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Background: Increasing lithium (Li) demand worldwide due to its properties and 
role in renewable energy will raise water reservoir pollution and side effects on 
human health. Divergent results regarding Li concentration in water and affective 
disorders are found in the literature, which is why regional reports are expected.

Objective: The present study evaluated the occurrence and human health risks 
resulting from oral exposure, respectively, and the relationship between alkali 
metals (Li, Na, and K) and minerals (Mg, Ca) in balanced purified water (bottled) 
and spring water.

Methods: The ICP-MS technique was used to measure a national database with 53 
bottled and 42 spring water samples randomly selected. One-way ANOVA, Pearson 
correlation, and HCA analysis were applied to assess the possible relationship 
between metals in water. The possible side effects of Li poisoning of water resources 
on human health have been evaluated using the Estimated Daily Intake Index 
(EDI) and Total Hazard Quotient (THQ).

Results: The toxic metals (As, Hg, and Pb) were measured, and the results indicate 
values above the detection limit of 22.3% of samples in the case of lead but not 
exceeding the safety limits. Depending on the water sources, such as bottled and 
spring water, the Li concentration varied between 0.06–1,557 and 0.09–984% μg/L. 
We found a strong positive correlation between Li and Na and Mg, varying between 
bottled and spring waters (p% <%0.001). Li exceeded the limit set by the Health-Based 
Screening Level (HBSL) in 41.37 and 19% of bottled and spring water samples. The 
oral reference doses (p-RfDs) for the noncancer assessment of daily oral exposure 
effects for a human lifetime exceeded threshold values. The THQ index shows 
potential adverse health effects, requiring further investigations and remedial actions 
in 27.58% of approved bottled waters and 2.38% of spring waters.

Conclusion: We can conclude that water is safe based on the Li concentration found 
in drinking water and supported by a gap in strict regulations regarding human Li 
ingestion. The present study can serve decision-makers and represent a starting 
database with metals of interest for further clinical studies. Decision-makers can also 
use it to find solutions for sustainable management of clean and safe drinking water.
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1 Introduction

Lithium (Li) represents one of the most essential metals associated 
with the transition to renewable energy due to its high reactivity (1). 
Transactions in the Li market have increased in the last decade, mainly 
based on developing Li batteries for electric vehicle propulsion (2). 
Studies forecasting the Li trends indicate a peak in Li production at 
741,000 MT in 2041, which is exceptionally high considering the low 
recycling percentage (3). Concerns about environmental distribution 
related to its recycling cycle and the extensive use of items containing 
Li are becoming more widespread (4). In this context, surface water is 
the most vulnerable since there is a lack of technologies that are 
capable of fully recovering Li ions from wastewater treatment plants 
(5). Li concentrations in natural and bottled drinking waters cover a 
wide range and have been reported worldwide, e.g., in the east of 
England (6), Chile (7, 8), Portugal (9), United States (10, 11), Hungary 
(12), China (13), Japan (14, 15), Nigeria (16), Bangladesh (17), France 
(18), Greece (19), and Romania (20, 21). The amount of Li in 
underground water is very high compared to surface water and needs 
close attention and monitoring (22). In northern Argentina, high 
levels of Li (1,000 μg/L) were found in drinking water, and the values 
were even higher in human urine (Li: 4,550 μg/L) (23).

There is an increased susceptibility to dangerous metals in the 
terrestrial food chain, and it has been documented that they can 
potentially harm human health (21, 24). Exposure to Li from natural 
ingestion and long-term treatment, as found in northern Argentina, 
where the range in drinking water varied between 8 and 1,005 μg/L, 
induced in women’s urinary samples a concentration of 3,910 μg/L 
that were associated with thyroid dysfunction (25). Still, the Li toxicity 
level is unknown, especially since there are no regulatory standards 
for Li in different environmental matrices. Li fluctuates with natural 
and anthropogenic activities in water, so quantification and risk 
assessment are essential for a sustainable society (21). The literature 
discusses the occurrence of Li in drinking water and its potential 
pharmacological and health effects (26). The therapeutic use of Li is 
associated with the treatment of bipolar disorder (27) and reducing 
suicide in patients with mood disorders (28). Different research results 
were found in the literature indicating that regional and local 
influences on human behavior are essential for quantifying the 
relationship between Li in drinking water and suicide rate. Those 
results are often divergent and depend on the region. Thus, the Li 
content in tap water in Japan was correlated negatively with the suicide 
standardized mortality ratio, indicating that an even lower 
concentration in water is essential for reducing suicide risk (14, 15). 
On the other geographic region, as in Texas, only higher Li 
concentrations in public drinking water were correlated with a 
reduced suicide rate (26, 29). Contrary to both examples previously 
exposed, several studies have not confirmed a positive relationship 
between Li in water and suicide rates, such as in the East of England 
in the period 2006–2008, where the relationship was insignificant (30, 
31). Even so, one can discuss the subjectivism of concluding only 
based on drinking water and not consider a more complex dietary 
plan that can include other promising products of Li’s daily intake, 
including meat, eggs, vegetables, and fruits (21). A recent study based 
on the Danmark nationwide cohort indicates that Li concentration in 
the human body does not increase the risk of developing physical 
affection (32). Systematic reviews and meta-analyses on pre-clinical 
and clinical studies also sustain Li neuroprotective effects in 

Alzheimer’s and Parkinson’s affections (33, 34). The analysis of 53 
Lithuanian municipalities during a two-month period using a linear 
model predicted that the incidence of affective disorders and Li levels 
in drinking water are associated with a higher ratio of attempted to 
complete suicide (35). Thus, questions regarding the dose effects of 
natural Li intake must be addressed since it is not classified as an 
essential trace element, even if recommended at 1 mg/day per 70 kg of 
body weight (36).

Other alkali metals, including sodium (Na) and potassium (K), 
had a significant research interest. Thus, it was observed that Na 
uptake from dietary sources, including drinking water, has a critical 
role in the human body in maintaining extracellular water balance, 
osmotic pressure, homeostasis, and normal neuromuscular function 
(37, 38). The European Commission indicates no upper threshold for 
Na from dietary sources, especially in regions with an excessive 
natural occurrence of various nutritional sources. Still, they 
recommend a tolerable intake level of 100 mmol (2.3 g)/day (e.g., 
<1,500 mg/day) (39, 40). Excessive amounts of Na contribute to 
cardiovascular diseases, inflammation, and obesity (41) and can raise 
the risk of colorectal, lung, renal, and stomach cancers (42, 43). The 
role of K in the human body is mainly at the intracellular osmolarity 
level and in maintaining acid–base equilibria (44). Hyperkalemia 
(>5.5 mmol/L) increases kidney diseases and diabetes (45, 46). The 
research results have highlighted that diets with a higher amount of K 
are beneficial in preventing cancer cell formation through changing 
hormone levels (47). The toxicity of As, Hg, and Pb is well-known, and 
it is worth mentioning that around 20% of human contamination 
originates from tap water.

Minerals at their optimum concentrations are protective against 
systematic disorders due to their role in structural components, 
biomolecules, and physiological functions (48). However, excessive 
nutrient assimilation represents a risk for various organ and system 
function failures and recently was observed to increase the incidence 
of cancer, possibly compounding the side effects with other toxic 
metals from similar sources (49, 50). Magnesium (Mg) is involved in 
cellular and physiological functions and processes (hypothalamus, 
neurotransmitters), but hypermagnesemia induces kidney failure and, 
in some cases, can be life-threatening (51–53). A low concentration of 
Mg in the human body is associated with pancreatic, prostate, 
colorectal, ovarian, and lung adenocarcinoma cell proliferation (54). 
It is still unknown if ingesting Mg in excess can be  a solution to 
prevent the occurrence of cancer, even if this microelement can reduce 
the incidence (55). The recommended dietary allowance (RDA) for 
adults is set at 400–420 mg/day, and lower levels are associated with 
mood disorders (56). Calcium (Ca) is involved in multiple vital 
functions and disorders induced by hypercalcemia, such as 
dysfunctions in the endocrine system and kidney and heart diseases, 
mainly when it is associated with phosphorus ions (57). A high Ca ion 
concentration in the blood possibly protects against colorectal, breast, 
and prostate adenocarcinoma and is a promising option for developing 
future generations of anticancer drugs (58).

Even though several review studies have focused on evaluating 
global-scale alkali metal distributions, toxic elements, and the toxicity 
of macronutrient contents in drinking water, multiple terrestrial-scale 
geochemical data are required due to ever-increasing demand and the 
projected increased amount of waste. In addition, the current 
knowledge regarding toxicity to the human body must 
be continuously updated with accurate data and, most importantly, 
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correlated with human health. An important aspect is that Li is not 
removed from drinking water with current treatment technologies, 
increasing the importance of regional monitoring studies. Thus, in the 
present study, we  aimed to (i) build a database with metals 
concentrations, namely Li, As, Hg, Pb, Na, Mg, K, and Ca in drinking 
and spring water from Romania; (ii) analyze the occurrence and 
human health risks associated with Li oral ingestion via water; (iii) 
assess the relationship between Li and Na, Mg, K, Ca and their 
geospatial footprint in balanced purified water (bottled) and spring 
water for daily consumption in Romania; (iv) to determine the 
estimated daily intake index, the provisional chronic and subchronic 
reference dose (p-RfD), and the target hazard quotient (THQ) index 
using Li concentration in water. The hierarchical cluster analysis and 
correlation analysis were used to evaluate possible relationships 
between metals in water. The one-way ANOVA analysis was used to 
identify the significant differences between the chemical profiles of 
bottled and spring waters. The study represents a starting point for 
creating a regional database with Li, As, Hg, Pb, Na, Mg, K, and Ca, 
which can be  further enriched and analyzed comparatively with 
chronic disease.

2 Materials and methods

2.1 Sampling and preparation

A national database that included 53 bottled and 42 spring water 
samples randomly selected was investigated. The bottled waters were 
purchased from local supermarkets and local food stores and divided 
into (i) mineral waters, which fall into the category of recognized 
waters according to national regulations, order 116/2023 (regarding 
the approval of the list of natural mineral waters recognized in 
Romania) (n = 29, hereafter approved waters); (ii) mineral waters that 
are not mentioned in legislation but are commercialized on the market 
(n = 12, hereafter unapproved); and (iii) 12 samples from foreign 
regions, including Hungary, Italy, Serbia, Fiji, France, Germany, 
Austria, and Bulgaria were used for comparison. The mineral water 
was bottled in polyethylene terephthalate (PET) and glass, and there 
was no contamination with the packaging material. The spring waters 
were collected from remote areas (pastures, forest) or adductions 
specially built to serve the local population with drinking water. In this 
case, the water is consumed daily without being filtered or 
pre-processed, contributing to metal intake from supplementary 
sources. Drinking water was mineralized with a 1% HNO3 solution. 
The other studied samples were subjected to microwave-assisted nitric 
acid digestion using a closed iPrep vessel speed system, the MARS6 
CEM One Touch. The digestion vessels were cleaned with 10 mL of 
HNO3 using the microwave cleaning program and rinsed with 
deionized water. The water samples (45 mL + 5 mL of 69% HNO3) were 
digested according to the digestion program from US-EPA method 
3015 (aqueous samples). A closed iPrep vessel speed iwaveJ system, 
the MARS6 CEM One Touch, was used to decompose the organic 
compounds in the water and extract the target elements according to 
the one-stage temperature-controlled digestion program, Microwave 
Digestion of Water (CEM Mars 6 Method Note Compendium, 2019). 
After complete digestion and cooling, the samples were filtered, 
transferred to 50 mL graduated polypropylene tubes, and diluted to 
volume with deionized water.

2.2 ICP-MS method

The inductively coupled plasma mass spectrometry technique 
(ICP-MS) was used to determine the Li concentrations. A Perkin 
Elmer ELAN DRC (e) instrument and ultra-pure deionized water 
(resistivity of 18 Ω·cm−1) from a Milli-Q analytical-reagent-grade 
water purification system (Millipore) was used. The operational 
conditions were optimized using a tuning solution (Elan 6100 Setup/
Stab/MassCal Solution 10 μg/L for 9Be and 234Th, from Perkin Elmer) 
according to the following parameters: nebulizer argon flow rate: 15 L/
min.; lens voltage: 7.25 V; radiofrequency power: 1,100 W; sample 
uptake flow rate: 1 L/min; CeO/Ce ratio of 0.028; Ba++/Ba ratio of 
0.030. Two certificate reference materials were used for quality control: 
(i). a high-purity ICP multielement calibration standard of 10 μg/mL 
from a 29-element ICP-MS standard in a 5% HNO3 matrix, produced 
by Perkin Elmer, Life, and Analytical Sciences, Inc. Shelton, 
United States; (ii) an ICP mono-element certified reference material 
(Li) in a 2% HNO3 matrix from CPAchem Zaroza, Bulgary, with a 
concentration of 10 mg/L in a 2% HNO3 matrix. Each measurement 
was performed in triplicate, and each result was presented as the 
average value. Linearity was established using calibration curves, and 
the instrument’s sensitivity was estimated by determining the 
detection limits for all the elements studied. The limit of detection 
(LOD) and limit of quantification (LOQ) were calculated by 
multiplying the standard deviation of the blank sample by 3 and 10, 
respectively, and then dividing by the slope of the analytical curve 
(Table 1). The performance parameters are correlation coefficient of 
r > 0.9999, LOQ = 0.01 μg/L (Li, As, Hg, Pb), 0.5 mg/L (Na), 1.0 mg/L 
(Ca, Mg), 5.0 mg/L (K); respectively relative standard deviation <0.5%. 
The extended uncertainty declared for the analyzed metals was in the 
range (11–22%).

2.3 Health risk assessment

Risk assessment was computed by characterizing two indices: 
estimated daily intake (EDI) and non-carcinogenic health risk 
assessment. Even if the scientific literature found, in various cases, 
possible associations between nutrients and severe diseases, no 
regulations were performed for those metals until the present. Also, 
no exceeding limits for toxic metals were found in bottled and spring 
water. Thus, the analysis of health risk assessment was performed only 
for Li, for which regulations were exceeded according to our findings.

TABLE 1 The performance parameters of A Perkin Elmer ELAN DRC (e) 
instrument.

Element LOD LOQ

Na (mg/L) 0.05 0.5

Mg (mg/L) 0.1 1.0

K (mg/L) 0.5 5.0

Ca (mg/L) 0.1 1.0

Li (μg/L) 0.01 0.001

Hg (μg/L) 0.01 0.001

Pb (μg/L) 0.01 0.001

As (μg/L) 0.01 0.001
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2.3.1 Estimated daily intake of Li via water 
ingestion

The estimated daily intake (EDI) (μg/kgbw/day) of Li was 
calculated by multiplying the metal concentration in water (C) (μg/L) 
by the daily ingestion rate of water (IR) (2 L/day) and dividing it by the 
average body weight of an adult person (BW) (70 kg), according to 
Equation 1 (59). The EDI was calculated for Li since oral reference 
doses (RfDs) have been set by international authorities: 2 μg/kgbw/day 
(provisional subchronic and chronic RfD for Li) (60).

 
( )IR Cw

EDI
BW
×

=
 

(1)

where IR is the daily ingestion rate of beverages (L/day); Cw is the 
average Li concentration in water (μg/L); and BW is the average body 
weight of 70 kg for adults. The daily ingestion rate was calculated 
based on the data on annual food consumption at the national level 
published by the National Institute of Statistics, with reports of 
114.5 L/year for bottled water.

2.3.2 Non-carcinogenic health risk
The non-carcinogenic health risk associated with the presence of 

Li in water was estimated using the method proposed by the US-EPA 
(59, 61, 62) based on the target hazard quotient (THQ) index and 
calculated using Equation 2:

 f

EF ED IR CTHQ
BW AT R D

× × ×
=

× ×  
(2)

where EF is the exposure frequency (365 days/year); ED is the 
exposure duration [75.88 years is the average lifetime for adults 
according to the National Institute of Statistics (NIS, 2020)]; IR is the 
average intake rate of water (2 L/person/day); C is the concentration 
of the metal in water (μg/kg); BW is the average body weight of an 
individual (70 kg); AT is the average exposure time (365 days/
year × 75.88 years); and RfD is the oral reference dose (the same as the 
one used to calculate the EDI). For noncancer risk assessment, AT is 
equal to EF × ED. The THQ indicates a potential adverse health effect 
and requires further investigations and possible remedial actions if 
values are higher than 1. In the case of a THQ ≤ 1, there is no risk to 
human health, even for sensitive populations.

The RfD is used to evaluate a daily dose capable of producing 
health effects during a human lifetime with a recognized uncertainty. 
The RfD evaluates the most significant and sensitive lowest-observed-
adverse-effect level (LOAEL) for noncancer effects and is corrected by 
uncertainty and modifying factors (Equation 3).

 
f

A H L S D

LOAELR D
UF UF UF UF UF MF

=
× × × × ×  

(3)

where UFA represents uncertainty associated with using experimental 
findings obtained by in vivo animal tests for evaluating human 
exposure; UFH is a factor that evaluates multiple variables possibly 
inducing variability in human resistance to stressors (age, gender, 
genetic adaptation, and body weight); UFL is the expected ratio of 
LOAEL; UFS is the uncertainty of estimated chronic exposure based 
on subchronic exposure; UFD represents the uncertainty induced by 

the probability of association with an unequal dataset; and MF is a 
modifying factor that enlarges the limits of uncertainty by possible 
excluded unknown aspects. The provisional subchronic and chronic 
RfD for Li based on the LOAEL reference for adverse effects in several 
organs and systems was divided by an uncertainty of 1,000. An 
ingestion rate of 2.1 mg/kg/day of serum Li was established by 
provisional peer-reviewed toxicology values (PPRTVs) as a basis for 
derivation in 2008.

2.4 Calculations and statistical analysis

The summary statistics are presented for each category and 
subcategory of water, including the mean, standard error of the mean, 
maximum, minimum, median, and quartiles (q1 and q3). The 
computation control used the direct weight method with degrees of 
freedom (DoFs), variance of the divisor of the moment, and empirical 
distribution with the average interpolation for the quartiles. The 
Shapiro–Wilk model tested the data distribution to examine how 
closely the samples fit into a normal distribution. This resulted in a 
non-normally distributed analyte metal content in the water 
categories, which was emphasized by significant standard deviation 
values. A one-way ANOVA analysis of equal variance test was 
conducted using the Levene method, and the results indicated 
significant differences among the mean Li concentrations (p < 0.05). 
The means were compared using the Bonferroni method, and the 
results show significant differences (p < 0.05). The Bonferroni method 
is commonly used to correct the experiment-wise error rate after 
using a post hoc procedure to correct the family-wise error rate 
following analysis of variance. The relationship between the Li and Na, 
Mg, K, and Ca contents in the water samples was tested using Pearson 
correlation analysis and hierarchical cluster analysis (HCA). 
Correlation analysis among chemical elements was evaluated to assess 
similar origins. The HCA aimed to group the metals and water types 
into classes. HCA represents a powerful method for clustering analysis 
in data research, aiming to identify a hierarchy of clusters. The 
classification was based on the similarities, correlation matrix, and 
indicated origins (natural and anthropogenic) of the metals.

3 Results and discussion

3.1 Li occurrence and distribution

Li is the 30th most abundant element in the continental crust and 
varies with lithology; it is higher in shales and granitic rocks than 
carbonates (63) and is frequently associated with volcanic activity, ash 
deposits (64–66), and saline-type deposits with LiCl reserves (67). In 
nature, Li in water occurs after interaction with minerals and saline 
lithium-bearing waters. The Li concentration in drinking water has 
frequently been investigated due to its pharmacological value (15, 25, 
26). Our results illustrate wide analytical variability in Li content 
based on their water matrices, and the summary statistics are 
presented in Table 2. Li occurrence and distribution in commercial 
bottled waters (approved, unapproved, and foreign) and spring waters 
exceeded the detection limit in all 95 samples. The spatial distribution 
of the metal concentration measured in the present study correlated 
the largest amounts with volcanic mountain regions. A decreasing 
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order of mean value was found as follows: approved bottled < spring 
< foreign bottled < unapproved bottled waters (Table 2). Based on a 
one-way ANOVA test, we observed no significant difference in the 
mean or variance between the bottled and spring waters (F = 0.05; 
Prob > F = 0.80). The Li measured in the bottled waters had values 
from 0.06 to 1,557 μg/L; in the spring water, the values varied between 
0.09 and 984 μg/L (Figure 1A). Only one sample collected from central 
Transylvania (Cluj) in the unapproved waters was above the limit 
(10 μg/L). The maximum values can be associated with outliers that 
are unreliable in describing the dataset since they can be associated 
with exceptions. Thus, we used the third quartile to characterize the 
upper limit of Li variability in the Romanian water sample. The results 
show that the spring and unapproved bottled waters contain relatively 
similar amounts of Li (5.8–7 μg/L). When evaluating approved bottled 
waters, we noted that the third quartile was more than 13 times higher 
than other matrices. According to our findings, over 41.37% of the 
approved drinking waters exceeded the HBSL recommendation of 
10 μg/L in Arad, Suceava, Harghita, Mures, and Covasna counties (19, 
281, 822, 1,011, and 1,557 μg/L, respectively). The spring waters 
exceeded the HBSL recommendation by 19%, values identified in 
several counties, namely Salaj, Suceava, Valcea, and Covasna (10, 10, 
27, and 984 μg/L, respectively).

Our results are in the range of global measurements reported in 
the scientific literature. For example, for the inferior range of Li 
concentration, we can compare values with those found in the Aomori 
prefecture 0.0–12 μg/L (68, 69); Denmark: 0.6–30 μg/L (70); Lithuania: 
0.48–35 μg/L (71); Italy: 0.11–60 μg/L (72); Greece: 0.1–121 μg/L (19); 
Portugal: 0–191 μg/L (73); and United States (Texas): 2.8–219 μg/L 

(74). The values from the upper limit measured in our study are 
comparable to those found in England, where the metal amount was 
up to 1,300 μg/L (75). Also, a Li concentration reaching 2,790 μg/L was 
reported in the Ogallala aquifer of northwestern Texas, where 
groundwater samples were collected between 2008 and 2014 from 
wells with depths smaller than 91.5 m (76). Thus, underground 
deposits highly enriched with Li can be  associated with those 
significant values measured in drinking water. In a previous survey 
conducted in lowland regions from Romania, the Li concentration 
varied between 1.40 and 12 μg/L (20), suggesting that geological 
substrates are the primary regulating factor of Li′s occurrence in 
water. Our samples cover the entire country, including the volcanic 
mountains from the Eastern Carpathian. These mountains are 
characterized by various physicochemical compositions, e.g., 
carbonated, bicarbonate, sodium chloride, and iodobromated, 
ferruginous, arsenical, or slightly sulfurous minerals, with 3.2–22 g/L 
mineralization rates. This physicochemical composition is associated 
with a large amount of Li in water and suggests its occurrence from 
natural origins.

The bottled waters from foreign markets measured in the present 
study included samples from Bulgaria, Austria, Germany, France, Fiji, 
Serbia, Italy, and Hungary, and concentrations ranging between 0.50 
and 138 μg/L. Based on the values previously reported in the scientific 
literature regarding the lowest Li concentration, we noted that the tap 
water derived from filtered waters is less enriched (1.5–3.6 μg/L) (12). 
Even so, during the present days, the reports indicated rapidly 
increasing Li in rivers and tap waters due to inefficient treatment 
protocols (77), indicating that groundwater with high total dissolved 

TABLE 2 Summary statistics of alkali metals (Li, Na, and K) and minerals (Mg, Ca) in approved bottled waters (a), unapproved bottled waters (b), foreign 
bottled waters (c), and spring waters (d).

Element Matrix Mean SE of 
Mean

Minimum 1st Quartile Median 3rd Quartile Maximum

Li (μg/L)

a 164 67 0.07 0.40 4.8 94 1,557

b 3.7 1.1 0.06 0.48 2.1 7.0 10

c 14 11 0.5 0.66 1.4 6.8 138

d 28 23 0.09 0.71 1.7 5.8 984

Na (mg/L)

a 49 13 0.43 1.1 7.8 88 222

b 39 11 1.2 2.4 34 77 84

c 10 3.3 0.00 2.4 8.6 11 38

d 46 14 0.30 3.5 7.5 29 442

Mg (mg/L)

a 19 3.9 0.80 2.2 10 33 73

b 4.7 1.3 0.08 1.2 3.9 7.1 13

c 10 2.4 0.00 2.4 10 18 22

d 18 7.0 0.42 3.5 6.9 18 291

K (mg/L)

a 3.0 0.85 0.16 0.32 0.79 3.9 18

b 0.45 0.10 0.12 0.17 0.31 0.74 1.3

c 0.81 0.20 0.12 0.31 0.61 1.2 2.1

d 1.7 0.40 0.10 0.53 0.73 1.3 13

Ca (mg/L)

a 44 6.5 4.7 24 30 59 136

b 16 2.6 2.5 4.9 19 23 24

c 17 3.9 0.04 7.8 17 19 44

d 33 3.9 0.00 15 27 47 104
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solids increased the Li concentration compared to surface water 
sources. Rainwater samples collected during the Summer of 1998 at 
Montréal Island, Canada, had even lower values (0.1–1.0 μg/L) (78). 
However, in this case, one can discuss the considerably raised 
pollution level nowadays, which contaminates the entire water cycle. 
In Romania, it was documented that there were high anthropic 
influences in industrialized areas, such as Copsa Mica. Here, Li 
(148 μg/L) was one of the most representative elements in groundwater 
associated with the battery industry (79). Leachate from waste is one 
of the most common sources of Li in groundwater related to 
anthropogenic activities (63, 80, 81). The concentration of leachate 
waste (batteries, ceramics, glass, lubricants, metallurgy, medicine, 
cosmetics, and nuclear facilities from tritium) reached 19,000 μg/L 
(82). A study from South Korea (Han River) demonstrated in a region 
with reduced Li content resulting from anthropogenic activities that 
the concentration downstream of Seoul (1.5 μg/L) compared to the 
upstream river (0.2 μg/L) resulted due to the failure of the wastewater 
treatment plants (77). Thus, environmental pollution with Li can be a 
significant issue due to inefficient recovery technologies. In bottled 
water, As, Hg and Pb had values below the detection limit, and only 
spring waters contained Pb above the detection limit in 22.3% of 
samples from the Bistrita and Suceava counties (Figure 1B). Lead is a 
harmful neurotoxin that affects multiple organs and systems, with 
severe implications for the normal functioning of the central nervous 
and brain. Pb in Bistrita samples ranged between 0.65 and 7.93 μg/L, 
respectively, and in Suceava, from 0.48 to 3.98 μg/L. Two protection 
standards set the lead poisoning level in drinking water (83, 84). Based 
on the World Health Organization and Environmental Protection 
Agency (EPA), the Lead and Copper Rule is the standard for Pb in 
drinking water is 10 μg/L, and the action level is regulated to 

15 μg/L. Lead was below the enforcement level in all cases; no health 
risk assessment analysis was required. The main reason for Pb 
occurrence in drinking water is associated with pipes used for 
transport, but in our case, natural origins can be discussed (85).

3.2 Relationship between Li and other 
metals

Li in natural and bottled waters was compared to a suite of metals 
to understand their origins. Alkali metals naturally occur in water 
from geological minerals in low amounts with no environmental 
stress effects, except for the mineral pollucite (86). Various studies 
indicate different influences of alkali metals on human health, but 
there are no references for their relationship with macronutrients from 
water. The relationship between Li and Na, Mg, K, and Ca were 
evaluated using summary statistics correlation and HCA analysis. The 
range of variation for Na, Mg, K, and Ca were detailed in Table 2 and 
Figures 1C–F. The results show that alkali metals (Na, K) and minerals 
(Mg, Ca) did not exceed the recommendations. The correlation 
between Li and Na, Mg, and K was significant and positive (p < 0.001) 
in the case of bottled waters (Figure 2A). Still, we observed differences 
in the correlation coefficient when analyzing spring waters where only 
Li vs. Na and Mg had a significant relationship (Figure 2B), reflecting 
similar natural geological origins in spring waters and significant 
human influences on bottled waters. The correlation analysis illustrates 
a significant relationship between Li vs. Na, Mg, and K (p < 0.001) in 
bottled water. In the case of Li vs. Ca, the relationship was significant 
only for p < 0.05. The values were positive in all cases, representing that 
metal concentration has similar trends. When evaluating spring 

FIGURE 1

The distribution of alkali metals Li, Na, and K (panels A, C, E), minerals Mg, Ca (panels D, F), and toxic metal Pb (panel B). The small letters represent 
approved bottled waters (A), unapproved bottled waters (B), foreign bottled waters (C), and spring waters (D). The descriptive statistics and computation 
control was performed using the direct weight method, DF variance divisor of the moment, and empirical distribution with averaging for interpolation of 
quantiles.
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waters, we observed a strong correlation between Li and Mg (r = 0.98, 
p < 0.001). Similar relationships were demonstrated between Li vs. Na 
and Na vs. Mg (r = 0.68, p < 0.001). The positive relationship between 
Li and Mg can be explained by similar origins from brines such as 
magnesium sulfide or chloride, where both elements behave similarly 
in cation exchange. Previous studies that reported a relationship 
between Li and Na, Mg, Ca, and K in surface and groundwater found 
relatively similar positive correlation values. In the case of Ca and Mg, 
the behavior can be explained using similar behavior in removing 
cations and regarding Na, K, and Li acts as donors from solids, being 
attracted to negatively charged minerals (10). It must be mentioned 
that bottled drinking water is subject to national and international 
regulations for demineralization and desalinization. In these 
conditions, it can be assumed that the relationship between the Li and 
naturally occurring minerals differs from those in bottled waters, also 
observed in HCA analysis (Figures 2C,D) (87). Li and minerals are 
strongly associated with large concentrations of granitic pegmatites 
and clay mineral hectorite (88).

Minerals are abundant in the Earth’s crust, and the analyzed data 
appears to correlate strongly only with natural waters (unfiltered 
samples). Most values had a ratio between Li and other alkali metals 
and minerals below 1, as observed in both bottled and spring waters, 
and only in several spring waters exceeded this value. The ratio above 
1 is associated with samples containing a very high mineral content, 
indicating the origins of metals from natural sources. The different 
chemical properties of Li can be discussed compared with other alkali 
metals, and they demonstrate a strong resemblance with minerals 
through their diagonal relationship (89). Nowadays, the Li/Na, Li/Mg, 
Li/K, and Li/Ca ratios can provide an archive of the previous 

environmental conditions, and they are used to explain past 
environmental processes, such as hydrothermal circulation or 
weathering (90–92). The compensation for Li/Na, Li/Mg, or Li/Ca 
carbonate in water depends on the temperature, salinity, dissolved 
oxygen, and pH, resulting in a new, more complex proxy for past 
studies (92–94). Environmental studies have used Li/Na ratios to 
understand the authigenic clay formation in the global Li cycle (95). 
Even so, the amount of minerals in bottled drinking water and spring 
waters can be used to assess the leaching process of the mineralogical 
substrate and the enrichment of natural underground and surface 
waters. The mineral contents are comparable with other global reports, 
and no exceeding limits were found in water samples.

A dendrogram (produced by HCA) integrating the alkali metals 
and macronutrient content in natural waters was created using the 
group average cluster method, correlation distance type, and z-score 
standardization to remove bias. The graphical representation of the 
dendrogram shows the similarities on the y-axis. The metals evaluated 
formed thre clusters of distinct groups for bottled (Figures 2A,C) and 
spring waters (Figures 2B,D). Li was distinctively separated from Ca, 
and we noted that Na, Mg, and K were associated with one group 
when analyzing bottled waters. In comparison, Li was associated in a 
group only with Mg and Na in spring waters, respectively. K and Ca 
formed separate groups. Ca and K were associated in a separate group 
in the spring water, even though their behavior varied based on their 
different hydration energies. Natural processes, such as the weathering 
of carbonate minerals, can explain the association between the 
macronutrients and alkali metals in the spring waters. Possible 
anthropogenic activities, including sewage and wastewater discharge 
from local industry, can also be  discussed based on industrial 

FIGURE 2

The correlation (A,B) and Hierarchical Cluster Analysis (HCA) dendrogram (C,D) are based on two datasets, which include alkali and mineral 
concentrations in bottled water (A,C) and spring waters (B,D). The correlation analysis was performed for three levels of significance (p  ≤  0.05, p  <  0.01, 
and p  <  0.001). The HCA analysis was performed using the cluster method Ward, distance type  =  correlation, and clustroid found by the sum of 
distances.
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activities. The uncertainty in the origins of Li in the water comes from 
the variation in their correlation similarity, which is weak. In a 
dendrogram produced by HCA analysis, the observation label and 
variables of approved, unapproved, and foreign drinking waters used 
for discrimination were classified into one group but connected by 
poor correlation similarity. We observed that the approved waters 
were often classified as suitable drinking water supply due to their 
clean appearance. Based on their high concentrations of minerals, 
they could be beneficial with daily ingestion.

3.3 Health risk assessment of Li via water 
ingestion

Li is mentioned in the fifth Unregulated Contaminant Monitoring 
Rule due to limited exposure data in drinking water. To understand 
the role of the investigated metals in the human body, we calculated 
the estimated daily intake index (EDI) with the chronic and 
subchronic provisional reference dose (p-RfD) and target hazard 
quotient (THQ). According to the US Environmental Protection 
Agency, the daily Li intake for a 70 kg human adult ranges between 
650 and 3,100 μg, corresponding to 44 μg/kg (96, 97). Recently, it was 
demonstrated that Li from natural waters is highly bioavailable (98); 
it is possible that absorption strongly relates to its accessible form in 
the intestinal fluid as a free ion or a complex nutrient amalgam (24). 
Following the daily intake methodology defined by the US-EPA (61), 
the maximum EDI value was found in the approved bottled waters 
(44 μg/kgbw/day), followed by the spring waters (28 μg/kgbw/day), 
foreign bottled waters (3.9 μg/kgbw/day), and unapproved bottled 
waters (0.3 μg/kgbw/day). Figure 3A shows several extreme values, and 
based on mean statistics, the values are significantly lower (4.7, 0.81, 
0.42, and 0.10 μg/kgbw/day). In Romania, Li is not regulated, but the 
US Geological Survey (USGS) and US-EPA indicate a non-regulatory 
Health-Based Screening Level (HBSL) of 10 μg/L, which was exceeded 
in 41.37% of the bottled and 19% of the spring waters sampled. The 
excessive daily intake amounts obtained for the approved waters are 
not comparable with the spring waters, even though the regions are 
similar. One can explain elevated concentrations of Li by the 
interactions between water and minerals or meteoric water and the 
saline Li concentration. Even so, concentrations exceeding the 
recommended daily dose are possibly associated with chronic adverse 
effects in several organs and systems. Comparing our results with 
commercialized water from other countries also quantified in the 
present study, we noted that in only one sample, originating from 
Bulgaria, was the EDI value higher than the provisional reference dose 
(p-RfD), 3.9 μg/kgbw/day.

The values of the EDI exceeded the p-RfD for the noncancer 
assessment of daily oral exposure effects for a human lifetime of 2 μg/
kgbw/day in several cases. Thus, in Covasna county, extreme values 
were found in the approved bottled waters (44 μg/kgbw/day) and spring 
waters (28 μg/kgbw/day) (Figure 3B). Exceedance of the p-RfD was also 
found in Harghita (23 μg/kgbw/day), Mures (28 μg/kgbw/day), and 
Suceava (8.0 μg/kgbw/day), but only in approved bottled waters. Thus, 
the local population from the above-mentioned areas could acquire 
more than the daily necessary dose of Li from natural waters. The 
minimum daily intake of Li can be obtained using unapproved waters 
since the maximum values were calculated for the samples collected 
from Cluj county. Regarding the EDI values of the spring waters, only 

one, originating from Covasna county, had values capable of 
sustaining the minimum rate of daily Li intake. The US-EPA report 
indicates a provisional reference dose (p-RfD) for the noncancer 
assessment of daily oral exposure effects for a human lifetime of 2 μg/
kgbw/day.

The target hazard quotient indicates aspects similar to those of the 
EDI, but the amplitude of the values is lower (Figure 3C). We noted a 
decrease in the reported maximum THQ values in order from 
approved bottled waters (22 μg/kgbw/day) to spring (14 μg/kgbw/day), 
foreign bottled (1.9 μg/kgbw/day), and unapproved bottled waters 
(0.15 μg/kgbw/day). A value higher than 1 indicates potential adverse 
health effects and requires further investigation and possible remedial 
actions. In our case, 27% of the approved bottled waters and 2.3% of 
the spring waters exceeded this threshold. The THQ index confirmed 
that several samples were potentially hazardous to human health 
(Figure 3D). The toxicity of Li to humans has been reported to be low 
(99), even though various studies show that the non-supervised 
administration of Li carbonate in high amounts is responsible for 
disorders in the neuromuscular, cardiovascular, renal, and 
gastrointestinal systems (100). Li has been used in pharmacology for 
more than 50 years in the treatment of bipolar illness, and nowadays, 
it has disclosed underappreciated proven benefits for unipolar 
depression and suicide (101). Even so, various results indicate a more 
complicated relationship, which includes multiple variables, such as 
the region’s altitude, making the relationship between the Li 
concentration and suicide rates complex (102). Most review studies 
demonstrated the effect of Li on suicidal acts before the occurrence of 
mood stabilization, supporting the hypothesis of a possible 
preventative influence and not on the recurrence of disease (103).

Although very few studies have been conducted on Li and cesium’s 
effects on human health, it has been observed that they accumulate in 
the thyroid glands and present an inverse correlation at life-long 
exposure (104). The present study and others reinforce the importance 
of screening drinking water for various chemical elements to obtain 
further correlation and possible cumulated effects on human health 
due to systematic exposure (23). Groundwaters are primary drinking 
water sources in rural areas, and according to our results, high 
concentrations are expected in mountain volcanic regions. Separately 
for each element (Mg, Na, K, and Ca), the elevated concentrations 
were detrimental to human health, associated with hypertension and 
cardiovascular, congenital, kidney disorders, and autoimmune 
disorders (105, 106). Despite regulations provided for minerals in 
drinking water until the present based on the human capacity to 
assimilate extreme amounts of metals based on biological adaptation 
to the local environment, there was no possibility of evaluating health 
risk indices. Li is not the only element associated with neurological 
disease; Na and Ca are also involved in the mitochondrial matrix in 
neurons and other excitable cell functions (107, 108). Cumulating 
effects in the case of various concentrations can be assumed even if no 
specific studies are found regarding the complex interrelationship 
between those elements. A systematic review of suicide rates and Li 
content in drinking water showed reduced mortality for men 
compared to women, which can be  explained by the Li effects of 
reducing impulsivity and aggression (109). Daily absorption of 
93–225 mg of Li corresponds with a therapeutic response, and a serum 
Li concentration in the range of 500–1,200 mg/day is recommended 
for psychiatric treatment. A negative correlation with the Li 
concentration was demonstrated only in municipalities with a Li 
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concentration above the median and a high rate of affective disorders 
(110). In other words, the Li in groundwater from Argentina (Andean 
villages), with concentrations between 8 and 1,000 μg/L, was 
associated with a negative impact on thyroid function (23, 25). Sparse 
studies confirm various clinical effects caused by significant amounts 
of Li ingested by humans. Generally, alkali metals can have a negative 
influence on human health, and contrary, the minerals are beneficial. 
Furthermore, high concentrations of macronutrients ingested from 
natural sources (food and water) are not harmful to human health 
since they are eliminated through urine. Na, Mg, K, and Ca have been 
documented to ameliorate various toxic metal-induced diseases, such 
as affective disorders and adenocarcinoma (55). Thus, drinking water 
with high amounts of minerals is recommended.

4 Conclusion

Our study evaluated nationwide water reserves (bottled and 
spring) to understand the similar origins and possible synergic effects 
on the public health of alkali metals (Li, Na, and K) in association with 
minerals (Mg, Ca). The concentration of metals varied significantly 

between bottled and spring waters, and a significant positive 
correlation between Li and Na, Mg, and K was found in bottled waters. 
Li correlated even stronger in spring waters, but only with Na and Mg. 
A secondary analysis finding added evidence on possible side effects 
of Li concentrations exceeding the HBSL recommendation of 10 μg/L 
in 41.37% of approved drinking waters and 19% of spring waters. 
Thus, based on human EDI and the p-RfD for the noncancer 
assessment of daily oral exposure, several values in bottled and spring 
water samples were higher than the chronic recommendation. Similar 
results are reflected by the THQ index, which exceeded the threshold 
of 1 in 27.58% of the approved bottled waters and 2.38% of the spring 
waters, with potential adverse health effects that require further 
investigation and possible remedial actions. Even so, regarding Li 
content in drinking water, scientific reports indicate disentangled 
effects on the cohort, and further studies are required to properly 
understand the possible effects of increased concentrations ingested 
by humans. The high mineral content in analyzed water can 
be  recommended as beneficial. Our study will provide a reliable 
database with alkali metals and minerals, which can be  further 
updated to evaluate various influences of metal pollution on 
chronic disease.

FIGURE 3

The distribution of estimated daily Li intake (μg/kgbw/day) via water ingestion (A) and target hazard quotient (B), county maximum values; graphic 
representation of estimated daily intake (C) and target hazard quotient (D). a—approved bottled waters, b—unapproved bottled waters, c—foreign 
bottled waters, and d—spring waters. The horizontal red line in panel (C) represents the limit between the subchronic and chronic RfD reference doses 
for Li.
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