries this rate is between 3 and

7 for every 1,000 births, respectively. Sub-Saharan Africa and

South Asia are amongst the regions with the highest perinatal

mortality reaching 28 and 26 respectively, as per UNICEF (1).

At the start of the 20th century, perinatal mortality rates were

alarmingly high in the first-world countries of that era, but

significant reductions were achieved through improved antenatal

care, comprehensive C-section indicators, and perinatal screening

technologies like amniocentesis, fetal echocardiography (ECG),

amnioscopy, cardiotocograph (CTG), and ultrasound (2). Preterm

births, maternal hypertension, birth asphyxia, and septicemia are

the main contributors to perinatal deaths and complications related

to childbirths (3). Asphyxia is caused by an extended period of

oxygen deprivation brought about by interrupted placental blood

flow resulting from umbilical cord prolapse, placental abruption,

or maternal pre-eclampsia. Asphyxia signs are oversighted lead by

deliverymismanagement. Irretrievable organ damage or even death

can be prevented by prompt detection of asphyxia signs by fetal

heart rate monitoring during the antra and antepartum periods.

Fetal distress presents as an irregularity in fetal heart rate

(FHR), either low or high, measured in beats per minute (BPM).

Fetal status can primarily be detected through CTG, commonly

utilized in clinical examinations (4). Uterine contractions (UC)

and FHR are the vital physiological parameters monitored during

CTG prenatal checks. Distress can manifest as abnormal FHR,

aiding in the early identification of pathological conditions. CTG

data enables the classification of fetal health relative to normal

parameters. This diagnostic method, conducted during the third

trimester of labor, involves continuous monitoring of UC and

FHR via pressure transducers and ultrasound probes placed on

the maternal abdomen. Real-time readings allow for immediate

observation. Clinicians interpret CTG results based on predefined

criteria, classifying them as Suspect, Normal, or Pathologic. In first-

world countries, CTG stands as a prevalent method for evaluating

fetal wellbeing (5). However, some experts oppose excessive

CTG utilization in low-risk cases. CTG readings, morbidity, and

perinatal mortality are correlated. Neonatal ICUs and low APGAR

scores are related to pathological CTG results (6). Fetal distress can

also be observed through CTG, and its outcomes vary depending

on factors like causative factors, severity, and timeliness of medical

interventions. Temporary fetal distress is addressed by changing the

position of the mother, injecting IV fluids, administering oxygen

supply, or undergoing cesarean sections if necessary, typically

toward the end of the third trimester. These interventions aim

to enhance the baby’s condition and achieve favorable outcomes.

However, prolonged fetal distress may result in enduring negative

consequences such as intellectual deficiencies, motor impairments,

learning disabilities, and disorders like cerebral palsy, albeit rarely

(7). Prolonged distress, typically due to oxygen deprivation, may

even lead to birth asphyxia, contributing to roughly around 0.9

million neonatal casualties per annum (8).

Fetal death rates are notably higher in low-income countries

compared to high-income nations, reflecting disparities in

healthcare accessibility and resources between these regions.

Despite a global decline in neonatal mortality rates from 36.7 per

1,000 live births in 1990 to 17 in 2020 over the past three decades,

the rates remain disproportionately elevated in low-income areas

(9). Even in high-income regions, complications of the placenta,

often associated with fetal distress, stand as the leading cause

of fetal death. Therefore, accurate assessment of fetal health is

critical. CTG is an effective source to evaluate and find fetal

distress at an early stage. CTG tests offer resource-efficient and

timely evaluations, helping ease patient anxiety, particularly in

high-volume settings. Certain CTG finding arrangements, such

as loss of FHR variability, fixed FHR baselines, and absence of

accelerations, signal a non-encouraging fetal status (10, 11). While

CTG interpretation traditionally relies on expert visual analysis,

automatedmechanisms are being explored to augment this process.

Artificial intelligence (AI) has emerged as a valuable tool for

assessing the status of the fetus (12). Within healthcare, machine

learning is revolutionizing numerous facets, from tailoring

treatments to enhancing diagnostic capabilities (13). Progress in

health informatics and machine learning algorithms, a subset

of AI, facilitates modeling processes, leading to more informed

and optimized health decisions (14, 15). Ongoing advancements

in machine learning continuously explore practical applications

within real-world clinical settings. These algorithms find utility

in decision-support systems across various biomedical domains,

including fetal classification, aiming to identify compromised

fetal statuses and prevent hypoxic injuries and pregnancy-

related complications (16). This study proposes a fetal health

arrangement framework utilizing a CTG dataset and machine

learning. The primary contributions of this research are outlined

as follows:

• The study introduces a comprehensive framework for fetal

health classification using a light gradient boosting machine

(LGBM) and cardiotocogram data.

• The proposed approach uses synthetic minority oversampling

technique (SMOTE) as preprocessing for data resampling with

the LGBM model for obtaining high accuracy, the area under

the curve (AUC), recall, precision, F1, Kappa, and Matthew’s

correlation coefficient (MCC). In addition, computational

complexity is greatly improved.

• The proposed framework is compared with several other

machine learning models catboost classifier (CB), extra trees

classifier (ET), extreme gradient boosting (CGB), random

forest classifier (RF), gradient boosting classifier (XGBoost),

decision tree classifier (DT), K neighbors classifier (KNN),

AdaBoost classifier (Ada), logistic regression (LR), linear

kernel support vector machine (SVM), and Naive Bayes (NB)

to show the efficacy of the proposed model. Furthermore, k-

fold cross-validation is applied to validate its performance, in

addition to, comparing its performance with state-of-the-art

models.
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The paper is structured as follows: Section 2 presents

a comprehensive literature review concerning fetal health

classification. Section 3 outlines the proposed framework,

including details of the dataset, preprocessing, and the architecture

of the proposed classification model, including hyperparameters.

Section 4 covers the results obtained and discussions. The

discussion is related to the findings and implications of the work.

Finally, Section 5 concludes the paper.

2 Related works

Multiple research works investigated the application of

machine learning in detecting fetal health status. This section

delves into the theories and relevant concepts present in current

literature, along with their findings, to pinpoint gaps. However,

few studies have specifically addressed CTG data-based fetal health

classification. Yin and Bingi (17) introduced a machine learning-

based system employing XGB, LGBM, and SVM models. The

study demonstrated SVM achieving an accuracy of 99.59% for

classification. They also compared their system’s results with local

interpretable model agnostic explanations (LIME) and Shapley

additive explanations (SHAP). Abiyev et al. (18) proposed a type 2

Fuzzy neural network (T2-FNN) for discovering the health status of

the fetus. They conducted performance comparisons using various

machine learning and deep learning models. Implementing T2-

FNNwith different rule sets, such as 21, 42, and 63 rules, they found

that T2-FNN with 63 rules achieved an accuracy of 96.66%.

For early prognosis and classification of fetal health, Kuzu

and Santur (19) introduced an ensemble learning model. They

utilized ensemble learning techniques including LR, RF, GB,

and XGB. The study results indicate that the XGB ensemble

learning model surpassed others, achieving CTG dataset-based

99% accuracy. Hussain et al. (20) proposed an improved deep

neural algorithm for classifying suspicious CTG recordings and

untapped pathological with preferred time complexity. Their

system integrates AlexNet architecture with SVM to reduce time

complexity at fully connected layers. When a deep transfer learning

process is employed, pre-learned topographies are relocated to

their prototype. A strategy was implemented by them to further

shrink time complexity where other layers were kept in the

frozen state while partially training convolutional base layers. The

proposed algorithm demonstrated superior performance compared

to leading architectures, with instantaneous sensitivities, accuracy,

and specificity reaching 96.67%, 99.72%, and 99.6%, respectively.

Piri and Mohapatra (21) proposed a rule-based approach

for cardiotocographic fetal evaluation. The work involved

utilizing an associative classifier in conjunction with traditional

machine learning models. The study highlights that 83% accuracy

was achieved by associative classifier prototype before feature

selection and 84% after feature selection for classifying fetal

health status. Duhayyim et al. (22) introduced an ensemble

learning model for automatic fetal health classification. The

authors conducted experiments in two scenarios. Initially, they

employed five classifiers CatBoost, RF, LGBM, XGBoost, and

Ada without oversampling, to categorize CTG readings into

pathological, suspected, and healthy. Subsequently, they utilized

oversampling deployed ensemble classifiers. They employed

random oversampling to balance CTG records for training the

ensemble models. Results indicate that XGBoost, LGBM, and

CatBoost classifiers achieved 99% accuracy.

Islam et al. (23) conducted research on classifying fetal

states using machine learning algorithms. The study employed

algorithms such as Ada, KNN, RF, SVM, GBC, DT, and LR. To

ensure an unbiased dataset, scaling techniques were employed.

Results indicate that GBC outperformed other models, achieving

an accuracy of 95%. The study (24) focused on the application of

classification techniques in gynecology and obstetrics for CTG data

classification to predict normal, suspect, and pathologic cases. Six

well-known classification algorithms were evaluated for fetal state

classification in CTG datasets. The study revealed that NB achieved

a classification accuracy of 83.06%.

Salini et al. (25) conducted a machine learning-based study,

addressing the prominence of radical fetal health classification.

They deployed various models such as RF, LR, DT, SVC, VC, and

KNN on the dataset. The effectiveness of the model was evaluated

in classifying fetal health by strenuous training and testing of these

models. An outstanding accuracy of 93% was exhibited by the RF

model as a promising outcome of this study. Sudharson et al. (26)

utilized multiple classification algorithms on the CTG dataset and

compared the results of individual algorithms. The comparison

involved four different classification algorithms KNN, NB, DT, and

SVM. Based on the overall comparison using these classification

reports, DT exhibited the highest score among the four algorithms

and achieved an accuracy of 90.8%.

Various machine learning techniques, classifiers, and ensemble

learning methods have shown promising results in classifying

fetal status accurately using the CTG dataset, as evidenced by

early research. However, there remains a gap in evaluating

these approaches comprehensively, as previous studies have

primarily focused on recall, accuracy, F1 score, and precision-

like metrics. Additional evaluation parameters such as MCC,

Kappa, and training time are necessary to provide a comprehensive

understanding of the performance of these methods. A summary of

the literature discussed above is presented in Table 1.

3 Materials and methods

Fetal wellbeing serves as a crucial indicator for confirming

fetal health. Inadequate fetal movement stands as a significant

contributor to fetal mortality, underscoring the importance of early

diagnosis to promote fetal health. This segment of the research

encompasses the following components: dataset description, data

visualization, data preprocessing techniques, study deployed ML

models, evaluation parameters, and the proposed system for fetal

health assessment.

3.1 Dataset

We used the Fetal Health classification dataset extracted

from the Kaggle repository. This dataset is based on CTG

readings of expecting mothers with gestational ages between

29 and 42 weeks comprising 2126 records (27). The author

programmed an automated analysis of CTG readings. Signals
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TABLE 1 Related work summary.

References Classifier Performance Limitations

Yin and Bingi (17) XGB, SVM 99.59% SVM No cross-validation

Abiyev et al. (18) LR, GNB, SVC, RBF SVC, ANN,

CART, RF, RNN, CatBoost,

T2-FNN (21 rules,42 rules, 63

rules)

96.66% T2-FNN (63 rules) No cross-validation, Utilization of

imbalanced dataset, and no

Explainable AI

Kuzu and Santur (19) LR, RF, GB, XGB 99% XGB No cross-validation, Utilization of

imbalanced dataset, and no

Explainable AI

Muhammad Hussain et al.

(20)

RNN, RF, GoogleNet, DesnseNet,

NiftyNet, AlexNet, AlexNet-SVM

99.72% AlexNet-SVM, No cross-validation, Utilization of

imbalanced dataset, and no

Explainable AI

Piri and Mohapatra (21) SVM, CBA, DT, KNN, LR, RF,

XGBoost, GNB

94% XGBoost and RF No cross-validation, Utilization of

imbalanced dataset, just accuracy is

evaluated, and no Explainable AI

Al Duhayyim et al. (22) RF, XGB, ADA, CatBoost, LGBM,

VC

99% XGB, CatBoost, LGBM,

VC

No cross-validation, Utilization of

less number of features, and no

Explainable AI

Islam et al. (23) ADA, KNN, RF, SVM, GBC, DT,

and LR

95% GBC No cross-validation, Utilization of

imbalanced dataset, and no

Explainable AI

Afridi et al. (24) J48, IBK, LR, NB, SMO and RF 83.06% NB No cross-validation, and no

Explainable AI

Salini et al. (25) RF, LR, DT, SVC, VC, kNN 93% RF No cross-validation, Utilization of

imbalanced dataset, and no

Explainable AI

Sudharson et al. (26) KNN, Naive Bayes, DT, SVM 90.8% DT No cross-validation, Utilization of

imbalanced dataset, and no

Explainable AI

from Hewlett-Packard fetal monitors and Sonicaid were

collected using the SisPorto 2.0 system, comprising 6,000

tested pregnancy records.1 Baseline acceleration, fetal heart,

contraction, deceleration, and variability readings were established

through the input of monitor readings from three experts.

Therefore, the obtained dataset forms part of a study to validate

the SisPorto 2.0 system. It consists of the individual record-

corresponding label with 21 decimal value features, classifying

the record into “Healthy," “Suspected," or “Pathological" fetal

health status.

3.2 Data visualization

The CTG dataset contains a total of 2,126 records

concerning fetal health conditions. Further analysis indicates

that the dataset has a class imbalance problem and the

distribution of the class samples is not balanced, as illustrated

in Figure 1. The dataset has three classes: “pathological,"

“normal," and “suspect," and has 176, 1,655, and 295

samples, respectively.

1 https://onlinelibrary.wiley.com/doi/10.1002/1520-6661(200009/10)9:5

%3C311::AID-MFM12%3E3.0.CO;2-9

FIGURE 1

Class-wise dataset representation.

Figure 2 clearly indicates the necessity for balancing the

dataset due to its inherent imbalance. To address this issue,

various techniques were employed to balance the dataset, resulting

in 295 suspicious attributes, 1,655 normal attributes, and 176

pathological attributes.
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FIGURE 2

Class-wise dataset distribution before applying SMOTE data

upsampling.

3.3 Data resampling

The CTGdataset encompasses readings from labor and random

gestation cases. Critical undeniable findings from CTG readings

were established despite the low probability of abnormality in these

readings. However, the utilized Fetal Health Assessment dataset

has class imbalance with a higher ratio of healthy fetuses 1,655

as compared to 176 pathological and 295 suspected occurrences

(28). Results can be misleading based on such imbalanced data

when used for training a prototype because there is a high

probability of the model’s learning from a very high ratio of

healthy instances in contrast to suspected or pathological cases.

Therefore, it’s imperative to balance the dataset before constructing

a prediction model. Various techniques have been proposed by

researchers to address imbalanced datasets, including random

under-sampling, random over-sampling, SMOTE, and imbalanced

resampling, among others.

In this study, we opted for the SMOTE technique to balance our

dataset. SMOTE augments the number of data instances by creating

synthetic data points for theminority class using Euclidean distance

based on their nearest neighbors (29). These fresh instances

being based on the original features look like the original data.

While SMOTE may introduce additional noise, it remains a

suitable choice for our dataset. Over-sampling with replacement,

in particular, serves as a straightforward technique for balancing

the dataset, and it aligns well with our dataset characteristics since

the CTG records exhibit relatively low variation within a class.

Additionally, data integrity is preserved by over-sampling, and the

large dataset is facilitated in the process, thereby enhancing model

simplification.

Before applying the SMOTE oversample technique, we made

a dataset division of 80%–20% which means 20% of the entire

dataset is used for testing and 80% for training. From the 20%

testing dataset (426 records), healthy fetuses records are 333,

suspected 64, and pathological 29. After this training division of

80% (1,700 records), healthy fetus records are 1,322 as compared

to 147 pathological and 231 suspected. Then we applied SMOTE

data oversampling on this training dataset division and upsampled

all classes to 1,322 samples. In this way, our transformed dataset

FIGURE 3

Class-wise dataset distribution after applying SMOTE data

upsampling.

shape becomes (1,322 × 3 = 3,966) samples with 22 features in

total. Then on this transformed dataset we trained our models

and tested on 426 (20% of testing data) that we split before

applying SMOTE oversampling. Figure 3 shows data balancing

after applying SMOTE.

3.4 Machine learning models for fetal
health classification

In this section, we provide a brief description of the

classification methods utilized in the study, along with

details on the calibration process of the classifier. The

following machine learning techniques were employed

in the current study, chosen for their widespread

use in fetal health classification and other tasks. All

models were implemented using scikit-learn. The section

includes a concise overview of each model and its

corresponding hyperparameters.

3.4.1 Light gradient boosting machine
LightGBM is a swift, efficient, and distributed gradient-

boosting structure DT-embedded algorithm. LightGBM

is extensively employed in boosting algorithms across

multiple ML tasks like classification, ranking, and regression

(30). Boosting methods yield a powerful learning model

by combining multiple weak ML algorithms. Through

successive iterations, the importance of misclassified

data points is enhanced while that of correctly classified

diminished by such boosting algorithms. A greater intention

is ensured by this iterative process to the misclassified

classifier in the subsequent training sessions. Eventually, all

individual ML models are linearly united, with adjustments

made to the combined model weights based on the

classifiers’ error rates. LightGBM core concept is symbolized
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in Equation 1.

f (x) =

Q∑

q=1

αqT(x, θq) (1)

where f (x) represents the training sample x corresponding target

value, Q denotes base learners’ numbers, αq signifies the weighted

coefficient of the q-th base learner, x denotes the drilling example,

θq represents the learner’s classification parameters, T(x, θq) stands

for the q-th base learner involved in the preparing process.

3.4.2 Random forest classifier
Being an ensemble learning procedure, RF is very proficient

at both regression and classification tasks (31). It harnesses

the collective strength of numerous decision trees alongside a

technique called Bootstrap and Aggregation, or bagging. This

approach involves randomly selecting rows and features from the

dataset to generate sample datasets for each tree a process known

as Bootstrap. Subsequently, the Aggregation step consolidates the

predictions of all individual trees to yield the ultimate results.

While RF constructs multiple decision trees and averages their

predictions, methods like gradient boosting (GB) and XGBoost

build models sequentially to rectify the errors of preceding

models. RF demonstrates proficiency with unseen data, exhibits

reduced susceptibility to overfitting, and maintains computational

efficiency. The ultimate forecast is presented as follows.

γ (predicted) =
1

N

N∑

f=1

Mi (2)

In the provided equation, Mi represents the prediction of the

i-th decision tree, and N denotes the total number of decision trees

in the Random Forest ensemble.

3.4.3 Logistic regression
LR is a performance-enhancing combined multiple RF and

AdaBoost-like classifiers type of ensemble learning using an

iterative ensemble approach. Consequently, a strong classifier is

constructed by it (32). LR identifies the correlation between the

categorical independent and dependent variables. Additionally, it

computes the posterior probability p by fitting the data into the

logistic function of an event. The classifier’s weights and sample

training are fixed in each successive iteration aimed at boosting the

basic underlying concept to correctly ascertain the target class of

the provided data. LR’s classification y∗ is illustrated as follows:

y∗ = ln(
p

1− p
) (3)

3.4.4 Decision tree classifier
DT represents a non-parametric supervised ML approach

utilized to establish classification systems based on multiple

covariates or to develop prediction algorithms for a target variable

(33). This method involves constructing a model capable of

predicting the value of a target variable through the learning of

simple decision rules derived from data features. An inverted tree

structure is formed after the dataset is organized into branched

segments, consisting of internal, root, and leaf nodes. Being a non-

parametric algorithm, complex and big datasets are easily handled

by it without the need for a complex parametric structure. In the

case of the enormous data samples, the data is organized as test

and training samples. The training data is then used to build a DT

prototype while the test sample determines the appropriate tree size

for optimal final model attainment.

3.4.5 Extra trees classifier
Extremely randomized trees or extra trees, are part of the

ensemble learning procedures category, similar to RF, where

multiple individual DT results are aggregated (34). ETs are superior

in performance in comparison to RF algorithms. The baseline

difference between ET Regressor and RF is the utilization of

bootstrap aggression, which is used by RFwhile ET doesn’t. Instead,

it uses the entire training dataset to construct its DTs. ET Regressor,

instead of determining the best-split point after all features are

taken into consideration, selects features’ subset randomly, and

eventually a random split point is selected. Overfitting in the

model is mitigated by reducing the variance aided by this added

randomness. The benefits of ET regressor are proven when datasets

are high-dimensional and computational efficiency is a priority.

3.4.6 Extreme gradient boosting
XGBoost employs an objective function comprising a

regularization term and a loss function. The discrepancy between

expected and actual values of a model is measured using the

loss function while overfitting and complexity of the model are

managed by the regularization term (35). Notably, XGBoost

incorporates parallel processing methods, facilitating quicker

computation. In contrast, traditional Gradient Boosting trains

each new model sequentially, correcting errors from the preceding

model. XGBoost represents a refined version of Gradient Boosting,

integrating sophisticated regularization methods and streamlined

tree construction processes.

3.4.7 Ada boost classifier
AdaBoost leverages the boosting principle to generate a strong

classifier from weaker ones. By integrating subpar classifiers

and extracting their predictive value, AdaBoost enhances the

overall efficacy of machine learning classifiers, forming a superior

ensemble classifier (36). This approach mitigates issues associated

with overfitting and contributes to improved results. AdaBoost

meticulously evaluates the optimal contributions of each individual

classifier, thereby selecting the most effective values for inclusion in

the ensemble.

3.4.8 Gradient boosting classifier
Gradient Boosting serves as an ensemble meta-estimator

comprising weak prediction models, often decision trees,

commonly employed for classification tasks (37). The algorithm

predicts classes based on a weightedmajority vote of the predictions
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from the weak learners, with weights determined by their respective

accuracy rates. Notably, Gradient Boosting is applicable even to

small samples, ranging from as few as 100–1,000 data points.

3.4.9 Support vector machine—linear kernel
SVM is a prominent and preferred supervised algorithm

dealing with both the classification and regression tasks, yet it

stands out when it comes to classification circumstances (38). In

the realm of N-dimensional spaces, SVM algorithms aim to identify

a hyperplane that optimally segregates the two classes. In simpler

terms, if there are only two input features, this hyperplane reduces

to a line if there are more features, it becomes a multidimensional

plane. The ideal scenario occurs when the data are perfectly

separable, resulting in maximum distance between the nearest class

elements and the hyperplanes. SVM endeavors to approximate

this scenario as closely as possible. Nonlinear SVM introduces

different classes of manifolds as an alternative to hyperplanes, yet

the underlying rule remains consistent.

While linear SVM kernels are commonly employed to delineate

class labels using lines, not all datasets exhibit linear separability.

Kernel functions address this challenge by projecting data points

from the original space to a feature space, thereby enhancing

separability. However, kernel functions have limitations; they

may not be universally applicable across all datasets, and the

transformation process itself can be computationally expensive,

leading to heightened training and prediction costs.

3.4.10 K nearest neighbors classifier
The KNN algorithm is an extensively used procedure in ML

for both the regression and the classification tasks (39). It derived

its basis from the fact that similar values or labels are shared

by the data points having related features. The entire training

dataset is stored as a reference during the training stage. Distance

between all training examples and input data points is computed

while making predictions, characteristically Euclidean distance-like

distance metric is selected. Afterward, the K nearest neighbors are

identified by the algorithm based on their distances to the input

data point. When it comes to classification tasks, the most common

class label among the K neighbors is assigned by the KNN as the

input data point’s anticipated label. Furthermore, the value of the

input data point is predicted by either calculating the weighted

averages or the simple averages of K neighbors’ target values for the

regression tasks.

3.4.11 Naive Bayes
NB function operates on the principles of Bayes’ theorem

and adopts a conditional probability model. Its fundamental

assumption is that every pair of features is independent (40).

Employing a supervised learning approach, NB classifies outcomes.

Notably, NB necessitates only a small amount of data to construct

the model. In determining the probability of mode selection, it is

assumed that mode choice adheres to a Gaussian distribution.

3.4.12 CatBoost classifier
CatBoost or Categorical Boosting, Yandex developed an open-

source library, specifically tailored to address regression and

classification challenges involving numerous independent features

(41). A distinguishing feature of CatBoost is its capability tomanage

both categorical and numerical features seamlessly, eliminating the

need for feature encoding techniques and thereby streamlining data

preprocessing efforts. Moreover, CatBoost automatically scales all

features internally to a suitable range, a feature absent in traditional

boosting algorithms. The trained model’s overall performance is

augmented and faster convergence is facilitated by this.

3.5 Evaluation parameters

The proposed model’s efficiency and reliability are ensured

and demonstrated using various evaluation parameters like

accuracy, recall, precision, F1 score, MCC, Kappa, and AUC are

among the commonly utilized performance metrics to gauge the

performance of similar models. These metrics are comprehensively

used to evaluate the performance of the model across various

aspects, allowing for a thorough assessment of its reliability

and efficacy.

Accuracy is a metric linked to the model’s ability to predict

the results correctly (42). It is essential to first determine the true

negatives (TN), false positives (FP), true positives (TP), and false

negatives (FN) when computing accuracy. Using these elements,

the following equation is used to calculate the accuracy.

Accuracy =
No, of CPr

CPr + FPr
(4)

This formula expresses accuracy as the sum of true outcomes

(either positives and/or negatives) divided by the total number

of observations (the sum of true positives, false positives, true

negatives, and false negatives).

Precision, in the context of classification models, can indeed

be computed by determining the proportion of correctly predicted

to the total predicted positive observations (43). The equation to

calculate precision is as follows.

Precision =
TP

TP + FP
(5)

Furthermore, in order to demonstrate the number of genuine

positive cases our model can predict accurately, we will calculate

recall (44). Recall is determined by the ratio of correctly predicted

positive observations to all observations in the actual class, as

indicated by the following equation.

Recall =
TP

TP + FN
(6)

Through the computation of precision and recall, we derive

the F1 score, another valuable metric used for evaluating model

performance (45). The F-score is obtained by taking the weighted
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average of precision and recall, as described by the following

equation:

F1Score = 2×
Precision× Recall

Precision+ Recall
(7)

The AUC assesses the quality of the model predictions, ranging

from zero to one, where a score of 1 indicates the best performance

and 0 indicates the worst (46). Furthermore, AUC reflects the

degree of separability, elucidating the model’s ability to differentiate

between classes.

The Kappa is a statistics-based prominent evaluation metric

denoted by k, which measures the reliability in relation to other

evaluators or parameters (47). The following equation computes

the value of k.

k =
prob(O)− prob(C)

1− prob(C)
(8)

In this context, O represents the likelihood of observed

agreements among the evaluators, while C signifies the prospect of

agreements anticipated by chance. If k = 1, it indicates complete

agreement among the evaluators, conversely, if k = 0, it suggests no

agreement among the evaluators.

MCC is an unaffected and substitute measure for uneven

datasets and employs a likelihood matrix method to calculate the

Pearson product-moment correlation coefficient between predicted

and actual values (48). Expressed in terms of the entries of the

contingency matrix M, MCC is formulated as follows:

MCC =
TP.TN − FP.FN

(TP + FP).(TP + FN).(TN + FP).(TN + FN)
(9)

The MCC is unique among binary classification metrics in that

it yields a high score only when the binary predictor successfully

predicts the majority of positive and negative data instances.

4 Experiments and analysis

The experiments were performed using Python 3.8, and

TensorFlow and Scikit-learn libraries. The experimental setup

operated with 8GB of available RAM, on Windows 10 (64-bit)

operating system. The CPU utilized was 7th Gen, Intel Core i7

having a clock speed of 2.8 GHz, and an 8 GB, GTX 1060 GPU from

Nvidia. Technical specifications of the computational resources

deployed in research are crucial for the in-depth understanding of

the model. Table 2 summarizes the experimental setup.

4.1 Results of machine learning models on
CTG dataset for fetal health

Extensive experiments were conducted for fetal health

detection, wherein various machine learning models were applied

under different scenarios. Thesemodels were optimized concerning

various hyperparameters for better performance. Furthermore, the

results were examined by employing individual machine-learning

TABLE 2 Framework specifications.

Element Details

Programming environment Python 3.8

Software libraries Scikit-learn, TensorFlow

OS Windows 10 (64-bit)

RAM 8GB

Processor 7th Gen, Intel Core i7, 2.8

GHz processor

Graphics card 8 GB- GTX 1060 Powered

GPU from Nvidia

models across all feature sets in the experiments. The results of all

learning models are shared in Table 3.

The provided information outlines the performance metrics

of various machine learning models across multiple evaluation

criteria. Each model undergoes assessment based on AUC, MCC,

recall, precision, F1 score, accuracy, kappa score, and training

time in seconds. These metrics collectively offer insights into how

effectively each model performs in a classification task.

Beginning with the top-performing models, LightGBM

achieves notable results with an accuracy of 99.89% and an AUC

of 99.88%, showcasing its proficiency in correctly classifying

instances and distinguishing between classes. Additionally, its

recall, precision, and F1 score of 97.91% indicate its ability to

identify positive instances accurately while minimizing false

positives. Moreover, the kappa score and MCC of∼96.80% further

validate the model’s reliability. Similarly, the CatBoost classifier

and ETC demonstrate strong performance with high accuracy of

97.66% and 97.62%, respectively, and AUC values of 99.84% and

99.87%, respectively. These models maintain recall, precision, and

F1 scores above 97%, reflecting their effectiveness across various

evaluation metrics. Despite slight variations in training times of

8.465 s for CatBoost and 0.938 s for ETC, both models exhibit

robust performance in classification tasks.

The XGBoost and RF classifier also deliver commendable

results with accuracy and AUC values exceeding 97% and 99%,

respectively. Leveraging ensemble methods, these models harness

multiple decision trees to achieve strong performance, as evidenced

by their high recall, precision, and F1 scores. Furthermore, they

boast reasonable training times, making them efficient choices for

practical applications.

Descending through the list, the GBC, DT classifier, and KNN

classifier demonstrate good performance with accuracy scores

ranging from 96.47% to 95.10%. Although their AUC values are

slightly lower compared to the top performers, they still exhibit

respectable recall, precision, and F1 scores, underscoring their

efficacy in classification tasks.

Further down the spectrum, the LR, SVM with a linear kernel,

AdaBoost classifier, and NB show diminishing performance in

terms of accuracy, AUC, and other evaluation metrics. While these

models offer reasonable results, they may not be as suitable for

tasks requiring high precision or discrimination between classes.

Notably, the SVM with a Linear Kernel exhibits an AUC of 0.00%,

indicating potential issues with its discriminative ability in the given

dataset, highlighting the importance of meticulous model selection

and parameter tuning to ensure optimal performance.
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TABLE 3 Classification report of all learning models.

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (s)

LightGBM 0.9989 0.9988 0.9832 0.9834 0.9832 0.9748 0.9749 2.8470

CB 0.9766 0.9984 0.9766 0.9770 0.9766 0.9649 0.9651 8.4650

ETC 0.9762 0.9987 0.9762 0.9769 0.9762 0.9643 0.9647 0.9380

XGBoost 0.9748 0.9984 0.9748 0.9752 0.9747 0.9622 0.9624 2.0540

RF 0.9708 0.9982 0.9708 0.9713 0.9708 0.9562 0.9565 1.2220

GBC 0.9647 0.9969 0.9647 0.9656 0.9648 0.9470 0.9474 4.1070

DT 0.9510 0.9633 0.9510 0.9516 0.9510 0.9265 0.9268 0.2000

KNN 0.9416 0.9893 0.9416 0.9455 0.9416 0.9125 0.9143 0.4690

Ada 0.9121 0.9673 0.9121 0.9140 0.9123 0.8682 0.8689 0.7400

LR 0.8897 0.9735 0.8897 0.8935 0.8904 0.8346 0.8358 0.3100

SVM 0.8768 0.0000 0.8768 0.8815 0.8775 0.8152 0.8167 0.1710

NB 0.7677 0.8925 0.7677 0.8223 0.7708 0.6515 0.6757 0.1700

FIGURE 4

ROC-AUC curve.

In summary, the data provides a comprehensive overview

of the performance of different machine learning models in a

classification task. Ensemble methods like LightGBM, CatBoost,

ETC, XGBoost, and RF classifier excel in terms of accuracy, AUC,

and overall robustness, as shown in Figure 4. However, the selection

of a model should consider not only performance metrics but

also dynamics like computational efficiency, interpretability, and

explicit task specifications to ensure the most suitable model is

chosen for deployment.

Figure 5 shows the class-wide prediction error rate from the

proposed LightGBM model indicating that the model shows a

similar performance for all the classes used for experiments. In

addition, the number of wrong predictions is very few. The same

can be confirmed by the confusion matrix shown in Figure 6 which

shows the number of wrong predictions. The model makes a

total of 15 wrong predictions indicating better performance of the

proposed LightGBM compared to other models used in this study.

4.2 Interpretation and explainable analysis
of results using SHAP

In this subsection, we will discuss the LGBM model feature

importance results and Exaplainable AI SHAP summary and

dependency results of each class and analyze what each feature
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FIGURE 5

Analysis of error rate.

FIGURE 6

Confusion matrix for the LightGBM model.

describes (49). The feature importance of the LGBM model

is shown in Figure 7. The feature importance plot gives us an

indication of which features have the most significant impact on

the model’s predictions. The interpretation of feature importance

shown in Figure 7 is “abnormal_short_term_variability”

feature has the highest importance score, meaning it has the

most significant impact on predicting fetal health. Short-

term variability in fetal heart rate is known to be a strong

indicator of fetal distress or abnormal conditions. The

“percentage_of_time_with_abnormal_long_term_variability”

is another key feature, which likely tracks the percentage of

time during which the fetal heart rate exhibits abnormal long-

term patterns. Long-term variability is crucial for assessing

the fetus’s health. Other features like “histogram_mean,"

“histogram_number_of_peaks," and “baseline_value" are

related to heart rate statistics and also play a significant role

in classification. They likely capture the overall distribution

and trends in fetal heart rates, which are critical for

monitoring fetal wellbeing. Other notable features include

“histogram_max," “mean_value_of_short_term_variability," and

“uterine_contractions." All of these are highly relevant to assessing

the fetus’s response to external stimuli or stress during pregnancy.

The SHAP plots allow us to interpret how each feature impacts

individual predictions. Positive SHAP values push the model

toward predicting a certain class (e.g., a good fetal condition), while

negative values push toward the opposite class. The color gradient

(red to blue) represents the feature value, with red indicating

high feature values and blue indicating low feature values. Again

the importance feature “abnormal_short_term_variability"

high values (in red) tend to increase the SHAP value,

pushing the model toward predicting abnormal fetal health.

This aligns with clinical knowledge, as greater variability is

often indicative of fetal distress. The second-ranked feature

“percentage_of_time_with_abnormal_long_term_variability" high

values of long-term variability push the model toward predicting

abnormal conditions. The features “prolongued_decelerations"

and “accelerations" in fetal heart rate are critical markers for

predicting fetal health. In this case, abnormal values increase

the likelihood of predicting fetal issues. It can also be observed

from Figure 8, where overall SHAP summary is explained that the

lower impact features are “histogram_mean," “baseline_value," and

“histogram_median" have more nuanced impacts. Their effects

are smaller but still crucial for the model. For example, a low

“baseline_value" (blue dots) typically pushes the model toward

predicting normal fetal health, while higher baseline values (red

dots) lean toward predicting abnormality.

If we compare SHAP pathological (Figure 9) vs. SHAP suspect

(Figure 10), comparing the two SHAP plots, we see similar features

driving predictions, with slight differences in order. This likely

reflects different aspects of the model’s behavior under various

conditions (e.g., distinguishing between normal and abnormal

health states). The interaction between features (such as short-term

variability with other heart rate metrics) also becomes evident in

these plots. The sHAP explanation of the normal target class is

shown in Figure 11.

4.3 K-fold cross-validation results

The proposed model’s performance is validated using ten-fold

validation. Its purpose is to validate and ascertain the robustness

of the generated results by the recommended model. The cross-

validation process ensures the performance consistency of the

model across all data subsets. In this study, 10-fold cross-validated

results are summarized in Table 4. The suggested LGBM model

exhibits a 97.91% average accuracy score in cross-validation results.

Additionally, the average recall, precision, and F1 scores are found

to be 97.91%, 97.93%, and 97.91%, respectively. In 10-fold cross-

validation, LGBM also attains an AUC value of 99.88%, Kappa score

of 96.86, and MCC of 96.88. The standard deviation of accuracy for

LGBM across the 10 folds is calculated to be 0.0088.
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FIGURE 7

Feature importance of LightGBM model.

FIGURE 8

Overall summary of SHAP XAI.

4.4 Comparison of performance with
existing studies

The recommended prototype’s performance is evaluated

against previous advanced models by conducting a performance

comparison in-between them. To demonstrate the performance

of the projected model in comparison to previous advanced

models, a comparison with existing models is conducted. This

research selects the nine most relevant previous studies for this

purpose. For instance, Yin and Bingi (17) utilized the SVM ML

model for fetal health classification, and a 99.59% impressive

accuracy score was obtained. In another study (23), the GBC

was employed, achieving the highest accuracy score of 95%. T2-

FNN was utilized by Abiyev et al. (18), resulting in an accuracy
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FIGURE 9

SHAP summary of pathological class.

score of 96.66%. Additionally, Sudharson et al. (26) utilized DT

resulting in 90.8% accuracy. Likewise, Afridi et al. (24) and Salini

et al. (25) utilized the RF model and NB models, with 93% and

83.06% accuracy, respectively. Table 5 illustrates the performance

comparison between the proposed model and existing studies,

revealing the superiority of the proposed model.

When we compare the proposed LightGBM model with

the traditional approaches and potential models used for fetal

health monitoring, several benefits of the proposed model can be

observed. In terms of real-time performance and computation,

LightGBM has proved to be faster than other models such as

SVM, AlexNet, RF, FNN, and XGBoost utilized in previous research

works. This also gives it an advantage in dealing with diverse

numerical feature datasets which is a crucial area of consideration

given the ever-increasing nature of medical data. LightGBM’s built-

in regularization mechanisms help prevent overfitting, ensuring

strong generalization to unseen data. The model also provides a

detailed feature importance analysis itself and through techniques

such as SHAP thereby helping clinicians understand the model’s

decisions. In this research work, we utilized and shared both

information (obtained through the feature importance of LGBM

and by SHAP dependency graphs). As opposed to most of the other

frameworks, LightGBM can identify rather intricate interactions

between specific fetal health characteristics and other factors and

has good generality. Furthermore, it reduces human error in

prognosis analysis by detecting subtle variations that may bemissed

during manual assessments, leading to more accurate diagnoses.

This combination of efficiency, accuracy, and interpretabilitymakes

the proposed model superior to existing clinical standards and

machine learning models.

4.5 Ethical implications, deployment,
biases, and data privacy

AI models like LightGBM can introduce biases if the training

data is not representative of diverse populations, potentially

leading to misdiagnoses or unequal healthcare outcomes. Ensuring

diversity in datasets, conducting bias audits, and employing fairness

metrics are essential steps to mitigate these risks. Additionally,

privacy concerns must be addressed by anonymizing patient data,

adhering to regulations like HIPAA or GDPR, and implementing

secure data handling practices.

Ethical deployment of AI models requires transparency,

explainability, and human oversight. Clinicians should understand

how the model makes decisions through tools like SHAP

plots, and AI should support (like we have added SHAP plots

and feature importance) rather than replace human judgment.

Regular monitoring and validation of the model’s performance

in real-world settings ensure safety and accuracy over time. By

incorporating these measures, any research can demonstrate a

responsible and ethical approach to AI in fetal and maternal health

monitoring.
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FIGURE 10

SHAP summary of suspect class.

4.6 Implications of proposed approach
concerning traditional clinical methods

Traditional clinical methods emphasize diagnosis, prognosis,

and treatment (50). Diagnosis has been regarded as the primary

element in clinical methods providing classification of subjects into

sick and healthy subjects. It is the basis for treatment and prognosis

where prognosis determines the future happenings of individuals

being classified (51). While all components are important, this

study focuses on the diagnosis part of traditional clinical methods

due to its importance.

It is important to emphasize that the proposed LightGBM

model has been developed with input from amedical professional, a

consultant gynecologist who guided the research design. According

to her insights, traditional clinical standards such as differential

diagnosis methods and prognosis analysis are commonly used

by obstetricians and gynecologists. However, these methods are

often labor-intensive and prone to human error, particularly when

it comes to analyzing complex data over extended periods. The

proposed AI-driven model aims to reduce such errors by providing

more precise and automated decision support, which can help in

the earlier detection of potential complications.

Another doctor highlighted that cardiotocography and

ultrasound analysis, despite being widely adopted in fetal

monitoring, can sometimes miss critical diagnostic points. Both

the patient and doctor might overlook subtle but important

signs, leading to potential complications. The integration of

LightGBM and data mining techniques offers an opportunity

to enhance these traditional methods by identifying patterns

that might go unnoticed during manual assessments. This

model can therefore supplement traditional approaches,

making fetal health monitoring more accurate and less prone

to human oversight.

5 Conclusions and future work

Fetal health monitoring has substantial importance in saving

the lives of pregnant women and fetuses. This research underscores

the paramount importance of fetal health in prenatal care and

obstetrics, emphasizing its direct impact on both the fetus

and the mother. Through continuous monitoring throughout

pregnancy, potential risks or complications can be identified

and addressed promptly, leading to improved outcomes for both

parties. Leveraging cardiotocography data, which encompasses

crucial fetal physiological parameters, this study employs a robust

methodology for fetal health classification. The utilization of the

SMOTE data upsampling technique addresses the class imbalance

issue inherent in medical diagnostics, enhancing the model’s

performance. By employing the LightGBM model, remarkable

results are achieved, with high accuracy, AUC, recall, precision,

F1 score, Kappa, and MCC values obtained on the test dataset.

Comparative analysis against eleven other machine learning

models highlights the superiority of the proposed approach
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FIGURE 11

SHAP summary of normal class.

TABLE 4 10-fold cross-validation results concerning various metrics.

Fold Accuracy AUC Recall Precision F1 Kappa MCC

0 0.9928 0.9995 0.9928 0.993 0.9928 0.9892 0.9893

1 0.9712 0.9982 0.9712 0.972 0.9714 0.9568 0.9571

2 0.982 0.9985 0.982 0.982 0.982 0.973 0.973

3 0.9784 0.9988 0.9784 0.9787 0.9785 0.9676 0.9678

4 0.9892 0.9999 0.9892 0.9892 0.9892 0.9838 0.9838

5 0.9784 0.9973 0.9784 0.9786 0.9784 0.9676 0.9677

6 0.9856 0.9997 0.9856 0.9858 0.9855 0.9783 0.9785

7 0.9603 0.9983 0.9603 0.9608 0.96 0.9404 0.9409

8 0.9747 0.9992 0.9747 0.9747 0.9747 0.9621 0.9621

9 0.9783 0.9985 0.9783 0.9786 0.9784 0.9675 0.9676

Mean 0.9791 0.9988 0.9791 0.9793 0.9791 0.9686 0.9688

Std 0.0088 0.0008 0.0088 0.0087 0.0089 0.0132 0.0131

in fetal health classification. Furthermore, the significance of

the proposed model is investigated through rigorous evaluation

using a 10-fold cross-validation and previous research works

comparison. Overall, this research contributes to advancing

prenatal care by providing an effective and reliable framework

for fetal health assessment and classification. The future work

direction of this research is to incorporate additional data

sources such as ultrasound images, maternal health records, and

genetic information as it could provide a more comprehensive

understanding of fetal health and improve classification accuracy.

In addition, enhancing the interpretability and explainability

of the classification model could improve its acceptance and
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TABLE 5 Performance comparison with existing studies.

References Classifier Accuracy

Yin and Bingi (17) SVM 99.59%

Abiyev et al. (18) T2-FNN (63 rules) 96.66%

Kuzu and Santur

(19)

XGB 99.10%

Muhammad

Hussain et al. (20)

AlexNet-SVM, 99.72%

Piri and Mohapatra

(21)

XGBoost and RF 94.32%

Al Duhayyim et al.

(22)

XGB, CatBoost, VC 99.05%

Islam et al. (23) GBC 95.19%

Afridi et al. (24) NB 83.06%

Salini et al. (25) RF 93.15%

Sudharson et al.

(26)

DT 90.80%

Proposed LGBM 99.89%

Bold values indicating the results of proposed model which is better than all SOTA models.

adoption by healthcare providers, facilitating better-informed

clinical decisions.
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