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Editorial on the Research Topic

Artificial intelligence and mental health care

Introduction

Advancements in machine learning (ML) and artificial intelligence (AI) offer

significant potential to transformmental health care. These technologies have been utilized

for various purposes, such as early detection of mental disorders, optimizing personalized

treatments tailored to individual patient characteristics, improving the characterization of

disorders that negatively impact mental wellbeing and quality of life, better predicting their

progression over time, and developing new treatments and diagnostic tools for mental

health care. Despite their considerable potential and occasional breakthroughs, ML and

AI have not yet fully realized these objectives in mental health care.

Aim of this Research Topic

This Research Topic aimed to provide innovative examples of how ML and AI

applications can be practically implemented in standard mental health care. The particular

focus of this Research Topic was to provide examples of how to use ML and AI to enhance

public health by lessening the impact of chronic disorders that adversely affect wellbeing

and improving quality of life.

Research Topic impact

This Research Topic was open between November 10th, 2022, and November 1st,

2023. There were 14 submissions, 12 of which were accepted after peer review, from 64

different authors. While open, the topic had 26,973 views, 19,768 article views, 5,845 article

downloads, and 1,360 topic views.
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Alsaqqa and Alwawi conducted a scoping review on the

characteristics of studies, related concepts, and recommendations

for implementing digital interventions in public health. It

highlighted the importance of addressing structural inequalities,

ensuring personal agency, and social connectedness. The study also

emphasized the importance of iterative optimization during study

design, involving stakeholders, and using contextual indicators to

enhance the effectiveness of digital interventions. An important

aspect of the review was the call for more patient and

public involvement and the suggestion to adopt standardized

metrics to improve research quality and application of digital

health interventions.

Morita et al. explored the application of large language models

like ChatGPT in public health through SWOT and PESTLE

analyses. The identified strengths include personalized health

support and data analysis capabilities, weaknesses such as potential

miscommunication and data privacy issues, opportunities in

improving healthcare access and disease surveillance, and threats

including misinformation and bias. The PESTLE analysis identified

factors like government policies impacting investment and data

governance, cost-effectiveness and job impact considerations,

public trust and cultural attitudes toward AI, integration with

health systems and algorithmic transparency, privacy laws

and ethical guidelines, and the environmental impact of AI

infrastructure’s energy consumption and carbon footprint.

Wen et al. used 2D gait videos for automatic anxiety assessment

among graduate students. By analyzing gait features from time-

series data, the authors created anxiety assessment models via

machine learning. The study found that dynamic time-frequency

features significantly enhance model performance, particularly

for women. The models demonstrated reliability and validity,

suggesting that 2D gait analysis could be a practical, non-invasive

method for real-time anxiety assessment and should be further

investigated and evaluated in clinical samples.

Huisman et al. examined the validity of automated sentiment

analysis in interpreting emotional content from therapy session

notes of patients with eating disorders, comparing it to human

raters. The study analyzed 460 records and found moderate

agreement between automated analysis and human raters. The

findings suggest the potential for automated sentiment analysis

in clinical settings but emphasize the need for further refinement

before applying the algorithm in clinical settings, particularly

by incorporating ED-specific terminology and establishing more

relevant benchmarks for validation.

Franken et al. investigated the ability of ML to predict

improvement in patients using real-world longitudinal data from

specialized outpatient mental health treatment. Different ML

models were trained and compared with traditional logistic

regression. The models showed moderate predictive ability in

an independent test set, with slightly better performance when

early change scores were included as predictors. Machine learning

algorithms did not outperform simpler logistic regression models.

Early change during treatment was a crucial predictor for longer-

term outcomes.

Li et al. also aimed to leverage the advantages of an ML

approach over traditional statistical methods to predict the risk

of depression in people with obstructive sleep apnea hypopnea

syndrome using data readily available from the NHANES database.

Several features predictive of depression were identified, including

demographic, health and lifestyle-related, and socio-economic

factors. Interestingly, like in the study by Franken et al., the simple

logistic regression model was not inferior—and even superior—to

more complex ML models.

Kim et al. used ML methods to examine the performance

of classifying states of stress and non-stress using biosignal

data measured by a smartwatch. In contrast to the previous

studies, this study used an experimental setup where participants

were instructed to perform stress-inducing and relaxation

tasks. The top 9 features extracted from the heart rate and

photoplethysmography data were able to classify stress with an

accuracy of >80% with, again, the logistic regression classifier

showing the best performance.

Delgadillo et al. performed a study during the COVID-

19 pandemic using Bayesian network analyses and modeling

interactions between risk and protective factors for suicidal

ideation in Austria and the UK. The models achieved high

predictive accuracy (AUC ≥ 0.84 within-sample and AUC

≥ 0.79 out-of-sample), explaining nearly 50% of suicidal

ideation variability. Seven consistent factors, including depressive

symptoms, loneliness, and anxiety, were identified in both

countries. This study shows the potential to predict suicidal risk

accurately using these factors.

Jović et al. addressed the challenge of comparing ADHD scores

across different scales used by various research consortia. They

harmonized scores from the Child Behavior Checklist (CBCL)

and Strengths and Difficulties Questionnaire (SDQ) using various

test equating and machine learning methods on 1,551 parent

reports of children aged 10–11.5 years. The study found that

methods utilizing item-level information and treating outcomes as

interval measurements, such as regression, were most effective for

harmonizing scores.

Pavicic et al. used iterative Random Forests to identify

geographic, environmental, and sociodemographic predictors of

suicide attempts among U.S. veterans. Analyzing data from 405,540

patients, the model incorporated 1,784 features, including climatic

factors, population demographics, and the density of firearms and

alcohol vendors. Key findings indicated that areas with higher

concentrations of married males have lower suicide attempt rates,

while areas with renting and males living alone have higher rates.

Bremer-Hoeve et al. investigated predictors of treatment

dropout in patients with post-traumatic stress disorder (PTSD)

due to childhood abuse, using elastic net regression. Analyzing

data from 121 patients undergoing two different Eye Movement

Desensitization and Reprocessing (EMDR) therapy protocols, they

identified key dropout predictors: male gender, low education,

suicidal thoughts, emotion regulation issues, high general

psychopathology, and lack of benzodiazepine use.

Guo et al. explored causal factors of non-suicidal self-

injury (NSSI) in children using computational causal analysis.

They identified nine key factors: life satisfaction, depression,

family dysfunction, sugary beverage consumption, positive

youth development (PYD), internet addiction, COVID-19

PTSD, academic anxiety, and sleep duration. The research

highlighted four main causal pathways and emphasized the
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roles of pandemic-induced lifestyle changes, screen time,

adolescent development, and family dynamics in NSSI

risk, advocating for targeted interventions addressing these

diverse factors.
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