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Background: High-voltage workers often experience fatigue due to the

physically demanding nature of climbing in dynamic and complex environments,

which negatively impacts their motor and mental abilities. E�ective monitoring

is necessary to ensure safety.

Methods: This study proposed an experimental method to quantify fatigue in

climbing operations. We collected subjective fatigue (using the RPE scale) and

objective fatigue data, including systolic blood pressure (SBP), diastolic blood

pressure (DBP), blood oxygen saturation (SpO2), vital capacity (VC), grip strength

(GS), response time (RT), critical fusion frequency (CFF), and heart rate (HR) from

33 high-voltage workers before and after climbing tasks. The XGBoost algorithm

was applied to establish a fatigue identification model.

Results: The analysis showed that the physiological indicators of SpO2, VC,

GS, RT, and CFF can e�ectively evaluate fatigue in climbing operations. The

XGBoost fatigue identification model, based on subjective fatigue and the five

physiological indicators, achieved an average accuracy of 89.75%.

Conclusion: This study provides a basis for personalized management of

fatigue in climbing operations, enabling timely detection of their fatigue states

and implementation of corresponding measures to minimize the likelihood

of accidents.
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1 Introduction

In recent years, the escalating societal demand for electricity has precipitated

a surge in power equipment failures, underscoring the pressing need for a stable

power supply and seamless operational continuity. Essential to this mandate are

climbing operations, routine maintenance, and the prompt rectification of latent faults

within the power grid, all pivotal for upholding its unimpeded functionality (1).

Regrettably, incidents involving safety breaches among climbing operations have become

commonplace during these operations. These occurrences not only imperil workers’

safety and wellbeing but also exact a profound toll on the psychological and financial

fabric of families and enterprises. Moreover, they impede the overarching economic

advancement of the industry. According to incomplete records from the National

Energy Administration-Electric Power Safety Supervision Department, in 2022, China

witnessed 24 power-related personal injury accidents, resulting in 34 fatalities (2).
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Notably, 10 of these incidents involved falls from considerable

heights, constituting 42% of the total accidents, with 12 deaths

stemming from these falls, accounting for 35.3% of the overall

fatalities. A meticulous analysis of these accidents elucidates that

the unsafe conduct of personnel engaged in climbing operations

serves as the principal catalyst for falls from elevated positions, with

fatigue emerging as the primary internal determinant precipitating

these hazardous behaviors (3, 4). Fatigue manifests through

compromised productivity, diminished focus, delayed cognitive

response, languid motor function, and sundry unsafe behaviors (5).

Hence, a comprehensive exploration of fatigue dynamics during

climbing operations assumes paramount importance in forestalling

or mitigating incidents of falls from heights.

In the past, traditional research methods primarily relied

on surveys and interviews to collect self-perceived feelings and

evaluations of workers, which are indicative of subjective fatigue

(6, 7). However, although these methods are simple and easy to

implement, they often need to be more objective and accurately

reflect the actual fatigue states of workers. During prolonged

physical activities, especially in high-intensity labor like climbing

operations, individuals often experience fatigue. At this time,

significant changes occur in their various physiological indicators.

These objective alterations, including reaction times and metabolic

rates, can directly reflect objective fatigue states (7, 8). Liang

et al. conducted in-depth analysis and research on the localized

muscle fatigue of climbing workers using advanced techniques

such as electromyography (EEG). They found a close correlation

between the characteristic changes in surface electromyography

signals during operations and subjective fatigue assessment values

(9). Ma et al. proposed a new posture prediction and analysis

method by comparing and analyzing the differences in posture

between workers under fatigue and non-fatigue conditions. They

found that workers’ posture under fatigue conditions often differs

from that under normal conditions, providing essential clues for

evaluating workers’ physiological fatigue. This research offers new

insights and methods for assessing the fatigue of climbing workers

(10). Zhou et al. collected four physiological indicators of climbing

workers. They combined them with subjective fatigue level scales

to comprehensively assess the fatigue states of workers. They

used support vector machines to build fatigue detection models

and experimentally verified the feasibility and effectiveness of this

method (11).

Combining objective and subjective methods is considered

accurate and practical for assessing the fatigue states (12). This

approach finds the workers’ physiological responses and subjective

feelings. This comprehensive and detailed assessment method can

more accurately reflect the fatigue states of climbing workers,

thus supporting their work safety and health. However, current

research primarily focuses on laboratory environments, simulating

climbing operations to investigate worker fatigue state changes

(13). Although this research method is convenient, it can only

partially replicate on-site climbing operations’ natural environment

and complexity. Therefore, more research is needed on the fatigue

states of climbing workers in actual field conditions. Power

operation sites constitute a complex and dynamically changing

human-machine-environment-management system (14, 15). In

this system, workers must face various unpredictable factors

such as weather changes, equipment failures, and changes in job

tasks. These factors may affect the fatigue states, and laboratory

environments are challenging to simulate completely in these

real situations.

Consequently, there often needs to be more existing

experimental data and on-site operations. To better understand and

assess the fatigue states of climbing workers, we need to focus more

on collecting data from real work sites. By gathering physiological

data, psychological perceptions, and job environment information

from on-site workers, we can comprehensively understand their

fatigue state changes, providing more targeted recommendations

for improving their working conditions and enhancing work

safety. Moreover, this will also offer more prosperous and more

authentic data support for our future research endeavors.

Considering the above factors, the present article advances

a methodological framework for fatigue measurement in

climbing operations, incorporating subjective and objective

data. The quantification of fatigue states is achieved through the

comprehensive collection of subjective fatigue scales, reflecting

the workers’ self-assessed experiences and diverse physiological

indicators, providing an objective measurement of their fatigue

states. Furthermore, implementing the XGBoost algorithm is

pivotal in crafting a fatigue prediction model explicitly tailored

for climbing operations. This approach bears profound practical

significance as it facilitates real-time fatigue monitoring and

issuance of timely fatigue warnings for climbing operation

personnel. The amalgamation of subjective and objective data,

coupled with advanced predictive modeling techniques, not only

enhances the precision of fatigue assessment but also underscores

the pragmatic utility of the proposed methodology in safeguarding

the wellbeing and operational efficiency of power climbing

operation personnel.

The significance of this study is as follows:

(1) Contribution to theory: this research enriches the theoretical

framework of fatigue measurement by integrating subjective

and objective aspects into a cohesive model, providing a

more comprehensive understanding of fatigue in physically

demanding tasks.

(2) Methodological advancement: by employing a combination

of subjective fatigue scales and objective physiological

indicators alongside the XGBoost algorithm, the study offers

a robust and multifaceted methodology for assessing fatigue

in climbing operations.

(3) Empirical data utilization: applying this methodology to

empirical data from climbing operations allows the study to

provide grounded and context-specific insights, enhancing the

field’s ability to monitor and mitigate fatigue-related risks in

real-world scenarios.

2 Material and methods

2.1 Selection of subjects

Stringent criteria were implemented for participant selection

to mitigate interference from inter-participant physical variations

in measuring physiological indicators. Specifically, participants

were required to fall within a specified Body Mass Index (BMI)
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range and exhibit good physical health without any history of

illness (16). Following a rigorous screening process, a cohort of 33

male participants, aged between 26 and 32 years old, was selected

from a power supply company’s training center to participate in

the experiment. Participants were instructed to adhere to specific

guidelines to control for external factors that could impact the

experiment. These guidelines included abstaining from staying up

late, refraining from alcohol consumption, and avoiding the use

of medication (17). Before the commencement of the experiment,

participants were obligated to provide informed consent by

signing a consent form. Furthermore, participants underwent

comprehensive briefings and explanations to ensure a thorough

understanding and cooperation throughout the experimental

procedures. This study has received ethical approval from the

relevant ethics committee, and the entire experimental process

strictly adheres to established safety protocols.

2.2 Experimental indicators and data
collection

In consonance with the operational characteristics inherent

to power pole activities, the assessment of subjects’ fatigue levels

encompasses the examination of eight selected physiological

indicators, including systolic blood pressure (SBP), diastolic blood

pressure (DBP), blood oxygen saturation (SpO2), vital capacity

(VC), grip strength (GS), response time (RT), critical fusion

frequency (CFF) and heart rate (HR). The selected physiological

indicators are designed to comprehensively cover various aspects

of the cardiovascular, respiratory, and muscular systems, providing

a multidimensional perspective on fatigue monitoring. In the

existing literature, these indicators have been widely used to

evaluate fatigue across various groups, including athletes, drivers,

and healthcare workers. The fluctuations in data before and

after fatigue are well-documented and widely accepted (Table 1).

Additionally, compared to technologies such as eye-tracking

and EEG, these physiological indicators are more convenient

to measure, cost-effective, and straightforward to process, with

results that are easy to interpret. This makes them particularly

advantageous for practical fatigue monitoring applications.

The experimental data collection process entailed the

deployment of six distinct instruments. Participants were

instructed to sanitize their left index finger with an alcohol

swab and affix the YX306 fingertip heart rate and blood oxygen

saturation. SpO2 and HR readings were meticulously recorded

after device activation and the requisite stabilization period.

Subjects were instructed to don the U10L blood pressure cuff on

their left upper arm, with the lower edge ∼2 centimeters above

the elbow pit, to acquire SBP and DBP data. VC measurements

were executed using the FCS-10000 spirometer. The BD-II-118

flash frequency meter facilitated the assessment of CFF, involving

three consecutive measurements, with the resultant average value

adopted. GS data were garnered through the CAMRY grip strength

meter, with subjects instructed to exert maximal force during

a gripping maneuver lasting no longer than 2 s. RT data were

procured through a visual choice task programmed on the E-prime

software platform, demanding prompt and accurate responses

TABLE 1 Previous studies on measurement indicators.

Constructs Indicators Sources

Subjective fatigue RPE Zhou et al. (11), Lea et al. (18), Bok

et al. (19)

Objective fatigue SBP Richard et al. (20), Mun and Geng

(21)

DBP Mun and Geng (21), Guest et al.

(22)

SpO2 Jagannath and Balasubramanian

(23), Putra et al. (24)

VC Chen et al. (25), Taylor et al. (26)

GS Starling-Smith et al. (27), Xu (28)

RT Chen et al. (25), Migliaccio et al.

(29)

CFF Song et al. (30), Łuczak and

Sobolewski (31)

HR Putra et al. (24), Chen et al. (25)

to stimuli of four distinct colors: red, green, blue, and yellow.

Additionally, the Rate of Perceived Exertion (RPE) scale was

employed as the chosen subjective indicator to quantify subjects’

perceived fatigue levels.

2.3 Experimental implementation

The experiments were conducted within the confines of the

Climbing Training Center’s office space, where environmental

conditions such as temperature, humidity, and lighting were

deliberately regulated to moderate levels. These experiments were

scheduled in early July, encompassing morning and afternoon

sessions, precisely at 8 a.m., 12 p.m., 2 p.m., and 6 p.m. These time

slots were strategically chosen to correspond with the pre and post-

training sessions for the participants undergoing extensive power

system maintenance training during this designated period at the

center. The selection of July was intentional, aligning with the

center’s training schedule and ensuring the participants’ consistent

engagement in rigorous daily power system maintenance training.

Furthermore, the training center imposed standardized routines on

the participants, ensuring uniformity in their daily activities and

living conditions. This collective approach rendered this period

both representative and significant for the study.

In order to mitigate individual variability within a single day

of measurement, each participant was required to partake in a

minimum of 3 days of repeated measurements, resulting in at

least 12 sets of data per individual. Before the commencement

of the experiment, all 33 participants were assigned identification

numbers and provided with comprehensive instructions on

utilizing the measuring instruments. Moreover, the parameters

of each instrument were meticulously set in advance to ensure

consistency and uniformity in the measurement procedures across

all participants. The flow of the experiment is shown in Figure 1.

The formal experimental protocol was as follows:
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FIGURE 1

Experimental flow chart.

(1) Test participants’ subjective fatigue levels using the RPE scale

before training.

(2) The sequential performance of measurements using the six

designated instruments, encompassing the entire process from

start to finish, takes ∼7min to complete. During this period,

experimental data are systematically recorded. Following

the measurements, participants undergo two uninterrupted

training sessions, each separated by a 30-min break interval.

(3) After completing the training regimen, participants provided

updated ratings on the RPE scale based on their current

condition, and post-fatigue data was diligently collected

for analysis.

3 Data analysis

For the data samples collected in the experiment, 435 sets

of valid data were obtained after cleaning missing values and

outliers. Descriptive statistics (mean and standard deviation) were

performed on all indicators in this data sample to understand the

essential characteristics of the data comprehensively.

3.1 RPE scale data

The Rating of Perceived Exertion (RPE) scale is widely used

to assess subjective perceptions of effort during physical activity.

Initially ranging from 6 to 20, the scale has been adapted to various

formats, including the Borg CR-10 scale, which ranges from 0

to 10, with 0 indicating no exertion and 10 indicating maximal

exertion. While initially devised for use during exercise, the RPE

scale has been extended to measure fatigue in other domains, such

as occupational settings and clinical research. Participants are asked

to rate their perceived exertion or fatigue level based on their

subjective interpretation of effort, providing valuable insights into

their perceived levels of fatigue and exertion during tasks (32, 33).

TABLE 2 The frequency analysis results of the RPE scale.

Rating 1 2 3 4 5 6 7 8 9 10

Frequency 45 31 55 82 85 57 35 29 7 9

The RPE scale offers a simple yet effective means of quantifying

subjective feelings of fatigue, making it a valuable tool for assessing

fatigue across different contexts and populations. In line with the

actual situation of workers, this study utilized the RPE scale to

gather subjective fatigue levels, where one indicates very relaxed,

and ten indicates highly exhausted (11).

The frequency analysis results of the RPE scale data

are presented in Table 2. Participant-perceived fatigue levels

predominantly fall within the range of levels 3 to 6. Specifically,

data samples indicating a fatigue level of 5 exhibit the highest

frequency, totaling 85 samples and representing 19.54% of the

overall dataset. Following closely, fatigue level 4 demonstrates the

second-highest frequency, with 82 samples constituting 18.85%

of the total. Conversely, the least frequent perceived fatigue level

is level 9, comprising seven samples and accounting for 1.61%

of the entire dataset. The second lowest frequency is observed

at level 10, with nine samples constituting 2.07% of the total.

To facilitate more accurate data analysis subsequently, researchers

typically divide fatigue into three levels based on the characteristics

of the RPE scale (34, 35). Specifically, fatigue levels 1 and 2

were defined as no fatigued state, indicating participants feeling

relaxed or slightly fatigued. Subsequently, samples with fatigue

levels 3, 4, 5, and 6 were defined as mild fatigue state, reflecting

participants beginning to feel a certain degree of fatigue while

still maintaining typical work efficiency. Finally, samples with

fatigue levels 7, 8, 9, and 10 were defined as extreme fatigue

state, indicating participants experiencing severe fatigue during

electrical pole climbing tasks, whichmay adversely affect their work

efficiency and safety.
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Furthermore, a chi-square test was employed to assess the

potential significant differences between participants and the RPE

scale data. The results indicate a lack of statistically significant

differences between participants and the RPE scale data (P= 0.855),

suggesting that perceived fatigue levels were comparable among

different participants.

3.2 Di�erences in physiological indicators
of fatigue

The data are typically distributed, allowing for further analysis

of various physiological indicators over time (as shown in Table 3)

for variables such as SBP, GS, RT, SpO2, VC, and CFF, which

meet the assumption of variance homogeneity, a one-way variance

analysis (ANOVA) was conducted with a significance level set at P

= 0.05. The resulting P-values were 0.000, 0.014, 0.085, 0.309, 0.498,

and 0.203, respectively, indicating significant differences in SBP

and GS over time. Welch’s ANOVA was utilized for HR and DBP,

which did not meet the homogeneity of variance assumption. Both

showed P-values of 0.000, signifying significant temporal variations

inHR andDBP. Specifically, SBP, DBP, GS, andHR show significant

daily fluctuations. SBP remains relatively consistent in themorning,

noon, and afternoon but rises to 124.12 with a standard deviation

of 8.8 by 6 p.m. DBP is notably lower at 8 a.m. compared to other

times. GS averages 47.07 at 8 a.m. with a standard deviation of 8.52,

decreases to 45.62 and 49.13 at noon and 2 p.m., with standard

deviations of 8.15 and 8.66 respectively, and slightly decreases

to 47.44 with a standard deviation of 8.85 by 6 p.m. HR shows

some variation throughout the day. VC, GS, RT, and HR standard

deviations are relatively large, indicating significant differences in

grip strength among different individuals.

3.2.1 SBP
SBP refers to the lateral pressure exerted by the blood flow

against the vessel wall during cardiac contraction, reflecting one

of the physiological indicators of average circulation and serving

as a crucial vital sign. Numerous experiments have shown that

intense or prolonged physical activity can lead to a rapid and

temporary increase in blood pressure, potentially increasing the

risk of heart disease, stroke, or other cardiovascular diseases in

hypertensive individuals, thereby endangering their lives (36, 37).

For adult males, the typical range for average SBP is usually between

90–140 mmHg (38). Figure 2A depicts that some electric pole-

climbing workers have SBP readings ranging from 140–150mmHg,

exceeding the normal range. Further analysis of SBP differences

under varying fatigue levels reveals that SBP is higher at 9 (M =

127.57, SD = 12.11) and 10 (M = 127.67, SD = 9.82) than other

fatigue states. This suggests that as fatigue deepens, there is an

increasing trend in SBP among workers. However, this difference

is not statistically significant (P = 0.091 > 0.05).

3.2.2 DBP
DBP refers to the pressure in the arteries during heart

relaxation, which is crucial for evaluating the blood circulation

TABLE 3 Physiological indicator data at di�erent time.

Indicators Descriptive
statistics

Time

8a.m. 12 a.m. 2 p.m. 6 p.m.

SBP M 119.25 116.65 118.8 124.12

SD 8.93 9.76 10.68 8.8

DBP M 73.09 71.49 73.8 77.26

SD 6.82 7.13 8.51 7.93

SpO2 M 97.48 97.53 97.59 97.79

SD 1.1 1.06 1.15 0.87

VC M 4,267.54 4,259.93 4,380.44 4,318.57

SD 711.34 758.97 658.93 750.54

GS M 47.07 45.62 49.13 47.44

SD 8.52 8.15 8.66 8.85

RT M 554.53 561.84 526.64 553.13

SD 121.23 122.88 111.01 113.9

CFF M 35.93 35.5 36.18 35.73

SD 2.35 2.36 2.63 2.97

HR M 82.23 77.36 83.78 77.55

SD 9.7 10.33 14.82 10.36

status and overall health of the body. Adult males’ normal

diastolic blood pressure typically ranges from 60–90 mmHg

(38). Figure 2B shows that some individuals have high

DBP, reaching 90–100 mmHg, while others have low DBP,

ranging between 50–60 mmHg. Multiple-group data one-

way ANOVA analysis indicates no significant difference in

DBP among different fatigue levels (P = 0.662 > 0.05),

suggesting no apparent trend in diastolic pressure levels

among individuals.

3.2.3 SpO2

SpO2 refers to the percentage of oxygen content in the blood

relative to its maximum capacity. Normal SpO2 is typically above

95%. Generally, the onset of fatigue leads to a decrease in SpO2

among healthy individuals (39). This occurs because fatigue affects

the strength and efficiency of respiratory muscles, leading to

shallow and rapid breathing, which cannot adequately deliver

oxygen to the blood. Fatigue may also cause increased heart

rate and impaired blood circulation, reducing oxygen saturation.

However, in certain specific work scenarios, the impact of fatigue

on SpO2 may not be significant. This could be due to the

particular nature of the work environment, allowing individuals

to maintain relatively stable respiratory and circulatory functions

even under fatigue (40, 41). For example, some workers who

have undergone specific training or adaptation may be able to

maintain higher levels of SpO2 during prolonged, high-intensity

work. After conducting a one-way ANOVA on multiple data

groups, with P = 0.001 < 0.05, significant differences in SpO2

among different fatigue levels were observed. Specifically, as
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FIGURE 2

Physiological indicator data at di�erent fatigue levels: (A) SBP, (B) DBP, (C) SpO2, (D) VC, (E) GS, (F) RT, (G) CCF, and (H) HR.

fatigue increases, there is a significant decrease in SpO2 among

participants (as shown in Figure 2C). This result underscores the

impact of fatigue on SpO2, as prolonged work or activity leads

to increased oxygen consumption by the body, resulting in a

decrease in oxygen content in the blood and subsequently affecting

SpO2 levels.
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3.2.4 VC
VC refers to the air volume between maximal inhalation and

maximal exhalation, serving as a crucial indicator for assessing

lung function. After prolonged high-intensity exercise or the

execution of cognitive tasks, vital capacity decreases significantly

(42, 43). The average for adult males is ∼3,500ml (44). Figure 2D

depicts that some workers exhibit VC ranging from 5,000 to

6,500ml, significantly higher than the average. This disparity is

attributed to regular physical activity, which strengthens lung

muscles and enhances respiratory system function, allowing the

lungs to accommodate more air. Consequently, VC often reaches

higher levels. After conducting a one-way ANOVA with data from

multiple groups, significant differences in VC were observed across

different fatigue levels (P = 0.000 < 0.05). In extreme fatigue state,

VC was generally between 3,000 and 4,000ml, with some values

even lower than the average.

3.2.5 GS
GS refers to the force of hand muscles, reflecting the body’s

overall strength level and muscle health. The normal range for

male grip strength is between 43.5 to 49.5 kg (45). GS tends to

decrease after prolonged physical exertion (46). Further analysis

of grip strength differences under different levels of fatigue, due

to data not meeting homogeneity of variance, Welch’s ANOVA

was employed, yielding a variance analysis result of P = 0.017

< 0.05. This indicates that as fatigue levels increase, the strength

of hand muscles is affected, leading to a significant decrease in

grip strength among participants (as shown in Figure 2E). Fatigue

causes muscle fatigue and depletion of strength, thereby affecting

grip strength performance.

3.2.6 RT
RT refers to the time it takes for an organism to respond to

a stimulus with a physical action, indicating the temporal gap

between receiving the stimulus and reacting to it. The stimulus

triggers activity in sensory organs, which is then transmitted

through the nervous system to the brain, where it is processed

and relayed back to effectors, acting on some external object.

It primarily reflects the coordination between the nervous and

muscular systems of the human body and their ability to react

quickly. Under mild fatigue, reaction times may shorten, but as

fatigue worsens, factors such as attentional lapses and decreased

inhibitory control may emerge, further contributing to prolonged

reaction times (47). A one-way ANOVA yielded a P-value of

0.005 < 0.05 in the context of different fatigue levels. This

indicates that fatigue significantly affects reaction time, with

participants exhibiting longer reaction times as fatigue levels

increase (Figure 2F).

3.2.7 CFF
CFF refers to the minimum frequency capable of inducing

flicker fusion, where the brain perceives continuous light instead

of flickering when the speed of light conduction from the eyes

to the brain’s visual center reaches this frequency. Generally, this

frequency ranges between 30 to 55 cycles per second (30). A

one-way ANOVA conducted on different fatigue levels yielded

P = 0.000 < 0.05, indicating a significant impact of fatigue on

CFF. Figure 2G illustrates that participants exhibit higher CFF

values with increased fatigue. With the accumulation of fatigue, the

brain’s sensitivity to flicker fusion may decrease, requiring higher

frequencies to perceive light flickering.

3.2.8 HR
HR refers to the number of heartbeats per minute in an average

person, and the HR in a restful state is known as the resting heart

rate. The resting heart rate for a typical adult male typically ranges

between 60 to 100 beats per minute (48). Numerous experiments

have shown that physical activity can lead to a rapid and temporary

increase in HR, shown in Figure 2H; compared to the non-fatigued

state, subjects exhibit higher heart rates, generally between 85–90

beats per minute, during extreme fatigue; however, this difference

is not statistically significant (P = 0.481 > 0.05).

In summary, the differential analysis of eight physiological

indicators under different levels of fatigue shows that fatigue

significantly affects SpO2 (P = 0.001), VC (P = 0.000), GS (P =

0.017), RT (P = 0.005), CFF (P = 0.000). At the same time, the

differences in SBP, DBP, and HR are not significant. Specifically,

increasing fatigue levels lead to decreased SpO2, reduced VC,

decreased Grip, prolonged RT, and increased CFF. However, the

variations in SBP, DBP, and HR under different fatigue levels lack

statistical significance.

3.3 Correlation analysis

Spearman correlation coefficients were employed to examine

the relationship between physiological indicators and subjective

fatigue levels. Findings revealed that fatigue levels exhibited non-

significant correlations with HR (P = 0.455) and SBP (P = 0.127)

while demonstrating significant associations with other variables.

Subsequent correlation coefficient analyses, depicted in Figure 3,

indicated that RT displayed the strongest correlation, followed

by VC, which exhibited a closely comparable correlation, both

displaying a robust association with fatigue levels. Conversely, DBP

and SpO2 displayed comparatively weaker correlations with fatigue

levels. Positive correlations were observed between fatigue levels

and RT and DBP, while negative correlations were noted with VC,

CFF, GS, and SpO2.

4 Fatigue classification

In this study, we used the RPE scale to categorize the

participants’ fatigue levels into three tiers meticulously: no fatigued

state, mild fatigue state, and extreme fatigue state, using the fatigue

state as the predictive output for our model. When selecting

features, we relied on the correlation analysis results from Section

3.3 and chose six physiological indicators significantly related to

fatigue levels as input features for our model. These indicators

included DBP, SpO2, VC, GS, RT, and CFF. This decision was made

because, in the initial evaluation of eight physiological indicators,

we found that SBP and HR did not show significant differences
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FIGURE 3

Correlation heatmap. The colors in the chart represent the correlation coe�cients, and the numbers represent the p-values, *0.01 < P < 0.05,

**0.001 < P < 0.01, and ***P < 0.001.

across different fatigue levels. Further correlation analysis revealed

that SBP and HR lack a clear correlation with the fatigue state,

and a fundamental principle of feature selection is to ensure that

all selected features are related to the target variable, which in this

case is the fatigue state. Therefore, we decided not to include SBP

and HR as input features for our model. Although the differences

in DBP across various fatigue levels were insignificant, we found

a significant correlation between DBP and the fatigue state. This

suggests that DBP significantly enhances the predictive power of

fatigue state when combined with other physiological indicators.

Moreover, including DBP as a feature of the model helps to

enhance the model’s adaptability and robustness across different

individuals and environmental conditions. Even when changes in

DBP are not sufficient to serve as a fatigue indicator on their

own, they may interact with other features to collectively improve

the model’s predictive performance (49, 50). To more accurately

classify and predict the fatigue states of climbing workers, we

employed the XGBoost algorithm to build the fatigue identification

model. Data processing and model construction were performed

using Python 3.12.

4.1 XGBoost algorithm

eXtreme Gradient Boosting (XGBoost) is an enhancement

and extension of the gradient boosting tree (GBDT) algorithm.

Compared to GBDT, which utilizes only first-order derivatives,

XGBoost expands the loss function using the second-order Taylor

series, significantly improving the model’s prediction effectiveness

and operational efficiency. XGBoost algorithm is widely acclaimed

in machine learning for its outstanding classification performance

and computational efficiency (51, 52). It can automatically

discover key factors influencing fatigue states by learning from

many sample features and patterns, thereby making accurate

classification predictions.

4.2 Fatigue identification model based on
the XGBoost

The model construction process is depicted in Figure 4. This

study randomly divided the data into training and test sets in an
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FIGURE 4

Flow chart of model construction.

8:2 ratio. Subsequently, the ADASYN algorithm was applied to

the training set for sample balancing (53). The original training

set comprised 61 samples of no fatigued state, 223 samples of

mild fatigue state, and 64 samples of extreme fatigue state. After

utilizing the ADASYN algorithm, the training set was expanded to

682 instances, with 228 samples of no fatigued state, 223 samples

of mild fatigue state, and 231 samples of extreme fatigue state,

significantly enhancing the sample balance of the training set.

All features were normalized to mitigate the impact of varying

feature scales on the outcomes. Finally, the XGBoost algorithm

was employed for model construction, with its base learner being

“gbtree,” the optimal model parameters were obtained using a 10-

fold grid search cross-validation method, as shown in Table 4. The

highest accuracy is 91.95%. It is evident that, out of 87 test datasets,

the model for climbing workers accurately identified the fatigue

state for 80 datasets.

To evaluate the performance of the XGBoost model and

validate the effectiveness of the proposed method, Gradient

Boosting Decision Tree (GBDT), Decision Tree (DT), Random

Forest (RF), Adaptive Boosting (AdaBoost), and Categorical

Boosting (CatBoost) algorithm models were selected for

comparative analysis. The model construction process is similar.

TABLE 4 Optimal model parameters.

Parameter
name

Data
range

Step
length

Optimal values
of parameters

learning_rate [0.05, 0.3] 0.01 0.15

n_estimators [100, 500] 100 200

max_depth [1, 10] 1 3

min_child_weight [1, 10] 1 6

Gamma [0.05, 0.5] 0.01 0.1

Figure 5 presents the confusion matrix of the XGBoost model

and the other five classification models. In the confusion matrix

depicted in the figure, the diagonal cells correspond to correctly

classified observations, while the off-diagonal cells correspond to

misclassified observations. Therefore, the XGBoost classification

model accurately identifies the fatigue state more accurately than

the other five models. Further analysis of the XGBoost Confusion

Matrix reveals that 80 state data sets were correctly classified, while

seven sets were misclassified. However, the prediction accuracy for

no fatigue and extreme fatigue states is low. This lower accuracy
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FIGURE 5

Confusion matrix diagram for di�erent models. XGBoost, eXtreme gradient boosting; GBDT, gradient boosting decision tree; DT, decision tree; RF,

random forest; AdaBoost, adaptive boosting; CatBoost, categorical boosting; NF, no fatigue; MF, mild fatigue; EF, extreme fatigue.

may be due to subjective biases in self-reports by participants and

the manifestation of symptoms such as irritability, attentional

lapses, and sweating during no fatigue and extreme fatigue states.

Nevertheless, overall accuracy in fatigue state identification using

XGBoost is excellent. This combination of performance indicates

that XGBoost achieves appropriate classification results.

Six types of algorithmic models were trained 30 times each (to

ensure reproducibility, the random seed for the splitting function

was set to 1–30), and the mean values of the prediction accuracy,

recall, precision, and F1 score on the test set were taken to evaluate

the model performance. TP_i represents the number of samples

correctly classified by the model as category (i); FN_i represents the

number of samples of the actual category (i) incorrectly classified

by the model as other categories; FP_i represents the number of

samples of different categories incorrectly classified by the model as

category (i). Based on this, the formulas for each evaluation metric

are as follows:

Accuracy =
TP_1+ TP_2+ TP_3

total number of samples
(1)

Recall_i =
TP_i

TP_i+ FN_i
(2)

Precision_i =
TP_i

TP_i+ FP_i
(3)

F1_i = 2 ∗
Precision_i ∗ Recall_i

Precision_i+ Recall_i
. (4)

TABLE 5 Classification performance of di�erent models.

Accuracy Recall Precision F1-score

XGBoost 0.8982 0.8849 0.8787 0.8646

GBDT 0.7771 0.7971 0.7512 0.7557

DT 0.7543 0.7931 0.7042 0.7232

RF 0.8629 0.8769 0.8431 0.8458

AdaBoost 0.8912 0.8266 0.8531 0.8356

CatBoost 0.8975 0.8849 0.8787 0.8646

Accuracy is an indicator of the overall performance of the

model. However, to avoid the shortcomings of relying solely

on accuracy and recall metrics, the F1 score, which combines

precision and recall, is adopted to evaluate the model’s effectiveness

comprehensively. As shown in Table 5, the accuracy of XGBoost

reached 89.75%, and the F1 score reached 86.46%, both higher than

other models.

5 Discussion

We gained deep insights into the physical condition of

climbing workers through a detailed descriptive statistical analysis

of multiple physiological indicators. The analysis revealed that

some workers exhibit elevated SBP and DBP, which may suggest

underlying health risks for these individuals. Hypertension is a

significant risk factor for cardiovascular diseases, and given the

demanding physical and endurance requirements of climbing

operations, these high blood pressure values could adversely impact
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the workers’ safety and quality of life. Additionally, we observed

significant variation in GS and RT among workers, indicating

substantial differences in these indicators among individuals. This

variability may stem from fatigue perception and the ability to

handle high-intensity work (54, 55). Conversely, SpO2 and CFF

exhibited lower standard deviations, indicating greater consistency

among most participants in these metrics. The stability of

these indicators may reflect consistent respiratory and visual

system health among workers, with fewer external influences

demonstrating marked individual differences (56).

In summary, regular medical examinations are essential to

ensure the health and safety of climbing workers. Through more

detailed tests, a more accurate assessment of their health status

can be made, allowing for targeted interventions to address

potential health issues. Furthermore, individual differences should

be considered in monitoring and implementing interventions for

worker fatigue, and personalized fatigue management plans should

be adopted.

The analysis of the RPE scale, subjective fatigue scale, and

physiological indicators’ variance found that fatigue significantly

affects SpO2, VC, Grip, RT, and CFF. This is consistent with

the conclusion drawn in the literature (57–59). Specifically, with

increasing fatigue levels, SpO2 exhibited a noticeable decreasing

trend. This may be attributed to suppressed functionality across

body systems during fatigue, leading to reduced oxygen transport

and utilization efficiency in the blood. Additionally, VC was

reduced during fatigue, likely due to decreased contraction

ability of respiratory muscles, limiting lung expansion and gas

exchange efficiency. GS declined noticeably with increasing fatigue,

reflecting the gradual weakening of muscle strength and endurance.

Moreover, prolonged RT during fatigue directly demonstrates its

impact on the nervous system. Lastly, the increase in CFF reveals

changes in the visual system during fatigue, potentially impairing

visual perception and judgment among workers. These findings

deepen our understanding of how fatigue affects the physical

condition of climbing workers and provide a vital scientific basis

for constructing a fatigue recognition model for these workers.

Notably, although fatigue significantly impacts multiple

physiological indicators, variance analysis results indicate that

fatigue does not considerably affect SBP, DBP, and HR. This may

be because numerous factors influence changes in these indicators.

Therefore, when assessing the physical condition of workers, a

comprehensive consideration of multiple indicators’ changes is

necessary to obtain a more thorough understanding.

In conclusion, employing a combined objective and subjective

approach allows for an accurate assessment of the fatigue states

of climbing workers. Based on experimental results, we further

developed an XGBoost predictive recognition model. This model,

trained and optimized with substantial data, can efficiently and

accurately identify the current fatigue states of workers. The model

can swiftly analyze and provide fatigue state determinations by

inputting workers’ physiological indicator data.

6 Conclusions

This study quantifies the fatigue levels of power pole climbers

by collecting subjective fatigue scales and various physiological data

on-site. An XGBoost algorithm was also employed to establish a

fatigue recognitionmodel for climbing operations. The study found

that fatigue significantly affects SpO2, VC, Grip, RT, and CFF, while

its impact on SBP, DBP, and HR is insignificant. Compared to

models like GBDT, the XGBoost identification model performed

the best, with a classification accuracy of 89.75%.

The study has some limitations that need to be addressed in

future research. First, the number of subjects is relatively small.

To fully leverage the advantages of machine learning, a large-

scale dataset is required, which can be obtained in subsequent

applications of the test methods used in this study. Second, the

study mainly collected physiological indicators such as SBP, DBP,

and SpO2, which are widely used in the medical and physiological

fields, making their acquisition relatively straightforward. However,

various factors may influence these indicators, leading to changes

thatmay not fully reflect the fatigue state. Therefore, future research

should consider incorporating more objective physiological and

psychological measurement indicators to comprehensively assess

participants’ fatigue states (60, 61). Third, the results of the

RPE scale heavily depend on participants’ subjective perceptions.

Acknowledging fatigue may be perceived as a weakness or

deficiency, this motivation affects their judgment of fatigue. This

indicates that human motivation should be noticed when assessing

fatigue. Fourth, the number of participants at different fatigue levels

is unequal. Future efforts could involve broader recruitment and

selection to obtain more participants with different fatigue levels.

In theoretical terms, this study differs from past analyses of

worker fatigue, which often focused on laboratory environments

or simulated scenarios. While these studies provide some

theoretical basis, they must improve in reflecting the complexity

and diversity of actual work environments. In contrast, this

study, based on actual work scenarios, particularly in the

high-intensity, high-risk field of climbing operations, delved

into the fatigue states of workers in actual work processes.

Additionally, the study emphasizes the feasibility of identifying

individual fatigue based on physiological signals. Traditional

fatigue assessment methods often rely on subjective questionnaires,

which, although simple and practical, need more subjectivity

and accuracy. In contrast, fatigue recognition methods based on

physiological signals can objectively reflect workers’ physiological

states, thereby providing more accurate and reliable fatigue

assessment results.

In practice, this study can provide a basis for personalized

fatigue management for power pole climbers. By employing fatigue

recognition models, managers can more reasonably schedule rest

time for workers, devise personalized rest plans, and ensure

timely rest for workers when fatigue reaches a certain level, thus

avoiding the adverse effects of excessive fatigue on health. Climbing

operations inherently involve certain risks, and if workers are tired,

their reaction speed and judgment abilities may decline, thereby

increasing the risk of accidents. Using this model, we can promptly

detect workers’ fatigue states and take corresponding measures

to minimize the likelihood of accidents occurring to the greatest

extent possible.
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