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Radon is a natural and radioactive noble gas, which may accumulate indoors and 
cause lung cancers after long term-exposure. Being a decay product of Uranium 
238, it originates from the ground and is spatially variable. Many environmental 
(i.e., geology, tectonic, soils) and architectural factors (i.e., building age, floor) 
influence its presence indoors, which make it difficult to predict. However, 
different methods have been developed and applied to identify radon prone 
areas and buildings. This paper presents the results of a systematic literature 
review of suitable statistical methods willing to identify buildings and areas 
where high indoor radon concentrations might be  found. The application of 
these methods is particularly useful to improve the knowledge of the factors 
most likely to be  connected to high radon concentrations. These types of 
methods are not so commonly used, since generally statistical methods that 
study factors predictive of radon concentration are focused on the average 
concentration and aim to identify factors that influence the average radon level. 
In this paper, an attempt has been made to classify the methods found, to make 
their description clearer. Four main classes of methods have been identified: 
descriptive methods, regression methods, geostatistical methods, and machine 
learning methods. For each presented method, advantages and disadvantages 
are presented while some applications examples are given. The ultimate purpose 
of this overview is to provide researchers with a synthesis paper to optimize the 
selection of the method to identify radon prone areas and buildings.
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1 Introduction

Radon is a naturally occurring radioactive gas that might 
accumulate indoors and pose a health issue. It is formed from the 
decay of uranium found in soil, rock, and water (1, 2). Radon can 
enter buildings through cracks in foundations, gaps around pipes, and 
other openings, where it can accumulate to potentially harmful levels 
(2, 3). Prolonged exposure to elevated radon concentrations increases 
the risk of developing lung cancer, making it a leading cause of lung 
cancer (2, 4) along with smoking. Furthermore, high radon exposure 
affects individuals of all ages and backgrounds, with particularly 
heightened risks for smokers due to the synergistic effect of radon and 
smoking fumes (5, 6). For these reasons, it became a public health 
issue, handled by the WHO since the beginning of the 1980’s (2). 
Radon management, regulations and their implementation vary 
significantly from one country to another, but the common goal is to 
reduce the average level of radon to which the population is exposed 
and thus reduce the risk. Each nation adopts its approach to address 
the challenges posed by radon exposure based on factors such as 
geographical location, geological composition, and existing 
infrastructure. European Basic Safety Standards, Euratom Directive 
59/2013, requires that Member States identify areas with elevated 
levels of indoor radon concentration. According to the optimization 
principle in radiation protection, areas identified as radon-prone and 
buildings with high radon concentrations are priority targets for 
intervention to reduce radon-related risks.

Measuring radon levels typically involves deploying dosimeters in 
buildings, dwellings, schools, and workplaces to assess the 
concentration of radon gas over a specified period. However, 
conducting radon measurements in every building is barely impossible 
due to logistical challenges and resource constraints. The sheer 
number of buildings, coupled with varying access permissions and the 
need for prolonged monitoring periods, as all the measurement 
protocols require, makes comprehensive testing unfeasible. Therefore, 
it is crucial to explore alternative approaches to identify radon-prone 
areas and buildings efficiently.

Indoor radon levels can be  influenced by various factors, 
including geological, climatical, building and occupancy 
characteristics (7). The presence of uranium-rich soil and rocks 
beneath or surrounding a building can significantly influence indoor 
radon levels (8–10). The lithology of the region, including the type 
of rocks and soil composition, plays a crucial role in determining the 
potential for radon generation (8). Additionally, climatic factors such 
as temperature, humidity, atmospheric pressure and precipitation 
can affect radon transport and accumulation within the soil and 
surrounding environment (7, 11–14). Furthermore, tectonic activity, 
such as faults and fractures in the Earth’s crust, can create pathways 
for radon gas to migrate from deep geological layers to the surface 
and into buildings (15–17). Therefore, a comprehensive 
understanding of the geological, climatic, and tectonic characteristics 
of an area is essential for assessing and mitigating indoor radon 
levels effectively. Moreover, various building factors can influence 
the presence of radon and its concentration levels indoors. 
Construction materials and building design play a significant role in 
determining radon infiltration (18–21). For instance, the presence of 
cracks in the foundation or walls can provide pathways for radon gas 
to enter a building from the surrounding soil (3). Additionally, the 
type of flooring, the age and the type of building may all influence 

indoor radon concentrations (22, 23). The ventilation system of a 
building also plays a crucial role in radon mitigation, as proper 
ventilation can help dilute radon concentrations and more generally 
promotes a better indoor air quality (18, 24, 25). Moreover, 
occupancy patterns, such as the number of occupants, the duration 
of time spent indoors and their activities, can influence radon levels 
and indoor air quality by affecting indoor air circulation and mixing 
(7, 22, 26).

A comprehensive understanding of the factors influencing indoor 
radon levels is essential for guiding well-defined and sustainable 
public health policies to mitigate the health risks associated with 
elevated indoor radon levels. By investigating and analyzing these 
different influences on indoor radon levels, and their inter-
relationship, it may be possible to predict indoor radon levels, or at 
least, the probability of exceeding specific radon levels. These 
approaches include basic statistical analysis, regressive statistical 
analysis, geostatistical methods and machine learning (ML) methods. 
In today’s landscape, the abundance of available methods poses a 
challenge for researchers in selecting the most appropriate method 
relative to its own context of application. This paper thus aims to delve 
into main methods used for investigating indoor radon concentrations, 
with a special focus on high levels, and to assess their respective 
applications. More specifically, this paper seeks to present a systematic 
review of statistical methods to identify radon prone areas and 
buildings as a priority target of intervention to reduce radon related 
risk, aiming to comprehensively evaluate effectiveness and suitability 
of the different methods across different contexts and scenarios.

2 Methodology

2.1 Document selection

The literature searches for methods aiming at (1) identifying areas 
with high radon levels and at (2) identifying buildings with high radon 
levels that have been performed separately. However, for both 
purposes, a systematic review of the published studies has been 
performed using the PRISMA methodology (27). The latter 
methodology is commonly used by researchers to perform systematic 
literature review and meta-analysis (27). Among the databases 
available, we  used the following online databases to search for 
documentation: Web of Science, Scopus and PubMed.

The defined research strategy aimed to collect all the documents, 
regardless of the document type, the year of publication, the language, 
and its availability (i.e., open source). All documents have been 
collected up to the 10th of May 2024. The keywords used for the 
searches are reported below in Table 1 for the identification of radon 
prone areas and in Table 2 for the identification radon prone buildings. 
The wildcard “*” was used to encompass different words that are 
variations of the same term. The references in the retrieved articles 
were also assessed as potentially relevant.

2.2 Data extraction and evaluation of the 
papers

Selected documents were evaluated and information about each 
one was extracted using a standardized datasheet. The latter was used 
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to collect: (1) main information of the paper evaluated; (2) main 
characteristics of the datasets to which the method has been applied 
(e.g., number and type of measurements); (3) main information of the 
method used (e.g., pro and cons, accuracy, conditions for applicability). 
Based on this information, the paper was either rejected or retained 
for inclusion in the review. The standardized form used in this study 
is presented in Figure 1.

2.3 Classification of the results

The systematic literature review resulted in a large and dense 
dataset, both in terms of identified methods and their application 

scope. Although the literature search has been conducted 
separately on statistical methods for identifying buildings and 
areas with elevated radon levels, we present the methods without 
distinguishing between their areas of application, as many 
methods serve both purposes. Aiming to ease the presentation of 
the results, we classified the different methods according to their 
type. The Application section of each type of method lists the work 
in which the method has been used, highlighting their application 
scope, which is often guided by the type of input data. The 
proposed classification is not a clear-cut classification, since some 
methods described in different classes may have features in 
common. Four broad categories were identified: (1) descriptive 
statistical methods; (2) traditional regression (quantile and 
logistic) methods; (3) geostatistical methods; (4) machine 
learning methods.

The methods selected for this review will be described in sections 
dedicated to the four distinct categories, with relevant literature cited 
as examples of their application. All the methods can generally be used 
for mapping purposes, that is to characterize a territory in terms of its 
radon potential thus identifying areas with high radon concentrations. 
With this aim, these methods might be applied to different types of 
data, such as indoor radon data or soil radon concentration 
measurement data. Alternatively, the same methods can be used to 
identify factors that predict high concentrations in buildings; in this 
case, the data of interest are typically indoor radon data.

2.4 Evaluation of the methods 
performances

Working with predictive models (or algorithms) leads to the need 
to evaluate the performance of a model, that is its ability to make 
accurate predictions on unseen data.

Several metrics exist to evaluate the performance of a model, and 
the choice depends on the type of model, whether it is either a 
regression model (continuous output) or a classification model 
(nominal or binary output). To test how well a predictive model 
generalizes, the data set is usually split into training and test data, 
where the test data is only used for performance evaluation and should 
be  independent from the training set. Alternatively leave-one-out 
cross validation (k-folding) can be used to test the performance.

In k-folding the dataset is subdivided into k different folds (dataset 
portions) which are in turn extracted to test the model built on the 
remaining (k-1) dataset. Since the model is trained and validated 
multiple times on different subsets of the data, that “crossed” between 
training and validation roles, k-fold cross-validation helps to reduce 
the risk of overfitting, which occurs when a model performs well on 
the training data but poorly on unseen data.

A widely used tool for measuring the performance of a 
classification model (e.g., a logistic model with a binary outcome) is 
the confusion matrix (Figure 2), from which various performance 
metrics, such as accuracy and AUC-ROC curves. Are calculated.

Accuracy is a measure of how well the models’ predictions fit real 
data, based on the number of correct (true) predictions out of all 
predictions made. The AUC (Area Under the Curve) measures the 
area underneath the Receiver Operating Characteristic (ROC) curve, 
that is the plot between the true positive rate (also known as 
sensitivity) and the false positive rate (also known as 1-specificity).

TABLE 1 Research criteria to select documents for identifying radon 
prone areas.

Criteria Where Keywords

I Title OR Abstract
“radon” | “(222)Rn” | “222Rn” | “Rn-

222”

II Title OR Abstract

“radon prone area*” | “priority area*” | 

“high radon level*” | “elevated radon 

level*” | “high radon concentration*” | 

“high radon exposure*” | “high radon 

potential” | “high background” | “radon 

affected area*”

III Title OR Abstract “method*” | “approach*” | “mapping”

IV Title OR Abstract NOT “transform*”

Each document selected contained one keyword, at least, in each criterion keywords list. 
“Or” is implemented with its logical sign: “|.” The wildcard “*” was used to encompass 
different words that are variations of the same term. The criteria I-IV were combined using 
the “And” Boolean operator.

TABLE 2 Research criteria to select documents for identifying radon 
prone buildings.

Criteria Where Keywords

I Title OR Abstract
“radon” | “(222)Rn” | “222Rn” | “Rn-

222”

II Title OR Abstract
“building*” | “dwelling*” | “hous*” | 

“school*” | “workplace*” | “indoor*”

III Title OR Abstract
“factor*” | “characteristic*” | “feature*” 

| “parameter*”

IV Title OR Abstract

“identif*” | “detect*” | “predict*” | 

“forecast*” | “affect*” | “influenc*” | 

“impact*”

V Title OR Abstract
“high*” | “elevated” | “exceed*” | 

“above” | “quantile*”

VI Title OR Abstract “approach*” | “method*”

VII Title OR Abstract

“logistic regression” | “quantile 

regression” | “random forest” | 

“machine learning”

Each document selected contained one keyword, at least, in each criterion keywords list. 
“Or” is implemented with its logical sign: “|.” The wildcard “*” was used to encompass 
different words that are variations of the same term. The criteria I-VI were combined using 
the “And” Boolean operator.
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Both the accuracy and the AUC-ROC metrics range from 0 to 1, 
where a higher value indicates better model performance. A value of 
0.5 suggests that the model’s predictions are not meaningful or useful 
for distinguishing between classes in the dataset, that is, the model has 
no discriminative power (equivalent to random guessing). Thus, the 
0.5 value could be used as a benchmark for comparison.

Among the most used metrics to evaluate the performance of a 
regression model are MAE (Mean Absolute Error), that measures the 
average absolute differences between predicted and actual values, 
RMSE (Root Mean Squared Error), that is based on the differences 
between predicted and actual values, and the R-squared, which 
measures the proportion of the variance explained by the model. A 
better model’s performance is associated with higher R-squared values 
and lower MAE or RMSE values. When the RMSE decreases or the 
R-squared increases, the model’s performance improves.

3 Results

3.1 Document selection

3.1.1 Radon prone areas
The process of documents selection and exclusion is depicted in 

Figure 3. Overall, 575 records were found in two databases (PubMed, 
Scopus) and duplicate records were removed. A total of five 

publications were added due to personal communication which sums 
up to a total of 492 selected publications. All identified papers were 
in English.

After screening titles and the abstracts of these papers, 445 papers 
were discarded for different reasons. The major reason for neglecting 
a publication was that the focus was brought on general radon risk, 
geology and mining or measurement techniques. Afterwards, another 
six publications were discarded due to a too broad and general 
overview. At the end, 47 publications remained and were further 
examined and analyzed for the identification of areas with high 
radon levels.

3.1.2 Radon prone buildings
A total of 252 papers were identified after removing the duplicates 

from the 403 records found. All identified papers were in English. The 
process of study selection and exclusion is shown in Figure 4.

After the screening of the titles and the abstracts of these papers, 
216 papers were discarded since they did not deal with the issue of 
interest for the present review (i.e., mostly papers describing methods 
able to find explanatory variables of the average indoor radon levels 
within buildings). One additional paper found among the references 
of the retrieved articles was also preselected. Overall, 37 full text 
articles were further examined. Of these, 11 papers were deemed of 
interest as they specifically address methods aimed at identifying 
buildings with high radon concentrations.

3.2 Focusing on predicting high radon 
levels

Different approaches to focus on the prediction of high radon 
levels exist. In our work we are mainly interested in methods that 
predict areas and buildings with high radon levels. Therefore, 
predictive models can be powerful tools and with a solid database and 
a profound training and test data split it is possible to create accurate 
models that generalize. In general, predictive models are not designed 
to predict certain values or value ranges like very small or very high 
values. But modifying the target value it is possible to focus on special 
value ranges, for example to focus on high radon values. Different 
techniques to increase the impact of high values exist.

One strategy to focus on high radon levels is to keep the actual 
radon concentration as target value without transformation or 

FIGURE 1

Standardized form used to evaluate the selected documents.

FIGURE 2

Relationship between real data and model’s output within a 
confusion matrix.
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modification. Indoor radon concentrations typically approximately 
follow a log-normal distribution (28). The lognormality of the target 
variable in a predictive model is an interesting feature, moreover when 
focusing on high radon levels, where the few but not often occurring 
high radon levels might be the most interesting ones. In a regression 
task when evaluating the model performance, the error of prediction 
and target value are calculated. The error of predictions is commonly 
a measure of distance, as the mean squared error or mean absolute 
error. Observations with higher deviations of prediction and target 
value contribute more to the error than observations with low 
deviations. Transforming the target value changes how observations 
with high indoor radon concentrations contribute to the prediction 
error. If the actual log-normal distributed indoor radon concentrations 
without a transformation or aggregation are used as target variable, 
higher indoor radon concentrations can contribute more to the 
prediction error than low concentrations, because they have a higher 
potential for deviation. By log-transforming the indoor radon 
concentrations this effect vanishes and the potential of contributing 
to the prediction error becomes balanced, and the focus of prediction 
is shifted from observations with high indoor radon concentration to 
average values. Therefore, predicting the log-transformed target value 
of a log-normal distribution increases model performance and 
because great deviations from the average values are less penalized.

The aggregation of indoor radon concentrations by using the 
geometric mean or other central aggregations has a similar effect on 

the predictions. By transforming or aggregating the indoor radon 
concentrations higher indoor radon concentrations lose impact, but 
model performance will increase. Using the untransformed 
log-normal distributed indoor radon concentrations is an example of 
increasing the impact of high values by penalizing them during 
training. Similar results can be achieved when weighing the samples 
according to their target value, where higher values get higher weights 
and have a greater impact on the performance evaluation.

Duplicating samples with high values can have a similar effect. 
Doing so no new information is added to the data set but during 
training the model more often sees these samples and therefore tries 
best to predict these high values. As indoor radon concentrations 
typically show a log-normal distribution, high values are 
underrepresented and by duplicating these high values the data set 
gets more balanced.

By transforming the regression into a classification task, the 
performance evaluation shifts from a distance metric yes/no decision 
for each class, where the exact value of the target value is not important 
anymore but the overall class. For example, indoor radon 
concentrations could be divided in two classes, lower and greater 
equal to 300 Bq/m3. This could lead to more robust predictions for 
each class and therefore also for high radon levels,

Another strategy is to focus on the prediction on high radon levels 
is to adopt the loss function, as will be  discussed in the quantile 
regression section and machine learning chapter, where machine 

FIGURE 3

Flowchart of the included papers to review the methods to identify areas with high radon levels. Based on PRISMA 2020 flow diagram template (27).
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learning methods can be transformed to a quantile regression task by 
using the tilted absolute value loss function for neural networks or by 
using quantile regression forests, which is an adoption of 
random forests.

3.3 Statistical methods to identify areas and 
buildings

Four broad classes of methods have been identified: (1) descriptive 
statistics methods; (2) regression methods; (3) geostatistical methods; 
(4) and machine learning methods. These classes of methods are 
presented below, with the aim of highlighting their respective 
strengths, limitations, and performance, if reported.

3.3.1 Descriptive statistics methods
Descriptive statistical methods aim to analyze, summarize, and 

explore data without the willingness to predict. These methods are 
mandatory to explore data, which includes the calculation of basic 
aggregates as means or ranges, or the visualization through different 
kind of plots, i.e., correlation analysis, ANOVA, or outlier detection. 
Descriptive statistical analysis is therefore the basis of any further 
investigation or predictive method, while it also produces its own 
findings. For example, these methods are used to produce maps 
describing a territory based on measurements of a certain variable. 

Two main descriptive statistical methods were applied to indoor 
radon dataset, presented in Table 3. These methods are correlation 
analysis, and statistics by geographic grouping.

Correlation analysis has been applied in different context to assess 
the statistical link (e.g., Pearson’s correlation coefficient) between 
indoor radon and geological data (29–32), uranium content data (30), 
gamma ray survey (30, 33) or radon-222 exhalation rate measurements 
(34). Indeed, indoor radon measurements are generally used to 
confirm a mapping of a high radon area when the map was previously 
created with another dataset than indoor radon concentration (e.g., 
geology, field measurement) (30, 34, 35).

A common approach to delineate radon prone areas is based on 
the calculation of descriptive statistics (from a dataset of radon 
concentration measurements) typically for each of the administrative 
units in a territory (36–39). Miles and Appleton (40) applied some 
statistics by geographic grouping by combining grid square and 
geological mapping methods. The resulting maps were more accurate: 
within each geological combination with more than 100 radon 
measurements, the variation of radon potential was mapped using a 
1 km2 of the national grid. Radon potential was attributed to each grid 
square based, at least, on the nearest 30 house radon measurement 
results to that square. Grouping indoor radon measurements with 
geology on 1 km2 of the national grid squares allowed to identify new 
radon affected areas that remained unidentified so far, especially in 
areas where radon measurements were rare. However, high indoor 

FIGURE 4

Flowchart of the included papers to review the methods to identify buildings with high radon levels. Based on PRISMA 2020 flow diagram template 
(27).
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radon levels measured within a single square with low measurement 
density may overestimate the potential.

3.3.2 Regression methods
Regression is a common statistical method for studying 

relationships between variables. In general, a response variable Y is a 
function of a set of n observed predictor variables X1,.,Xn, also defined 
as covariates, such that Y = f(X1,.., Xn). With regression methods the 
only information that is obtained about the relationship between y and 
the covariates X is how the mean of the response variable Y varies as 
each Xi varies; in other words, the function is defined for the expected 
value of Y conditional on the covariates:

 ( )1 0 1 1,, ,, n n nE Y X X X Xβ β β… = + +…+  (1)

With the coefficients iβ  describing the impact of each covariate 
on the average level of the response variable. Focusing exclusively on 
variations in the average may under or overestimate or fail to detect 
the real impact some variables may have on a response variable. If, 
therefore, we apply a classical regression model that predicts effects of 
several factors (predictors) on the mean value of radon concentration, 
the results obtained may not provide a complete picture of the 
relationships between those variables, especially if we are interested in 
the impact that certain factors have on high radon concentration 
values (right tail of the radon concentration distribution).

3.3.2.1 Quantile regression
It is possible to fit regression curves to other parts of the 

distribution of the response variable: the quantile regression, as 
introduced by Koenker and Bassett (41), is a method for estimating 
functional relations between variables for all portions of a probability 
distribution, thus implying the possibility that there is not a single rate 
of change describing the relationship between a response variable and 
predictor variables. Quantile regression extend the classical regression 
methods aiming to estimate the relationship between quantiles of the 
conditional distribution of the response variable Y and a set of 
observed covariates X1,..,Xn (Equation 2):

 ( )1 0 1 1,, ,,Y n n nQ X X X Xτ τ ττ β β β… = + +…+  (2)

With τ  representing the quantile level of interest, reminding that 
a quantile of level τ (with 0<τ <1) represents the value of the Y 
distribution such that τ  % of the data falls below it. This approach 
offers a regression model for each of the quantiles of interest separately. 
In this way, it is possible to study the influence of explanatory variables 
on the shape of entire Y distribution. In fact, the parameters iτβ  
represent the impact of the covariate Xi on the specific quantile of level 
τ , allowing these parameters to be different for different quantile levels 
(e.g., Figure 5).

The feature of different slope coefficients at different points in the 
distribution is particularly useful if the underlying data exhibits 
heteroscedasticity, that is, the quantile regression model is particularly 
well suited to detect and describe the heteroscedasticity and how it 
may act as an “effect modifier” of a predictor at different levels of the 
response variable (42).

The quantile regression can be  applied without assuming any 
parametric distribution and without specifying the variance and 
covariance structure of the error for the response variable. The 
parameter estimation approach, based on the minimization of a check 
loss function, makes the estimates more robust than those obtained 
through the classical regression described by the conditional mean 
model (Equation 1). Quantile regression model allows to evaluate the 
impact of several factors simultaneously on the quantile ( )YQ τ , 
however generally this method is not used to handle a very large 
number of covariates.

Starting from this original idea as presented in Koenker and 
Bassett (41), the quantile regression approach was further developed 
to make it suitable for a wide variety of data analysis settings. In 
particular, one extension of the quantile regression approach stems 
from the need to handle spatial data, such as radon concentration 
measurements, the difficult of which is due to the possibly highly 
complex spatial dependence among the various measurement sites. 

TABLE 3 Selected descriptive statistics methods and their respective 
descriptions.

Method Description

Correlation analysis

Correlation is a statistical measure which 

provides information about the 

relationship between two variables. The 

strength of the linear correlation is 

determined by the correlation coefficient 

ranging from −1 to +1. Correlation 

analysis does not imply causation but 

rather can be used to determine the 

strength and direction of the correlation 

between two variables.

Statistics by geographic grouping

When data are georeferenced and 

numerous, summary statistics (e.g., 

arithmetic mean, standard deviation, ...) 

of the variable of interest can be produced 

by geographic grouping such as grids-

square or geological/administrative units.

FIGURE 5

Possible parameters estimate, related to an hypothetical covariate, 
obtained by quantile regression.
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Moreover, the quantile regression approach was also extended to the 
Bayesian framework (43–45). A comprehensive review of the quantile 
regression class of methods, their applications, and relevant literature, 
is reported in the “Handbook of quantile regression” (46).

3.3.2.1.1 Applications
Quantile regression can be  particularly useful in the radon 

context, because it allows to focus on the right tail (i.e., the high 
percentiles) of the radon distribution, which is associated with a 
higher lung cancer risk.

Although a vast literature is available for quantile regression 
methods and many of its applications, few papers were found focusing 
on radon concentration (47–50), and all used methods that develop 
from the original quantile regression (and also incorporating spatial 
dependence) to evaluate the impact that predictors potentially have 
on high radon concentration values. In these papers the analyses are 
applied to indoor radon concentration datasets, in dwellings or 
schools. Factors included in the model are related to building 
characteristics (building destination of use, contact with ground, 
building materials, building age, dwelling floor), and in some cases 
also radiometric data, geological data and altitude are included.

Using a quantile regression approach, these papers generally 
showed that the effect of explanatory variables may change quite 
significantly depending on the level of indoor radon concentration 
(e.g., single building, direct contact with ground). In few cases no clear 
pattern of influence across quantiles is observed as for instances 
building age (50) and geological factors (49).

3.3.2.2 Logistic regression
Logistic regression is a very simple and powerful tool to develop 

a prediction model for a binary outcome (the dependent variable). In 
the present context, the binary outcome is the indoor radon 
concentration (IRC) above (event “1”) or below (event “0”) a certain 
threshold. Logistic regression is a statistical model predicting the 
probability p of an event taking place (e.g., IRC above a threshold) 
depending on the linear combination of one or more independent 
variables. Usually, when one wants to understand the relationship 
between one or more predictor (or explanatory) variables and a 
continuous response variable, it is possible to use a linear regression 
model. However, in our case, the response variable is categorical 
(high = 1/low = 0 IRC), and a classical linear regression as described in 
[1] is not suitable to predict the probability of the event being 1, as it 
is not limited in a predefined interval, while probability is (by 
definition, from 0 to 1). Therefore, the relationship between some 
predictor variables and the probability p to find a radon concentration 
higher than a fixed threshold T may be described through a function 
whose values span in the [0,1] interval (Equation 3), such as the 
S-shape logistic curve (Figure 6):
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Applying a proper function (i.e., logit function) to the response 
variable (the probability p), a model linearization is obtained, and it is 
possible to easily estimate the values of the coefficients, although their 
interpretation is not trivial.

Logistic regression is straightforward to use to discriminate 
between the many factors influencing the probability to measure high 

indoor radon levels, but the method requires a threshold to be set to 
identify what are considered high values. The threshold should be a 
reasonable value that considers both the data available (“high” radon 
concentration measurements might be a small number in a dataset) 
and the particular interest to use a specific threshold (because it has a 
regulatory or recommendatory value) (Table 4).

3.3.2.2.1 Applications
In the selected papers, the logistic model is applied using different 

threshold values. In Dai et al. (51), the threshold considered is 148 Bq/
m3 (action level for remediation in the United States), while in Vukotic 
et al. (52) the threshold value was fixed to 200 Bq/m3, in line with the 
UE guidelines for indoor radon levels. Often different analyses are 
implemented using several thresholds, as done in Borgoni et al. (53), 
who used four different threshold values (100, 200, 300, and 400 Bq/
m3), and in Stanley et al. (54), who used the two thresholds 100 and 
500 Bq/m3.

All the previously discussed papers applied logistic regression 
with the main objective of identifying the major features influencing 
IRC. However logistic regression was also used to identify radon-
prone areas, feeding the model not only with covariates describing 
building characteristics, but also with several geogenic and/or 
geophysical factors, including geological data and airborne geophysical 
parameters (29, 55, 56).

Therefore, even if logistic regression might not be  entirely 
classified within the geostatistical methods (see next section), such an 
approach can also be useful to enhance predictive power of geogenic 
radon maps with a high level of accuracy [76.5% in (55), and 77.9% 
in (29)].

3.3.3 Geostatistical methods
In the context of identifying buildings and areas with high radon 

levels, geostatistical methods have been largely explored so far. Indeed, 
geostatistical tools allow us to predict radon related variables based on 
the distribution of known observations, in areas where it has not been 
measured. This is possible because closer observations show higher 
autocorrelation than the most distant observations, which is known 
as the first law of geography (57): “Everything is related to everything 
else, but closer things are more related than distant things.” Naturally, 
geostatistical methods depend on georeferenced data, which is now 
generally used in radon surveys. They can be applied with only the 

FIGURE 6

Example of logistic curve in the single-variable case.
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data of interest or use additional georeferenced variables. Methods 
using many different input parameters might overlap with regression 
methods and machine learning methods, where for instance 

coordinates are only one predictor in bunch of input parameters. In 
this chapter, application of classical geostatistical methods such as 
inverse distance weight, kriging and geographically weighted 
regression are presented. Table 5 synthesizes some of the most used 
geostatistical methods in the radon context.

3.3.3.1 Applications
Inverse distance weight (IDW) has already and, above all, largely 

been applied through different studies in different contexts. Overall, 
authors decided to use IDW because the method has the advantage of 
complying well with noisy data and it might interpolate short-range 
variation (58–61). Radon measurements carried out in buildings 
might present a high spatial variability, which results in very few 
spatial correlations between the measurements. IDW is therefore the 
ideal tool to answer this kind of dataset (60). Moreover, this method 
presents another advantage in its ease of implementation, which 
makes it cost-and time-efficient. However, authors noticed some 
counter-performances of IDW. Since IDW allows to identify small 
scale variations, this method tends to miss the global trends in the 
overall dataset (58). Finally, the results provided by IDW are 
considered as valuable by the different authors (62) although it is 
necessary to implement IDW carefully knowing all its strengths 
and weaknesses.

Among all the geostatistical methods introduced in this chapter, 
kriging and its variations are the most implemented method to assess 
high radon areas (58, 59, 61, 63–69). Most of authors note the difficulty 
to include all related elements and carry out the different steps of the 
methodology, although some software allows to simplify its 
application, such as ArcGIS (65, 66). Nevertheless, this method 
presented really good results: Sabbarese et al. (68) concluded that 
kriging allowed them to identify radon prone areas even the ones 
where very few data was recorded. Similarly, a geogenic radon 
potential map, highlighting radon-prone areas was created using 
kriging and co-kriging (67). Moreover, it has been highlighted that 
kriging is the best linear unbiased spatial predictor (58, 61). It has been 
noticed that an application of kriging algorithm allows to avoid 
smoothing effects (63). Beyond the difficulty to implement this 
method, it has been shown that the calculated weights not only 
depend on the distance but also on the direction and orientation of 
the closest data in scarce data area. Cafaro et al. (65) underlined a 
strong need to deeply understand radon’s underlying layers, such as 
geology, and to have a homogeneous spatial repartition of radon data 
among the studied spatial extent. Indeed, unreliable measurements 
might be  produced by non-stationary effects and the lack of 
correlation between geology and indoor radon levels, especially in 
karstic areas (65). Akkala et al. (58) also underlined non-stationarity 
issues in real-world datasets. Kriging may be declined in different 
models, such as simple, universal, conditional or disjunctive kriging 
(70). The latter model revealed to be very effective to identify radon 
prone areas using only indoor radon measurements (69). Finally, 
Bachirou et  al. (59) compared the performances obtained with 
ordinary kriging and IDW. No significant differences were observed 
in the prediction errors of the two techniques adopted, applied in a 
similar context and with an identical dataset (59).

Then, geographically weighted regression (GWR) has been used 
several times to identify radon-prone areas. This method has been 
applied several times in Italy (71–73). GWR presented the advantage 
of localizing small-scale variations, such as IDW, but also produces a 

TABLE 4 Selected regression methods and their respective descriptions.

Method Description

Quantile regression

Quantile regression is a statistical method 

for estimating functional relations 

between variables for all portions of a 

probability distribution, thus implying the 

possibility that there is not a single rate of 

change describing the relationship 

between a response variable and predictor 

variables.

Logistic regression

Logistic regression is a statistical model 

for a binary outcome (the dependent 

variable). Logistic model predicts the 

probability of an event taking place (in 

our context, indoor radon concentration 

above or below a certain threshold) 

depending on the linear combination of 

one or more independent variables.

TABLE 5 Selected geostatistical methods and their respective 
descriptions.

Method Description

Inverse Distance Weight (IDW)

Interpolation and deterministic method 

which relies on existing data 

measurements. Radius (max. Distance 

of influencing measurements) and 

power (influence pondered to distance) 

determine the result of interpolation.

Kriging

Interpolation and deterministic method 

based on existing data measurements 

and their statistic relationship. 

According to different parameters, the 

resulting interpolation is associated with 

an uncertainty map issued from the 

statistical modeling.

Geographically weighted regression

Multiparameter predictive tool which 

uses different explanatory variables, 

including non-stationary variables 

(climate, geographical coordinates), to 

predict an indicator. Each explanatory 

variable is given a coefficient, such as in 

a linear regression.

Local polynomial interpolation

Two-dimensional interpolation based 

on a polynomial function applied as a 

filter on a part of the total surface. 

Polynomial function will vary according 

to its location.

Global polynomial interpolation

Two-dimensional interpolation based 

on a polynomial function applied to the 

entire surface investigated.
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map of the local coefficient (73). Ciotoli et al. (71) underlined the 
accurateness of the model, which is commonly used, and the fact that 
only influential explanatory variables are needed to run the model. 
Finally, De Novellis et  al. (72) used GWR because it allowed to 
estimate the indoor radon concentration by using some local 
environmental properties, e.g., the geogenic radon potential of the 
underlying soil. Although GWR presents good results, revealed by the 
authors, this method is very sensitive to the representativeness of the 
sampled data (73).

Other geostatistical methods were investigated and compared in 
two articles (58, 61). Local and global polynomial interpolations were 
applied, and their results are compared to other methods, such as 
kriging, IDW and machine learning methods. LPI presented the 
advantages of being easy to implement, to comply well with noisy data, 
and to interpolate local variations, while the estimation errors 
increased exponentially with increasing complexity in the training 
dataset. GPI requires less data to interpolate and was computationally 
less intensive than LPI. However, GPI was not suitable for 
extrapolation. Compared to IDW and kriging, these two methods 
presented lower performance scores (normalized mean square error) 
than kriging ones, while the latter seemed to be  similar as IDW 
accuracy (58, 61).

Finally, some authors used GIS (Geographic Information System) 
software to implement different and less common methods, such as 
Rasters Factor Rating Method (74), PCA and correlation analysis (75), 
Bayesian estimation of the percentage of houses exceeding a given 
action level (76).

3.3.4 Machine learning methods
Machine learning is a collective term for applications using 

statistical models to analyze, make predictions and draw inferences 
from data, without following full instructions. Machine learning 
methods can be  divided into three main categories: supervised 
learning, unsupervised learning and reinforcement learning. In the 
field of radon usually supervised and, in a few cases, unsupervised 
machine learning methods are used. Supervised learning uses labelled 
input data to generate models to predict unseen or future data. 
Machine learning methods have been shown to be very successful in 
many applications and are already used in predicting radon levels, as 
summarized and analyzed also in recent studies (77, 78).

Supervised learning with a numerical target value is a regression 
task which is already described in the quantile regression section 
(section 3.3.2.1.). Unsupervised learning analyses data and tries to 
find underlying patterns and structure in the data. As examples 
Table 6 presents different selected methods applied in the framework 
of radon prediction.

Supervised learning predictive models are built using labelled 
training data. Model performance is evaluated on test data using 
metrics (e.g., loss functions) to calculate differences between the 
prediction and actual value (e.g., accuracy, confusion matrix, mean 
squared error). The prediction can be a categorical or numerical value 
and, based on the target value and the aim of the prediction, a suitable 
metric is used. A great variety of different supervised learning 
methods for various applications exist.

In the field of radon, various machine learning methods have been 
used already, especially for the prediction of indoor radon 
concentrations. The reason for using data-driven machine learning 
models is that a valid physical transport model from the soil to actual 

indoor radon concentrations has not been found until now. The 
process depends on different factors, that also might be independent 
from each other such as the geogenic radon potential, the type and the 
technical standard of the building and the usage of the building. Also, 
in recent years many indoor radon concentration surveys have been 
carried out, which is a solid data basis for machine learning techniques.

3.3.4.1 Applications
Overall, 18 publications were selected and in the following their 

ability to predict high radon levels is summarized.
The selected papers showed a great variety of machine learning 

models. Some of the publications test different models or use several 
ensembled models. The most used supervised machine learning 
methods are artificial neural networks (58, 61, 78–81), followed by 
random forest (79, 82–84). Other models are only used in one 
publication: support vector machine (84), convolutional neural network 
(85), LSTM (86), k-nearest neighbor (87), mixed effect regression 
model (88), extreme learning machine (86), random vector functional 
(86), multivariate adaptive regression splines (84), boosted generalized 
additive and linear model (80), XGBoost (78, 79), automatic linear 
modeling (79), and group method of data handling (89). In four 
publications, unsupervised machine learning methods or semi-
supervised machine learning methods, Bayesian cluster detection (50), 
k-medoids clustering (83), k-mean clustering (90) and Bayesian profile 
regression were used. None of these methods are specifically designed 
to focus the prediction on high radon levels. In the following the overall 
workflow of the selected publication is analyzed, focusing on 
modifications of the target variable and the used train/test split strategy.

Indoor radon concentrations, their aggregates or transformations, 
were the target value in 15 publications. In two publications, the 
geogenic radon potential was used as target variable. In three 
publications, the actual IRC value was used as target value which keeps 
the focus on high radon levels, because single high values have a greater 

TABLE 6 Selected machine learning methods and their respective 
descriptions.

Method Description

Random forest

Assemble of decision trees, applicable for 

regression and classification task. Can 

handle categorical and/or numerical 

predictors without further modifications.

Support vector machines

Linear boundaries as lines, planes or 

hyperplanes are used either to separate 

binary classes or used as prediction in a 

regression task. It can be extended to 

non-linear models using the kernel trick, 

where predictors are transformed to 

higher dimension, where non-linear 

relations become linear separable.

Feed forward neural network

An input is passed through connected 

neurons to an output. The error at the 

output layer, where a loss function 

measures the performance of the model 

predictions, is used to backpropagated to 

adjust the weights and biases of the 

neurons.
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potential for prediction errors, as also discussed in the result section. 
In one publication the indoor radon concentrations were transformed 
in a classification task with three classes (low, high medium). In two 
other publications the probability exceeding a reference value is used 
as target value. Doing so, the former regression task is also transformed 
to a classification task. Both are valid strategies to predict high radon 
levels. In the remaining publications, log-transformed indoor radon 
concentrations or aggregates like the geometric mean are used for 
prediction. Although these models are also capable of predicting areas 
with high radon levels in general, they are not specially designed to 
predict high radon levels, but rather focus on predicting average or 
mean values. Still a well-designed machine learning workflow can be a 
very powerful tool for predicting radon levels and high radon levels. 
Overall, the selected papers usually do not include detailed sections of 
the modification of the target value (e.g., the log-transformation, 
aggregation) or the reason why a certain modification was used, with 
some exceptions discussed in more detail in the following.

Another sensitive topic when applying predictive models is the 
model evaluation on training and test data. In 14 publications the data 
splitting in training and test data is documented. In 12 of these, the 
data split was performed randomly without further consideration. In 
two publications the data split was performed on spatial criteria to 
avoid spatial autocorrelation of the target variable. When comparing 
the model performance, it is essential to consider if it was evaluated 
on the training, validation, or test data or if these account for the 
spatial autocorrelation of the target value. Models without a clear data 
split workflow might show high model performance, but will fail to 
generalize and might perform poorly on new or unseen data. Keeping 
these general remarks in mind, we will now give short descriptions of 
selected publications with different workflows, that can serve as 
profound examples and baseline of a machine learning workflow.

In Petermann et al. (84) three different machine learning methods 
(random forest – RF, support vector machines – SVM, multivariate 
adaptive regression splines – MARS) are tested to predict the geogenic 
radon potential in Germany with 36 possible predictors. The 
autocorrelation of the target value is described and analyzed, and a 
solution outlined how to deal with this autocorrelation by splitting 
training and test data in geographical blocks. Leave-one-out cross 
validation was used to explore which predictors are useful and to tune 
the hyperparameters of the three models. Feature importance for the 
predictors was calculated and an in-depth analysis of their impact on 
the results was carried out. Multiple metrics for performance 
evaluation are given and the distribution of the prediction is discussed, 
stating that the predictions tend to overestimate small values and 
underestimate high values. Performances metrics for MARS, RF and 
SVM were, respectively, 55.2, 52.8 and 54.4 for RMSE, 0.16, 0.22, 0.22 
for R2, and 25.6, 23.7 and 22.2 for MAE, thus denoting a slightly higher 
predicting power of Random Forest (RF). The publication is the only 
one of the selected publications that does not predict indoor radon 
concentrations but covers so many aspects of a profound machine 
learning workflow that it can serve as a very good starting point for 
predicting a spatial autocorrelated target value. In the publication of 
Rezaie et al. (86), three different machine learning methods (long 
short-term memory – LSTM, extreme learning machine – ELM, 
random vector functional link – RVFL) were tested to predict the 
non-transformed indoor radon concentration. The training and test 
split were done randomly which does not take autocorrelation into 
account. The models are complex models in the field of neural 

networks. The introduction and the discussion of the results are 
in-depth analysis also using different performance metrics. LSTM, 
ELM, and RVFL models performance were similar, as depicted by 
their respective AUC-ROC score of 0.81, 0.83, and 0.82.

In Wu et al. (78) two machine learning methods (Neural-network 
and XGBoost) are used to predict radon levels. The usually applied 
regression task is transformed to a classification task with three radon 
classes based on the Swedish radon legislative: 0 to 200 Bq/m3, 200 to 
400 Bq/m3, and greater 400 Bq/m3. Among the selected publications 
this is a unique approach and relevant for also predicting high radon 
levels, As also stated in the result section machine learning models 
predicting classes, might be  more robust compared to regression 
workflows, and therefore might also predict high values more 
accurately. The train and test split and the performance metric is 
clearly described and documented, XGboost achieved better results 
than the neural network: macro-F1 score were, respectively, ranging 
between 0.93–0.96, and 0.64–0.74 for XGboost and neural network. 
Interestingly the accuracy of the developed model was highest for the 
low and high classes. The middle class showed the highest errors 
among the three classes. The study shows that the transformation 
from a regression to a classification task could lead to more robust 
predictions for high radon values. The downside is that by using 
classes as a target variable, information about the actual numerical 
radon level gets lost. A comparison with a regression model using the 
same data and workflow would be interesting but was not applied.

In two selected publications unsupervised machine learning 
techniques are also applied. In Kropat et al. (83) lithological units 
based on their IRC distribution are clustered in classes. Six classes are 
later used for the prediction of IRC among other predictors to predict 
indoor radon concentrations with regression trees. When using such 
a lithological classification based on the target value, information flows 
from the target value to the predictor space. This could lead to models 
that might not generalize well and overestimate the actual importance 
of the lithological classes as predictors. But still, the clustering of 
lithological units alone can be  a very interesting method, when 
searching for high-concentration areas or by producing an actual 
radon map. In Sarra et al. (50) supervised and unsupervised learning 
techniques were used together. In this publication, a quantile regression 
model was built on building characteristics to predict indoor radon 
concentrations in standardized homes. These standardized indoor 
radon concentrations best reflect the geogenic radon potential. In a 
second step the distributions of the standardized radon concentrations 
are used to cluster lithological units into areas of radon hazard.

3.4 Assessment of performance metrics

With regards to the various applications identified within the 
literature review conducted using the PRISMA method, we provided 
a synthesis table of performance metrics used to assess performances 
of the different methods. Table 7 lists and highlights the connections 
between the various methods, if any.

4 Discussion

As demonstrated by the results, various methods exist for 
identifying radon-prone areas and buildings, ranging in complexity 
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and implementation. These methods encompass a spectrum of 
approaches, from basic statistical methods to AI methods. Based on 
our findings, the present study led to the production of Table  8, 
delineating the strengths and weaknesses inherent in each method’s 
category. This evaluation sheds light on the efficacy and limitations of 
each approach, aiding in the discernment of optimal methodologies 
for high radon levels prediction. Moreover, specific circumstances 
under which each method proves to be  the most suitable are 
highlighted, thus facilitating an informed decision-making regarding 
the selection and deployment of radon evaluation strategies in diverse 
environmental and geographical contexts. Table 8 provides guidance 
for stakeholders involved in radon risk assessment and 
management efforts.

Overall, the methods investigated in our research consistently 
yielded results aligning with researchers’ expectations. Basic statistical 
methods demonstrated robust performance alongside ease of 
application, guaranteeing a comprehensible analysis. Quantile and 
logistic regression methods emerged as effective tools for forecasting 
elevated indoor radon levels, offering both simplicity in 
implementation and clarity in interpretation. Meanwhile, geostatistical 
methods, with their spatial component, emerged as efficient in 
predicting indoor radon concentrations in unmeasured areas, thereby 
facilitating the identification of radon-prone regions. However, 
researchers must take care in methodological application and 
parameterization to ensure accurate and reliable results. Finally, 
machine learning methods examined in the analyzed papers are 

generally not tailored specifically for predicting high radon values. 
Still, the methods applied can be used to specially target high radon 
levels and even more with the modifications discussed in section 3.2., 
as adoption of the loss function or keeping the target value on linear 
scale. An impact assessment of the inclusion of different modifications 
within ML methods to specifically predict high radon levels must 
be more explored.

These findings underscore the significance of methodological 
choice and careful consideration in the pursuit of effective high radon 
risk assessment. More generally, the analyzed publications used 
diverse data sources, manipulations, models, and performance 
metrics, making it challenging to compare them and draw definitive 
conclusions about the most effective workflows for predicting high 
radon areas and buildings. Consequently, we propose further research 
to determine the best-practice among the methods investigated 
tailored for predicting elevated radon levels and to determine the 
optimal strategy aimed at identifying as many dwellings as possible 
with high radon concentrations.

While our literature review synthesizes key insights regarding the 
identification of radon-prone areas and buildings, our study still 
presents some limitations. The application of methods across varied 
datasets, transformed and homogenized with various prior 
manipulations, models, and contextual settings, introduces a 
significant challenge to direct comparison. Moreover, the absence of 
standardized metrics for method performance evaluation complicates 
the assessment process, hindering the ability to benchmark the 

TABLE 7 Synthesis of performance metrics with their relative description and relationships.

Category Performance metric Description Relationships with other 
metrics

Classification ROC-AUC Measures the ratio between the true positive rate and false 

positive rate, represented by the area under the ROC curve.

AUC provides a single metric to compare 

different models’ ability to identify different 

classes.

Confusion Matrix Table listing true positives, true negatives, false positives, and false 

negatives, which help at describing classification performance.

Basis for calculating precision, recall, F1-

score, and accuracy.

Regression Mean Absolute Error (MAE) Average of the absolute differences between predicted and 

observed values.

MAE is less sensitive to outliers compared to 

MSE and RMSE. Often compared with these 

metrics to assess error distribution.

Mean Squared Error (MSE) Average of the squared differences between predicted and 

observed values, more sensitive to outliers.

Squaring amplifies the impact of larger errors 

(outliers), leading to more conservative 

models compared to MAE.

Root Mean Squared Error 

(RMSE)

Square root of MSE, having the same units as the original data. Directly related to MSE. RMSE is easy to 

interpret due to the same unit as the original 

dataset.

R-squared (R2) Part of variance in the dependent variable that is predictable from 

the independent variables. R2 ranges from 0 to 1 and can 

be expressed as a percentage

Often compared with Adjusted R-squared to 

assess the impact of adding more predictors.

Adjusted R-squared (Adj. R2) R-squared adjusted to the number of predictors included in the 

model. Score decreases with the addition of non-significant 

predictors.

Adjusts R-squared to prevent overfitting by 

adding too many predictors.

Model selection Akaike information criterion 

(AIC)

Measure of the relative quality of statistical models, by balancing 

fit and complexity of the model.

Often compared with BIC. Both metrics 

penalize model complexity, but AIC is less 

strict.

Bayesian Information 

Criterion (BIC)

Similar to AIC but with a stronger penalty for models with more 

parameters.

Stricter than AIC, and often preferred when 

overfitting is a concern.
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different approaches. Additionally, the interpretation of strengths and 
weaknesses within literature often remains subjective, influenced by 
authors’ individual perspectives and experience. These limitations 
underscore the need for further refinement and standardization in 
methodologies to enhance the robustness and comparability of 
research findings in this critical field of study.

5 Conclusion

This paper aims to provide researchers with a systematic literature 
review of the various methods employed to identify radon-prone areas 
and buildings. Through our review, based on the PRISMA methods, 
we identified different methodologies that can be categorized into four 
main classes: descriptive statistics, regression methods, geostatistics, 
and ML methods. While these categories were established by the 
authors, they are not always distinct, as certain methods may fall into 
multiple classes. However, this classification has enabled to highlight 
diverse application contexts alongside their corresponding results. By 
examining the available techniques within each category, this paper 
offers insights into the effectiveness and applicability of different 
approaches for addressing the challenge of the identification of radon 
prone areas and building, i.e., areas and buildings with high 
radon levels.

The investigated methods primarily focus on identifying the 
predictors of elevated concentrations or delineating the characteristics 
of clusters within buildings and areas with heightened levels of radon. 
The methods tackled in this study serve dual purposes: identifying 
radon prone buildings and radon prone areas. Nevertheless, machine 
learning and geostatistical approaches are predominantly deployed to 
identify areas with elevated radon levels, often due to the availability 
of georeferenced data. Conversely, quantile and logistic regression 
methods are more frequently utilized to identify predictors of elevated 
radon concentrations within buildings. However, in some recent 
studies, these regression methods’ original iterations have been 

expanded to accommodate the spatial correlation inherent in radon 
concentration measurements.

After evaluating the diverse papers and their application of various 
methods, several questions emerged for consideration: at firstly, there 
is a query regarding whether it is advantageous to employ specific 
methodologies that focus on high radon concentrations, as opposed 
to more conventional methods targeting average (geometric or 
arithmetic) levels. Notably, one method discussed in this review, 
quantile regression, demonstrated the potential for certain explanatory 
variables to exhibit varying impacts depending on the indoor radon 
concentration targeted. Secondly, a concern arises regarding the extent 
to which the outcomes of the applied methods rely on the 
characteristics of the dataset under analysis. Factors such as the age of 
the datasets or the geographic area from which the data are gathered 
may significantly influence the results, particularly concerning the 
identification of factors impacting high indoor radon levels.

For instance, when applying logistic regression to study different 
datasets, containing very different sets of predictors, the results as 
expected are variegated while generally in agreement; however, in 
some cases the use of different dataset may lead to apparent 
contradictions. For instance, in Stanley et al. (54) old buildings were 
found to have lower probabilities of being associated with high IRC 
while in Vukotic et al. (52) the findings were the opposite. Clearly the 
concept of “old” has two very different meanings in Europe and in 
North America and the types of buildings considered were not 
easily comparable.

Our analysis revealed the challenge of comparing the different 
methods due to the multitude of datasets, data manipulations, models, 
and performance metrics involved. Indeed, it is quite difficult to 
compare different analyses on different datasets, applying different 
investigation strategies and different statistical approaches, since (1) 
the performance of a method strongly depends on the dataset under 
examination and even on the outcome variable (e.g., radon 
concentration on a continuous scale, on a binary scale, on a log-scale), 
(2) the performance metrics/indicators used are different depending 

TABLE 8 Strengths and weaknesses of the different classes of method identified.

Category Strengths Weaknesses Recommendations

Descriptive statistics
Provide good results while being 

easy to implement.

Some analyses are subject to 

interpretation.

Strong knowledge of statistics and the data is 

required. Useful to guide on more specific and 

appropriate analyses.

Regression

Fairly well-known and widespread 

method; produces results that are 

fairly easy to interpret and that are 

fairly familiar to many people

It works better when the number of 

covariates is not very large. Certain 

prerequisites/assumptions must 

be verified for applicability. To perform 

a logistic regression, a specific reference 

level should be fixed.

Strong knowledge of the dataset and of the 

relationships between variables is required. 

Certain. Assumptions on which the model is 

based should be checked.

Geostatistical tools

Powerful and adapted methods to 

predict radon levels where it has not 

been measured.

It is sometimes time-consuming and 

difficult to apply. Many parameters 

must be included.

Spatial behavior of the predicted variables and 

predictors must be known.

Machine learning tools

Various methods and strategies to 

deal with different research aims 

and scopes, the most powerful 

predictive models available.

The implementation and learning can 

be difficult and computationally 

expensive. Usually, black boxes and 

additional analysis for interpretation is 

needed.

Clear workflow from data handling to 

performance evaluation, as modifications of the 

target variable or the train/test split strategy.

Recommendations of use are provided by the authors, based on the literature review.
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on the model applied. Results exhibit a high degree of dependency on 
local factors and the characteristics of the dataset being analyzed. As 
a result, it becomes evident that there is no universally optimal 
method applicable across all scenarios. Rather, the selection of the 
optimal method is contingent upon the specific attributes of the 
available dataset and the practical feasibility of applying a particular 
methodology. This underscores the importance of carefully 
considering the nuances of each situation when choosing an 
appropriate approach for identifying and addressing effectively high 
indoor radon concentrations.

This paper represents the initial step to review and evaluate the 
diversity of methods used in identifying radon-prone areas and 
buildings. Serving as a foundation for future work, this paper lays the 
groundwork for applying methodologies, as outlined herein, to 
available datasets. The challenge is to come to a deeper 
comprehension of how different methods perform when applied to 
the same dataset, thereby enhancing our ability to effectively address 
a robust comparison. Through this paper, we hope to offer valuable 
insights as a basis to guide future efforts in the identification of radon 
prone areas and buildings, and ultimately, reduce the 
population exposure.
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