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Infants growing up in low- and middle-income countries are at increased risk of 
suffering adverse childhood experiences, including exposure to environmental 
pollution and lack of cognitive stimulation. In this study, we aimed to examine 
the levels of metals in the human milk of women living in São Paulo City, Brazil, 
and determine the effects on infants’ neurodevelopment. For such, a total of 185 
human milk samples were analyzed for arsenic (As), lead (Pb), mercury (Hg), and 
cadmium (Cd) using inductively coupled plasma mass spectrometry (ICP-MS). 
We applied the Bayley scales of infant and toddler development Third Edition 
(Bayley-III) to assess developmental milestones. In our analysis, we  found a 
mean (standard deviation) concentration of As in human milk equal to 2.76 
(4.09) μg L−1, followed by Pb 2.09 (5.36) and Hg 1.96 (6.68). Cd was not detected. 
We observed that infants exposed to Pb presented language trajectories lower 
than non-exposed infants (β  =  −0.413; 95% CI -0.653, −0.173) after adjustment 
for infant age, maternal education, socioeconomic status, infant sex, and 
sample weights. Our results report As, Pb, and Hg contamination in human milk, 
and that infant exposure to Pb decreased infants’ language development. These 
results evidence maternal-child environmental exposure and its detrimental 
impact on infants’ health.
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1 Introduction

Infants in low- and middle-income countries (LMICs) have the 
highest risk of being exposed to environmental pollution (1). According 
to the Lancet Commission on Pollution and Health (2017), there is a 
significant inequity in pollution-related deaths, with the highest burden 
in LMICs (2). The Commission reported that pollution was responsible 
for approximately 9 million deaths (16% of all deaths globally) in 2015, 
and more than 90% of these deaths occurred in LMICs (2). Pollution 
includes the contamination of air by fine particulate matter (PM2.5); 
the contamination of the ocean by mercury, nitrogen, plastic, and 
petroleum waste; and the poisoning of the land by lead, mercury, 
pesticides, industrial chemicals, and electronic waste, among others (3).

Exposure to environmental pollutants can be  particularly 
dangerous for infants, as their metabolic capacity and biochemical 
pathways are immature, and their organs and systems are still 
developing (4). These contaminants represent a significant risk for 
exclusively breastfed infants since human milk can contain 
contaminants, due to environmental exposure being their only source 
of nutrition during the initial months of life (5). Toxic exposures 
before birth or in early postnatal life can lead to short-term death in 
infancy and childhood, as well as chronic non-communicable diseases 
(NCDs), including neurobehavioral disorders (6), that may manifest 
at any point throughout the human lifespan (6, 7).

Epidemiological evidence has highlighted the risks associated 
with environmental exposures that may result in alterations to brain 
development (8–11). Understanding the impact of exposures during 
the first 1,000 days can shed light on brain development in LMIC 
populations. Furthermore, metal exposure and its association with 
neurodevelopment are poorly understood and require further 
confirmation in different human populations. This study aimed to 
investigate the association between infants’ exposure to arsenic (As), 
lead (Pb), mercury (Hg), and cadmium (Cd) via human milk and 
adverse neurodevelopmental outcomes.

2 Materials and methods

We conducted a longitudinal analysis on the Germina cohort (12), 
a population-based infant cohort from the metropolitan area of São 
Paulo. One hundred and eighty-five healthy mother-infant dyads 
provided human milk samples at 3 months of age. Infants’ 
neurodevelopment was assessed at 3, 5–9, and 10–16 months using the 
Bayley scales of infant and toddler development 3rd Edition 
(Bayley-III). The Bayley-III consists of a series of tasks and behavioral 
observations, including the following domains: cognitive, language, 
motor, and social–emotional development. The Bayley-III was 
previously translated and adapted to Brazilian Portuguese, and 
we used the composite scores in this study (13).

Ethical approvals were obtained from the Ethics Committee for 
the Analysis of Research Projects (CAPPESq) and the National 
Council of Ethics in Research (ref.: CAAE 49671221.2.0000.0068). 

Following the Declaration of Helsinki, all mothers provided written 
informed consent before completing any study measure.

We analyzed the levels of As, Pb, Hg, and Cd in the samples using 
acid digestion with 65% nitric acid (w/v) and inductively coupled 
plasma mass spectrometry (ICP-MS) model NexION 300D, 
manufactured by PerkinElmer, United States. The ICP-MS system was 
equipped with a concentric nebulizer (Meinhard), cyclonic glass 
nebulizer chamber, cone, skimmer, and nickel hyper-skimmer 
technique at the National Institute of Quality Control in Health 
Laboratory (INCQS) (14). The limit of detection (LOD) was 
determined by analyzing 10 independent blank solutions and 
calculated according to the National Institute of Metrology, 
Standardization, and Industrial Quality (INMETRO) guidance 
document for a 95% confidence level (15). The accuracy and precision 
of the method were assessed through a recovery study. Their 
acceptance criteria typically range from 80 to 120% of the certified 
value, with a maximum relative standard deviation (% RSD) below 
30% (15, 16). The metal’s limits of quantification (LOQ) were: Pb 
0.015 μg/dL, Hg 0.007 μg L−1, Cd 0.002 μg L−1, As 0.003 μg L−1. For 
values below the LOQ, we  imputed the limit of detection (LOD) 
divided by two, as suggested for right-skewed data distribution (17). 
Since the imputation rate was higher than 50%, infants were 
categorized as exposed or non-exposed for further analysis It is 
essential to note that the group of infants categorized as “non-exposed 
to Pb” were not exposed to detectable levels of this metal in human 
milk samples according to the technique used. However, exposure 
below LOD and from other sources cannot be ruled out. To compare 
differences between infant groups we  used chi-square test for 
categorical variables and t-test for r continuous variables. The metal 
levels of the exposed infants are presented as the mean (SD).

We used a linear mixed-effects model [nlme R package (18)] with 
repeated measures to assess the relationship between longitudinal 
language scores and Pb exposure, with the presence and absence of 
the interaction term between infant age and Pb exposure. The 
adjustment process incorporated key socio-economic variables, 
maternal ethnicity and education, socioeconomic status score, infant 
age, and sex. The socioeconomic status score was defined based on 
Brazil’s Criteria for Economic Classification. We constructed pseudo-
weights (19) to improve the representativeness of our sample relative 
to the general population. All analyses were conducted in R.1

3 Results

We evaluated the levels of metals in human milk samples (n = 185). 
The highest detection rate was for As (38.6%), followed by Hg (23.9%) 
and Pb (22.8%). The mean (SD) concentration was 2.76 (4.09) μg/L, 
1.96 (6.68), 2.09 (5.36), respectively. Cd was not detected (Table 1).

Further, we  analyzed the associations of As, Pb, Hg, and Pb 
exposure and the Bayley-III cognitive and language composite scores 
across time points, and only Pb showed a significant effect in the 
Bayley language composite trajectory (Supplementary Table  1). 
Therefore, the subsequent analyses are regarding Pb and the language 
Bayley Scale. Maternal and infant characteristics according to Pb 

1 http://www.r-project.org

Abbreviations: LMICs, Low- and middle-income countries; ICP-MS, Inductively 

coupled plasma mass spectrometry; LOQ, Limits of quantification; LOD, Limit of 

detection; GABA, Gamma-aminobutyric acid; NMDA, N-methyl D-aspartate.
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exposure are described in Table 2. No significant differences were 
observed for total family income, maternal education, infant sex, 
gestational age, and socio-economic between the infant groups. 
Infants exposed to Pb had significantly lower (mean[sd]) performance 
in the language Bayley Scale at 10–16 months of age (97.47 [13.36]) 
compared to non-exposed infants (102.96 [11.53]).

Table 3 shows the regression coefficients for infants’ language 
trajectory predictors. The joint effect of Pb exposure and infant age 
resulted in a decreased language trajectory only among the Pb exposed 
infant group (β = −0.413; 95% CI = −0.653, −0.173), adjusting for 

infant age, socioeconomic status, maternal education, infant sex, and 
sample weights (Figure 1). Socioeconomic status was also a significant 
predictor of language trajectory (β = 0.129; 95% CI = 0.002, 0.255).

4 Discussion

In this study, we measured the levels of metals in human milk and 
their association with infant language development during the first 2 
years of life. We  found that about one-third of the human milk 
samples had detectable Pb, As, and Hg levels but not Cd. Also, infants 
exposed to Pb via human milk showed lower language trajectories 
than non-exposed infants.

Epidemiological research has demonstrated that child 
neurodevelopment is inversely related to Pb exposure, measured 
either in maternal blood, cord blood, or human milk (11, 20, 21), 
although others have reported null associations (22, 23). Comparing 
these studies is difficult due to variations in the sampling timing, the 
method and age of the neurodevelopmental tests, the number of 
participants, and the statistical modeling techniques. For example, the 
Pb concentrations in human milk in our study were lower than in the 
majority of previous studies in other Brazilian states, Lebanon, and 
Spain (24–26) and yet, it was associated with lower language skills. 
Although the accepted Pb levels in human milk are between 2 and 
5 μg/L (27), there are no known safe commendations for blood Pb 
levels (28). Even blood Pb concentrations as low as 3.5 μg/dL may 
be linked to decreased intelligence in children, behavioral difficulties, 
and learning problems (29).

In a Bangladesh cohort, increased blood lead levels in children 
aged 20 to 40 months were associated with decreased cognitive scores 
(30). In Suriname, prenatal lead exposure was associated with lower 
receptive and expressive communication scores in children aged 1 to 
2 years (31). Rural and suburban Mexican infants had a 1.5-point 
decrease in language development for every 1 μg/dL increase in 
maternal blood lead levels (32). All assessments were conducted using 
the Bayley-III scale. This evidence was generated in low- to middle-
income countries, with the last performed in rural and suburban 
areas. This highlights the vulnerability of these populations to 
environmental pollutants exposure, aligning with our findings that 
socioeconomic status was a significant predictor of language 
development in addition to population settings.

Infants are particularly vulnerable to absorbing metals since the 
intestinal barrier is immature, and these elements’ permeability may 
be increased (33). The immaturity of other organs and systems also 

TABLE 2 Maternal and infants’ characteristics.

Total Exposed Non-
exposed

p-
value*

Total family 

income (US 

dollar)

2,378.9 

(2,476.7)

2,339.6 

(1,971.7)

2,390.4 

(2,611.5)
0.912

Maternal 

educational 

attainment

0.763

>College degree
125 

(79.62)
29 (76.3%) 103 (78.6%)

<College degree 32 (20.38) 9 (23.7%) 28 (21.4%)

Infant sex 0.310

Female 81 (51.59) 23 (60.5%) 67 (51.1%)

Male 76 (48.41) 15 (39.5%) 64 (48.9%)

Gestational age 

(weeks)

39.02 

(1.02)
38.95 (1.11) 39.05 (0.99) 0.601

Socioeconomic 

status score

37.15 

(8.73)
37.13 (7.74) 37.16 (9.02) 0.986

Bayley language composite score

At 3 months of 

age

104.30 

(8.30)
102.76 (8.55) 104.74 (8.21) 0.197

At 5–9 months of 

age

103.01 

(9.17)
101.66 (10.20) 103.40 (8.85) 0.303

At 10–16 months 

of age

101.73 

(12.14)
97.47 (13.36) 102.96 (11.53) <0.001

Lead (μg/L) 2.09 (5.36) 0.15 (0.00) 8.67 (8.43) <0.001

Germina Study—São Paulo, Brazil, 2021–2022. Mean (SD); N (%). *The chi-square test was 
used for categorical variables and the t-test for continuous variables. Bold values represent 
statistically significant results.

TABLE 1 Levels of metals in human milk.

Metals n Detection n 
(%  >  LOQ)

Mean 
(SD)

Min/
Max

Arsenic 185 71 (38.6%) 2.76 (4.09) 0.10–34.55

Mercury 185 44 (23.9%) 1.96 (6.68) 0.04–54.41

Lead 185 42 (22.8%) 2.09 (5.36) 0.15–40.90

Cadmium 185 0 - -

Germina Study, São Paulo, Brazil, 2021–2022. Metals units are μg L−1; Limits of 
quantification: Pb 1 μg L−1; Hg 0.3 μg L−1; Cd 0.08 μg L−1; As 0.06 μg L−1; LOQ, Limit of 
Quantification.

TABLE 3 Regression coefficients of language trajectories predictors.

β 95% CI p-value

Infant age (days) −0.142 −0.338 – 0.053 0.155

Socioeconomic status 

score

0.129 0.002–0.255 0.048

Maternal educational 

attainment

−0.634 −3.383 – 2.114 0.651

Infant sex 0.539 −1.420 – 2.498 0.590

Pb exposure*Infant age −0.413 −0.653 – −0.173 <0.001

Germina Study—São Paulo, Brazil, 2021–2022. Bold values represent statistically significant 
results.

https://doi.org/10.3389/fpubh.2024.1450570
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Naspolini et al. 10.3389/fpubh.2024.1450570

Frontiers in Public Health 04 frontiersin.org

FIGURE 1

Infants exposed to Pb had lower language trajectories compared to non-exposed infants. X-axis are infant age in days and Y-axis are infants language 
Bayley trajectory stratified by Pb exposure status.

contributes to higher toxicity during infancy (33). The brain is more 
likely to be affected by Pb and neurotoxicity occurs through multiple 
mechanisms. Pb can cross the blood–brain barrier (BBB) via calcium 
channels and accumulate in astrocytes. By replacing calcium in 
enzyme activities, Pb can damage the mitochondria and alter lipid 
metabolism and decrease neurotransmitter release (34, 35). 
Furthermore, Pb can replace zinc in processes that regulate genetic 
transcription, such as zinc-finger proteins or zinc-binding sites in 
receptor channels. Changes in mechanisms that control gene 
expression during early neurodevelopment could decrease gray 
matter, alter myelin, and potentially lead to neurological disorders in 
adults (35).

Pb has been extensively investigated in relation to autism 
spectrum disorders (ASD) (36). A meta-analysis showed that higher 
levels of Pb were found in several biological samples of autistic 
children compared to controls (37). This suggests a possible link 
between the development of ASD and environmental exposure to Pb. 
Possible mechanisms that could explain this association include the 
deregulation of physiological levels of neurotransmitters (35) and the 
production of serum anti-ribosomal P antibodies (8). In addition, a 
systematic review found that infants and children exposed to Pb 
experience reductions in acetylcholine, glutamate and GABA levels, 
and NMDA receptors expression levels, which results in the decline 
of their reading and language abilities, increased stress response, and 
poor as memory (38). Pb exposure has also been associated with 
aggravated behavioral and immune abnormalities in autistic mouse 
models (39).

Pb can accumulate in bone tissue and be released into the blood 
and soft tissue organs in periods of physiological stress (34), such as 
during infants’ growth spurts, which occur typically between 5 and 
12 months of life (40). Although this could explain the later effect 
observed in the Bayley Language Score, we  should also consider 
improving the Bayley Scale accuracy when used in ages greater than 
12 months as a possible explanation.

Our study’s limitations should be  mentioned. Due to Pb 
quantification being lower than 50%, it had to be  analyzed 
dichotomously (exposed or non-exposed), which may miss subtle 
differences in toxicity and not allow for an investigation of a dose–
response relationship. Dichotomous analysis can also result in less 
statistical power. Also, we cannot confirm that Pb was absorbed by the 
infant since Pb was assessed in human milk. Regarding the outcome 
assessment, although recommended, the Bayley scale might not 
be accurate when applied as early as 12 months of infant age. Finally, 
while our study design could demonstrate temporality, it was not 
intended to establish causality.

Our results deserve appreciation because they report an estimate 
of high effect size, even accounting for several covariates, including 
maternal education and family income, infant sex, and socioeconomic 
status. To address the sampling biases inherent in volunteer samples, 
we  employed pseudo-sampling weights designed to improve the 
representativeness of our cohort. Benefiting from longitudinal data, 
we computed the infant language trajectory using repeated measures 
rather than analyzing multiple time points in a cross-
sectional manner.

In conclusion, our study shows that exposure to Pb via human 
milk is associated with lower language trajectory during the first 2 years 
of life. This emphasizes the need to revise the currently accepted levels 
of metals in human samples, as even low concentrations could harm 
vulnerable populations. More research is required to confirm the link 
between lead exposure and neurodevelopmental deficits in early life 
and to determine long-term consequences in children and adults.
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