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Introduction: Emergency medical service (EMS) serves as a pivotal role in linking 
injured road users to hospitals via offering first aid measures and transportation. 
This paper aims to investigate the effect of emergency medical service (EMS) 
response time on the fatality risk of freeway crashes.

Methods: Crash injury severity data from Kaiyang Freeway, China in 2014 
and 2015 are employed for the empirical investigation. A Bayesian random 
parameters spatial logistic model is developed for analyzing crash severity.

Results: Bayesian inference of the random parameters spatial logistic model 
demonstrates the importance of reducing EMS response time on minimizing 
the fatality risk of freeway crashes. Fatality odds would increase by 2.6% for 
1  min increase in EMS response time. Additionally, vehicle type, crash type, time 
of day, horizontal curvature, vertical grade, and precipitation are also found to 
have significant effects on the fatality probability of freeway crashes.

Conclusion: It is crucial to reduce EMS response time to decrease the fatality 
likelihood of freeway crashes. Some countermeasures have been proposed to 
shorten EMS response time.
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1 Introduction

Given the huge emotional and economic burden imposed by roadway crashes on the 
society, identifying contributing factors to crash occurrence and injury severity and 
quantifying their effects have long been a research focus in the research field of traffic safety 
(1). Most of existing studies (2–5) explored contributing factors to crash occurrence (pre-crash 
factors) and those to injury severity during the crash event from human, vehicle, and 
environmental factors. On the other hand, post-crash factors, such as those pertaining to 
emergency medical services (EMS), have been relatively less investigated, due to data 
availability and reliability.

After the crash occurrence, EMS serves as a pivotal role in linking injured road users to 
hospitals via offering first aid measures and transportation (6). EMS response time, herein 
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defined as the time that elapses from the notification of a traffic crash 
until EMS personnel arrives at the crash scene (7), is an important 
indicator of the time for patients to be treated and the performance of 
dispatching EMS resources (8). Many safety researchers (9–11) 
acknowledge the significant impact of EMS response time on the 
fatality likelihood of traffic crashes, especially in cases of victims 
sustaining severe injury. This opinion is reasonable, because a 
proportion of crash deaths would be  evitable, from the clinical 
perspective, if timely medical treatments were provided to the severely 
injured victims, particularly those with brain/heart trauma (12) or in 
need of haemorrhage controls or open airways (13, 14).

Despite of sparseness, there is a small quantity of studies that have 
investigated the effect of EMS response time on the injury severity of 
traffic crashes, using discrete outcome models. For example, based on 
a binary probit regression analysis of a dataset with over 1,400 traffic 
crashes in Spain, Sánchez-Mangas et al. (11) concluded that a 10-min 
reduction of EMS response time is expected to result in the fatality 
likelihood decreasing by 33%. Using a dataset from the Fatality 
Analysis Reporting System (FARS) in the U.S., Ma et  al. (15) 
investigated the smooth relationship between crash fatality probability 
and EMS response time and found that 17 min is the gold time for 
crash rescues. Lee et al. (6) developed a random effects ordered probit 
model for analyzing crash injury severity, and incorporated crash-
reporting time, response time, and transport time into the analysis. 
Their results indicate that longer response time and transport time are 
linked to more severe injury outcomes. Hosseinzadeh and Kluger (16) 
also adopted a random effects ordered probit model for uncovering 
the association between crash injury severity and EMS response time 
and on-scene time, as well as crash-related factors. They found that 
shorter response time and longer on-scene time is helpful to decrease 
the severity level of entire-body injuries. Zeng et al. (17) proposed a 
spatial generalized ordered probit model for the analysis of freeway 
crash severity, where EMS response time is included as an explanatory 
variable. The results also suggested that is lower crash severity is 
associated with a shorter EMS response time. Although the above 
studies have all demonstrated the significant impact of EMS response 
time on crash injury severity, a distinct difference lies in them: the 
former two studies categorized crash severity into two levels (i.e., fatal 
and non-fatal) and assumed that EMS response time has a considerable 
effect on fatality likelihood, and the latter three studies categorized 
crash severity into more than two levels (e.g., KABCO has five severity 
levels) and implied that EMS response time may have significant 
effects on the likelihoods of other severity levels, such as no injury. 
Obviously, the former assumption is more reasonable and consistent 
to the findings from clinic medicine. To accurately quantify the effect 
of EMS response time on the fatality likelihood of freeway crashes, in 
this research, the injury severity will be  divided into fatal and 
non-fatal, as in Sánchez-Mangas et al. (11) and Ma et al. (15). Our 
research focuses on freeway crashes, as they are more likely to result 
in human deaths than traffic crashes on other types of roadways, such 
as urban roads. Besides, the unique built environment (e.g., far from 
hospitals) and roadway conditions (e.g., the existence of emergency 
lane and no intersection) may make the EMS response time for 
freeway crashes different from that for crashes on other roadways.

Analytic method is also important to analyze crash injury 
severity. Given the binary categorization, statistically, binary logit 
or probit models have been most frequently used. In the recent 
decade, accounting for the unobserved heterogeneity and spatial 
correlation is prevalent when modeling crash severity (18, 19). 

Random parameters (20), latent class/finite mixture (21), and 
Markov switching approaches (22) are typical methods capable of 
capturing the unobserved heterogeneity. Among them, random 
parameters approaches are most widely used. To accommodate 
spatial correlation, various spatial structures, including spatial lag 
(23, 24), spatial error (23), intrinsic conditional autoregressive 
(CAR) (25, 26), and Leroux CAR (17), have been incorporated into 
the formulation of discrete outcome models. Zeng et al. (17) found 
that the Leroux CAR is superior to other alternatives. In this 
research, we propose a random parameters spatial logistic model 
with Leroux CAR for analyzing freeway crash severity, which can 
simultaneously capture the unobserved heterogeneity and spatial 
correlation in it.

The rest of the article is organized into four sections. The freeway 
crash-severity data used for the empirical analysis are introduced in 
Section 2. We  specify the formulation of the random parameters 
spatial logistic model in Section 3. The Bayesian estimation results of 
the proposed model are summarized and interpreted in Section 4. In 
the last section, we draw conclusions from the research and offer 
guidance for future research.

2 Data

Crash data of 2 years in 2014 and 2015 were collected from 
Kaiyang Freeway in Guangdong, China, which were acquired from the 
Highway Maintenance and Administration Management System 
maintained by Guangdong Transportation Group. Excluding the crash 
records with incomplete information, 1,414 crash records were used 
for the empirical analysis. In the original crash records, injury severity 
is categorized into four levels: no injury, slight injury, severe injury, 
and fatality. As mentioned earlier, the paper focuses on quantifying 
the effect of EMS response time on the fatality likelihood of freeway 
crashes versus that of non-fatality. Thus, the injury severity in the 
analysis was contracted into two levels: non-fatality (combining no 
injury, slight injury, and severe injury) and fatality. Among the 
observations, 1,378 crashes’ severity levels are of non-fatality and 36 
crashes’ are of fatality.

In the crash records, in addition to injury severity, some 
information pertaining to EMS, involved vehicle(s) and accident 
configuration is also documented, including: EMS response time, 
vehicle type (passenger car, coach, truck, and others) and license 
number (which is used to distinguish if a vehicle is local or not), crash 
time (morning, afternoon, evening, and before dawn), crash date 
(weekday and weekend), crash type (single-vehicle crash, rear-end 
crash, and angle crash), and crash location (which is expressed as 
kilometers marker of the freeway). As the key factor under 
investigation, the distribution of EMS response time in the dataset is 
shown in Figure 1.

We obtain the geometry design materials on Kaiyang Freeway 
from Guangdong Province Communication Planning and Design 
Institute Co., Ltd. Four roadway attributes, including horizontal 
curvature, vertical grade, and if the crash site is near a ramp or on a 
bridge, are extracted from the materials and matched with each crash 
according to their location information. To capture the spatial effects 
in the crashes, the freeway is segmented into 154 sections based on the 
criterion of homogeneity in horizontal curvature and vertical grade, 
which is line with the roadway segmentation methods used in the past 
studies (17, 27).
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We collect the real-time weather data along the freeway from the 
Meteorological Information Management System. The system is 
administrated by the Guangdong Climate Centre, an official 
meteorological organization. The data on wind speed, precipitation, 
visibility, temperature, and humidity are observed and recorded in 
each hour by three weather stations: Enping Weather Station, Kaiping 
Weather Station, and Yangjiang Weather Station. We match each crash 
under investigation with the hourly meteorological information from 
the nearest weather station through the crash time and location.

Table 1 displays the definitions and descriptive statistics of crash 
injury severity and its potential influence factors for the empirical 
analysis. We conduct Pearson correlation test and multi-collinearity 
diagnoses for the factors in SPSS software and find that there is no 
significant correlation or multi-collinearity among them.

3 Methods

We propose a random parameters spatial logistic model for 
investigating the crash injury severity with binary outcomes (fatality 
and non-fatality). To justify the superiority of the proposed model, 
we  compare it with traditional logistic model and spatial logistic 
model. In the section, the formulations of these models are clearly 
specified in the order of model complexity (Section 3.1); and then the 
implementation processes of Bayesian estimation and performance 
assessment criterion for the models are introduced (Section 3.2).

3.1 Model formulation

3.1.1 Logistic model
Logistic model (i.e., binary logit model) is one of the most 

extensively used methods for the analysis of crash injury severity 
divided into two levels (1). As suggested in Table  1, denote fatal 
crash = 1 and non-fatal crash = 0. For any crash i, a latent variable iU  

is set. It is assumed that there is a linear association between iU  and 
the covariates. If iU  is positive, the injury severity of crash i is fatal; 
otherwise, it is non-fatal. The model equation is shown in 
Equations 1 and 2:
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the dataset. iε  is a residual term and is assumed to have a logistic 
distribution. Its cumulative distribution function is expressed as 
Equation 3:
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According to the model formulation, the probabilities of crash i 
resulting in fatality and non-fatality (represented by ,1ip  and ,0ip  
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FIGURE 1

The distribution of EMS response time.
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Accordingly, the odds of fatality crash are calculated as Equation 6:
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To quantify the effect of a certain factor on crash injury severity, 
its odds ratio is usually computed and reported (28). For any covariate 

jx , its odds ratio is defined as Equation 7:
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3.1.2 Spatial logistic model
Some unobserved/unobservable factors may have similar effects 

on the injury severities of crashes in close proximity, resulting in 

spatial correlation/dependency across them (17). To account for the 
spatial dependency, a spatial logistic model is developed, by adding 
a random error term with CAR prior into the formulation of iU . 
Different from the intrinsic CAR prior adopted in the previous 
studies (25, 26), the Leroux CAR prior which is able to flexibly 
capture the strength of spatial correlation (29), is specified in the 
spatial logistic model. Specifically, for crash i occurring in freeway 
section m  can be calculated by Equations 8 and 9:
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TABLE 1 Definitions and descriptive statistics of crash injury severity and influence factors.

Variables Description Mean S.D. Min. Max.

Crash injury severity Fatality = 1; non-fatality = 0 0.025 0.155 0 1

EMS response time The duration from the crash notification to the arrival of EMS personnel at crash scene (minute) 19.56 16.61 1 260

Weekend Crash happens on a weekend = 1; otherwise = 0 0.347 0.476 0 1

Vehicle characteristics

Car* Only passenger cars are involved =1; otherwise = 0 0.579 0.494 0 1

Coach At least a coach is involved =1; otherwise = 0 0.064 0.245 0 1

Truck At least a truck is involved = 1; otherwise = 0 0.313 0.464 0 1

Other_vehicle At least a other vehicles (e.g., towed vehicles) is involved = 1; otherwise = 0 0. 098 0.298 0 1

Non_local_vehicle
At least an involved vehicle is not registered in Guangdong Province (non-local vehicle) = 1; 

otherwise (local vehicle) = 0

0.280 0.433 0 1

Time of day

Before_dawn* Crash happens within the period [00:00, 06:00) = 1; otherwise = 0 0.223 0.416 0 1

Morning Crash happens within the period [06:00, 12:00) = 1; otherwise = 0 0.370 0.483 0 1

Afternoon Crash happens within the period [12:00, 18:00) = 1; otherwise = 0 0.223 0.418 0 1

Evening Crash happens within the period [18:00, 24:00) = 1; otherwise = 0 0.184 0.388 0 1

Crash type

Single-vehicle crash* Only one vehicle is involved in the crash = 1; otherwise = 0 0.455 0.498 0 1

Rear-end crash A rear end collision = 1; otherwise = 0 0.381 0.486 0 1

Angle crash An angle collision = 1; otherwise = 0 0.163 0.245 0 1

Roadway attributes

Curvature The horizontal curvature of crash location (0.1 km-1) 1.838 1.233 0 4.35

Grade The vertical grade of crash location (%) 0.709 0.588 0 2.91

Bridge Crash happens on a bridge =1; otherwise = 0 0.536 0.499 0 1

Ramp Crash happens near a ramp = 1; otherwise = 0 0.244 0.430 0 1

Dynamic weather conditions

Wind speed Average wind speed during the hour of crash occurrence (m/s) 2.860 1.889 0 16.7

Precipitation Accumulated precipitation during the hour of crash occurrence (mm) 0.760 3.425 0 54.8

Temperature Average air temperature during the hour of crash occurrence (°C) 23.68 6.057 4.8 36.8

Humidity Average humidity during the hour of crash occurrence (%) 81.31 15.48 21 100

Visibility Average visibility during the hour of crash occurrence (km) 17.77 18.41 0.1 80

*The reference category.
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where mϕ  and nϕ  represent the spatial effects of crashes in freeway 
sections m and n. ,m nω  represents the degree of the proximity between 
sections m and n. The first order adjacency-based rule which is widely 
used in spatial modeling, is employed to define the proximity degrees: 
if freeway sections m and n share a common end, , 1m nω = ; otherwise, 

, 0m nω = . ( )0 1ρ ρ≤ ≤  is an estimable parameter which measures the 
strength of spatial correlation. A higher value of ρ  indicates stronger 
spatial correlation. 0ρ =  implies that no spatial correlation exists 
among the injury severities of observed crashes. 1ρ =  (equivalent to 
the intrinsic CAR prior) suggests that the injury severities of adjacent 
crashes are fully correlated. δ  is a hyper-parameter related to the 
variance of spatial correlation.

3.1.3 Random parameters spatial logistic model
There may be unobserved heterogeneities in the effects of certain 

factors on crash injury severity (18). To simultaneously account for 
unobserved heterogeneity and spatial correlation, a random parameters 
spatial logistic model is proposed. Specifically, the coefficient 

( )0,1,2, ,j j Jβ =   in Equation 8 is switched to random parameters 
( ), 1,2, , ; 0,1,2, ,β = = i j i N j J  which can vary across crashes. 

Although there are a number of applicable forms of random 
parameters, the commonest one is adopted in the study as shown in 
Equation 10:

 , , ,i j j i jβ β µ= +  (10)

in which jβ  is the mean of ,i jβ . ,i jµ  is a normally distributed 
random term as shown in Equation 11:

 ( )2
, ~ 0, ,i j jNµ σ

 
(11)

where jσ  denotes the standard deviation of ,i jµ .

3.2 Model estimation and performance 
assessment criterion

3.2.1 Model estimation
Given the complex structure of CAR prior, the above models are 

estimated by Bayesian inference method. It necessitates specifying a 
prior distribution for each parameter or hyper-parameter, which 
reveals the researchers’ prior knowledge on it. In the case of no available 
prior knowledge, as in the previous studies (17, 25, 26), non-informative 
distributions are adopted. Specifically, a diffused normal distribution, 
( )40,10N , is set as the prior of jβ  and ( )0,1,2, ,j j Jβ =  ; a uniform 

distribution, ( )0,1U , is set as the prior of ρ ; and a uniform distribution, 
( )0.01,10U , is set as the prior of δ  and ( )0,1,2, ,j j Jσ =  .

The Bayesian estimation is implemented in the WinBUGS software 
(30), in which Gibbs sampling algorithms and Markov chain Monte 
Carlo (MCMC) simulation techniques are embedded to infer the 
posterior distributions of parameters. For each model, a chain of MCMC 
simulation is run, and 100,000 simulation iterations are set, with the first 
50,000 iterations acting as burn-in. To judge if the MCMC simulations 
are converged, we visually inspect the history plots for the parameters 
(such as that for EMS response time in the random parameters model 
as shown in Figure 2) and monitor whether the ratio between the Monte 

Carlo simulation error for each parameter and its posterior standard 
deviation is less than 5%. In the random parameters spatial logistic 
model, if the posterior variance is not statistically significant at the 95% 
Bayesian credibility level, it is transformed to a fixed parameter.

3.2.2 Performance assessment criterion
The deviance information criterion (DIC), which is the most 

popular criterion for assessing Bayesian models, is used for comparing 
the comprehensive performance of the above crash severity models. 
As a Bayesian generalization of Akaike’s information criterion, the DIC 
provides a hybrid measure of model fitting and complexity. According 
to Spiegelhalter et al. (31), its calculation equation is expressed as 
Equation 12:

 ,DIC D pD= +  (12)

where D and pD are the posterior mean deviance and the effective 
number of parameters respectively, which are used to measure the 
model fitting and complexity accordingly. Generally, a lower DIC 
value means a better overall performance. As suggested by Lunn et al. 
(30), we can conclude that a model with a lower DIC is considerably 
superior if the DIC difference with another one is greater than 10.

4 Modeling results

The results of Bayesian estimation and performance assessment for 
the three models are summarized in Table 2. Only the covariates whose 
parameters are significant at least at the 90% credibility level are 
included in the table. We can find that the D value of the spatial logistic 
model is lower than that of the logistic model with the difference over 
20. It indicates that the spatial logistic model performs substantially 
better than the logistic model in fitting the association between crash 
severity and EMS response time as well as other factors. Although the 
lower pD value of the logistic model implies that it is more 
parsimonious, the 16 points of DIC lower for the spatial logistic model 
suggest its superior overall performance. These findings are in line with 
the previous studies (17, 23, 25, 26): accounting for spatial correlation 
among adjacent crashes by CAR prior can effectively reduce model 
misspecification and improve model estimation. The reasonableness of 
the spatial logistic model with Leroux CAR prior can also 
be demonstrated by the Bayesian estimates of δ  and ρ , which are both 
significant at the 95% credibility level. Additionally, the posterior mean 
of ρ  is 0.62. It implies that the spatial correlation in the crash severity 
is medium, that cannot be  figured out by the intrinsic CAR prior 
applied in Xu et al. (26) and Meng et al. (25).

The random parameters spatial logistic model yields the lowest 
values of D and DIC. We  may conclude that accounting for the 
unobserved heterogeneities in the effects of certain covariates by 
allowing their parameters to vary across observations can further 
improve model fitting performance, given the consideration of spatial 
correlation. Similar results can be found in the research conducted by 
Zeng et al. (32). In the random parameters spatial logistic model, the 
posterior mean of ρ  is a little higher than the counterpart in the spatial 
logistic model. That is, the strength of spatial correlation is slightly 
increased due to the accommodation of random parameters. Besides, 
the posterior mean of δ  is significantly lower in the random 
parameters model. This is reasonable, as a proportion of the structure 
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spatial effects may be derived from the unobserved heterogeneity 
which has been captured by the random parameter.

5 Discussion

The effects of EMS response time and other significant variables 
on the fatality probability of freeway crashes are interpreted based on 
the parameter estimation in the random parameters spatial logistic 
model, since it outperforms the other two models.

5.1 Effect of EMS response time

According to the Bayesian modeling estimation results 
summarized in Table  2, the parameter for EMS response time is 
statistically significant with a positive coefficient at the 95% credibility 
level, which indicates that a longer EMS response time is expected to 
increase the probability of fatality crash. The odds ratio for EMS 
response time is estimated to be 1.026 (=exp.(0.026)), i.e., the odds of 
resulting in fatality crash would be  increased by 2.6% for per 
one-minute increase of EMS response time. The findings are generally 
consistent with those in most of the previous studies (6, 11, 17) and 
experiences from clinic medicine and transportation engineering: 
rapid response of EMS personnel is able to prevent the death of certain 
traffic crash victims suffered from severe trauma injuries, but are 
different from those in some others. For example, Ma et al. (15) found 
that the effect of EMS response time on fatality risk is non-monotonic, 
such that EMS response time may be negatively associated with the 
odds of fatality in some cases. These phenomena are originated from 
the urgency level of a crash and EMS dispatch priority (15, 33–35). 
Nevertheless, we did not find such phenomena from the current study. 
It is possible because freeway crashes in China usually have the high 
priority for EMS dispatch, given their more severe outcomes than those 
on other types of roadways (17). Besides, the average marginal effect of 
10-min EMS response time on fatality crash is estimated to be 0.00231. 
That is, 0.23 less fatality crash per every 100 crashes is expected for a 
10-min reduction in EMS response time. The marginal effect is 
significantly lower than that (=0.024) estimated by Sánchez-Mangas 
et al. (11), which may be attributed to lower fatality rate of our crash 
data and the differences in EMS level between China and Spain.

To make the EMS personnel and vehicles arrive at crash scenes as 
soon as possible, the following countermeasures may be effective (1): 
Installing sufficient EMS facilities near freeways. Once a freeway crash 
is reported or detected, the emergency management agencies usually 
dispatch rescue personnel and vehicles from the nearest EMS facility 
to the crash scene. More EMS facilities can reduce the expected 
distance between them and crash locations (2).; Optimizing the 
traveling path to crash scenes (as shown in Figure 3), according to the 
real-time traffic data collected by various detection techniques and 
transmitted by 5G communication technology. There may be several 
alternative traveling paths from a EMS facility to the crash scene. The 

1 Please refer to Afghari et al. (41) for the detailed calculation method of 

marginal effect.

FIGURE 2

History plot of the parameter for EMS response time in the random parameters model.

TABLE 2 Results of Bayesian parameter estimation and performance 
assessment for the models.a

Logistic 
model

Spatial 
logistic 
model

Random 
parameters 

spatial 
logistic 
model

Constant −5.99 (1.87)b,** −6.67 (1.98)** −7.10 (2.09)**

EMS response 

time
0.021(0.009)** 0.024 (0.010)**

0.026 (0.010)**

Truck 0.41 (0.12)** 0.44 (0.13)** 0.51 (0.15)**

S.D. of Truck — — 1.23 (0.16)**

Other vehicle 0.64 (0.20)** 0.68 (0.23)** 0.71 (0.22)**

Non_local vehicle 0.87 (0.31)** 0.99 (0.34)** 0.86 (0.32)**

Curvature −0.17 (0.06)** −0.14 (0.05)** −0.12 (0.04)**

Grade 0.79 (0.24)** 0.91 (0.29)** 1.09 (0.31)**

Afternoon −2.53 (0.97)** −2.57 (0.98)** −2.67 (1.01)**

Rear-end crash 1.44 (0.56)** 1.53 (0.56)** 1.47 (0.54)**

Angle crash 1.76 (0.62)** 1.85 (0.62)** 1.91 (0.67)**

Precipitation — 0.92 (0.62)* 0.95 (0.65)*

ρ — 0.62 (0.27)** 0.68 (0.26)**

δ — 0.74 (0.17)** 0.56 (0.22)**

D 285 259 236

pD 18 28 35

DIC 303 287 271

aWeekend, Coach, Morning, Evening, Bridge, and Ramp, are excluded, because their effects 
on crash injury severity are not significant at the 90% credibility level in the models.
bBayesian posterior mean of the parameter (Bayesian posterior standard deviation of the 
parameter).
*Statistically significant at the 90% credible level.
**Statistically significant at the 95% credible level.
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travel time of each path is depended on the traffic conditions which is 
usually influenced by the traffic crash. If the traffic conditions on each 
path is detected, transmitted, and predicted in real-time, we can find 
the one with shortest travel time (3). Strict enforcement against illegal 
occupancy of emergency lanes on freeways. The occurrence of traffic 
crash may bring about traffic congestion. A rescue vehicle can travel 
on emergency lanes to avoid the adverse impacts of traffic congestion 
on its travel speed. However, emergency lanes may also be illegally 
occupied by other vehicles. Thus, strict enforcement against the illegal 
occupancy is also helpful to reduce the arrival time of EMS vehicles.

5.2 Effects of other factors

Truck is the only covariate that has a heterogeneous effect on 
crash injury severity. The estimated mean and standard deviation of 
the random parameter for truck are 0.51 and 1.23 respectively, which 
indicate that about 66% of truck involved crashes are more likely to 
result in fatality. It is reasonable, because trucks usually possess larger 
mass and higher structural rigidity which impose greater harm on the 
occupants in other vehicles involved in the same collision, i.e., higher 
crash aggressivity defined in Huang et al. (36). Meanwhile, the rest 
34% of truck involved crashes are less likely to result in fatality. In this 
research, a proportion of truck’s effect on crash severity may be derived 
from truck drivers’ driving behavior which is not observed in the 
crash data. Considerable variability in truck drivers’ behavior when 
occurring a crash may explain the heterogeneous effect.

Other_vehicle is found to have a significant and homogeneous 
effect on crash severity. According to the Bayesian estimates, the 
fatality odds of crashes involving other type vehicles (e.g., towed 
vehicles) are 2.03 [=exp(0.71)] times of that of crashes involving 

passenger cars only, with all other factors equal. Similar to trucks, 
other type vehicles also possess higher crash aggressivity than 
passenger cars, thus more likely to resulting in fatalities.

It is interesting to find that non_local vehicle has a significantly 
positive effect on crash severity. That is, involving non-local vehicles 
(i.e., those not registered in the province where the crash happened) 
would increase the crash fatality risk. Specifically, the fatality odds are 
expected to increase by 136% [=exp(0.86)−1], if there is one or more 
non-local vehicle involved in a crash. We can find similar results in the 
research conducted by Zeng et al. (17). They argued that the drivers 
of non-local vehicles are usually less familiar with the roadway 
environment, and thus may not have enough time to take proper 
actions before crashes.

Regarding roadway geometric attributes, curvature and grade are 
significantly associated with crash injury severity. The negative sign of 
the parameter for curvature suggests that crashes on freeway sections 
with smaller horizontal curve radius are less likely to result in fatalities. 
The crash fatality odds would decrease by 11% [=1−exp(−0.12)] for a 
0.1 km−1 increase in horizontal curvature. It is possible, because 
drivers tend to reduce speed and become more cautious to avoid 
vehicles out of control when driving on small radius curves (37, 38). 
The estimated mean of the parameter for grade is 1.09. It indicates that 
the odds of crash fatality would increase by 197% [=exp(1.09)−1] for 
a 1% increase in vertical grade. High grade would reduce sight 
distance (2, 5). Thereby, less time is retained for drivers to appropriately 
respond to upcoming crashes.

For the time of day, the parameter for afternoon on crash injury 
severity is negative at the 95% credibility level. It is anticipated, as the 
vision of drivers is usually clearer in afternoon than before dawn (the 
reference case), and thus more time is available for them to take 
defensive actions when encountered with emergency. In addition, 

FIGURE 3

Traveling path of a rescue vehicle.
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because of the light traffic and human circadian rhythmicity respectively, 
we may observe more frequent speeding and fatigue/drowsy driving 
before dawn, which probably result in severe traffic accidents (4).

With regard to crash type, the estimation results suggest that 
rear-end crashes and angle crashes are more prone to lead to fatalities 
than single-vehicle crashes (the reference type). Particularly, the fatality 
odds of rear-end crashes and angle crashes are 4.35 and 6.75 times of that 
of single-vehicle crashes, respectively. The results are generally in line 
with the findings of Zeng et al. (17), and may be attributed to that more 
casualties usually exist in multiple-vehicle crashes (covering rear-end 
crashes, angle crashes, and others) than in single-vehicle crashes.

Precipitation is the weather-related variable with a significant effect 
on crash injury severity. According to its estimated parameter, heavier 
precipitation is associated with higher probability of fatality crash. The 
results are consistent with the previous research (39, 40) and 
engineering intuitions: because of rainfall, roadway surfaces would 
become slippery and their skidding resistance would be  reduced. 
Accordingly, vehicles would collide at higher speeds which were prone 
to bring about severer injury severity outcomes. Additionally, during 
the processes of precipitation, drivers’ vision might be impaired which 
results in reduced reaction time available to drivers.

6 Conclusion

This research empirically investigated the effect of EMS response 
time and the fatality risk of freeway crashes, using a two-years crash 
injury severity dataset from Kaiyang Freeway, China. A Bayesian 
random parameters spatial logistic model was advocated for the 
empirical investigation. The advocated model simultaneously 
accounted for the spatial correlation across adjacent crashes and 
unobserved heterogeneities in effects of the observed factors.

The values of DIC indicated that the overall performance of the 
random parameters spatial logistic model is substantially better than 
the logistic model and spatial logistic model. The parameter estimation 
results in the random parameters spatial model revealed that EMS 
response time has a significantly positive effect on crash injury 
severity. One minute increase in EMS response time would increase 
the crash fatality odds by 2.6%. Three countermeasures were suggested 
to reduce the EMS response time. They are: (1) establishment of EMS 
facilities near freeways at the optimized location; (2) optimization of 
path to the crash location based on real-time traffic data; and (3) strict 
enforcement against illegal occupancy of emergency lanes.

In addition, the estimation results show that truck has a 
heterogeneous effect on crash injury severity. Fatalities are more likely 
to occur in crashes involving other vehicles, non-local vehicles, on 
freeway sections with smaller horizontal curvature and greater vertical 
grade, in weather conditions with more precipitation, and before 
dawn. The fatality risk of rear-end crashes and angle crashes is higher 
than that of single-vehicle crashes.

While the significant effect of EMS response time on crash fatality 
risk and the superiority of the advocated Bayesian random parameters 
spatial logit model were demonstrated, there are some limitations to 

the current research. For instance, only the crash data from one 
freeway are used in the model development, and the attributes related 
to drivers are not included. It will be necessary to further validate the 
safety effect of EMS response time if comprehensive crash injury 
severity data are available in the future.
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