
TYPE Original Research

PUBLISHED 12 December 2024

DOI 10.3389/fpubh.2024.1448901

OPEN ACCESS

EDITED BY

Chandana Unnithan,

Torrens University Australia, Australia

REVIEWED BY

Victoria Ramos Gonzalez,

Carlos III Health Institute (ISCIII), Spain

Ramesh Nayak,

Canara Engineering College, India

*CORRESPONDENCE

Qu Shen

qushen@xmu.edu.cn

Longbiao Chen

longbiaochen@xmu.edu.cn

†These authors contributed equally to this

work and share first authorship

RECEIVED 14 June 2024

ACCEPTED 11 November 2024

PUBLISHED 12 December 2024

CITATION

Luo G, Wang Y, Hong L, He X, Wang J,

Shen Q, Wang C and Chen L (2024)

HealthPass: a contactless check-in and

adaptive access control system for lowering

cluster infection risk in public health crisis.

Front. Public Health 12:1448901.

doi: 10.3389/fpubh.2024.1448901

COPYRIGHT

© 2024 Luo, Wang, Hong, He, Wang, Shen,

Wang and Chen. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

HealthPass: a contactless
check-in and adaptive access
control system for lowering
cluster infection risk in public
health crisis

Guofeng Luo1†, Yufei Wang1†, Linghong Hong2†, Xin He1,

Jiaru Wang1, Qu Shen3*, Cheng Wang1 and Longbiao Chen1*

1Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen

University, Xiamen, China, 2Department of Drug Clinical Trial Institution, Xiang’an Hospital of Xiamen

University, School of Medicine, Xiamen University, Xiamen, China, 3Department of Nursing, Xiamen

University, Xiamen, China

Introduction: Ensuring e�ective measures against the spread of the virus

is paramount for educational institutions and workplaces as they resume

operations amidst the ongoing public health crisis. A touchless and privacy-

conscious check-in procedure for visitor assessment is critical to safeguarding

venues against potential virus transmission.

Methods: In our study, we developed an interaction-free entry system featuring

anonymous visitors who voluntarily provide data. This system introduces an

adaptable venue entry management mechanism that accounts for both visitors’

potential risk and the venue’s capacity, aiming to curb the risk of localized

infections. We assess visitors’ liability based on their voluntarily provided data

through radar map analysis. Additionally, we evaluate the venue’s situation by

quantifying its risk frommultiple dimensions. A queuing model is then employed

to control visitor access adaptively based on visitors’ liability and the venue’s

availability.

Results: Since May, our university campus has been the operational site for the

implemented system, catering to the needs of visitors across distinct venues.

Using real-world implementation, we conduct a series of simulation experiments

and case studies to verify the e�ectiveness of the HealthPass system in lowering

infection risks.

Discussion: The system has demonstrated its capacity to reduce infection risks

by adapting visitor entry procedures based on individual risk factors and venue

conditions. Our results suggest that the integration of a dynamic queuing model

and real-time data analysis can e�ectively manage the flow of visitors while

ensuring public health safety.

KEYWORDS

contactless check-in, mobile application, location-based services, social distance,

public health

1 Introduction

The outbreak of public health incidents can cause a global crisis, such as the SARS
epidemic in 2002, the H1N1 influenza pandemic in 2009, and COVID-19 in 2019. As of
April 29, 2021, COVID-19 infections had been reported in more than 210 countries and
regions worldwide, exceeding 150.57 million cases, with a death toll of over 3,167,3431.

1 https://coronavirus.jhu.edu
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Although the epidemic has passed, we still need to be prepared for
potential threats and we need effective ways to control the spread
of public health diseases. This involves several aspects, such as
regulating the source of infection, eradicating transmission routes,
and safeguarding susceptible individuals. The findings of extensive
investigations suggest that implementing crowd density reduction
measures in specific locations can effectively reduce the risk of
cluster infections (1). However, finding a suitable equilibrium
between implementing preventative crowd management measures
and restoring the normal functioning of essential civic and
commercial activities remains challenging. As an illustration,
following the resumption of economic activities, Beijing witnessed
a cluster infection outbreak at the Xinfadi Wholesale Market June
in 2020 (2). Given that a public health crisis could last for months
or even years (3), we must explore practical methods of regulating
entry to venues providing essential services and recreational
activities, aiming to minimize the risk of cluster infections when
ensuring public accessibility.

Numerous strategies have been suggested globally for venue
accessmanagement, with several gaining prevalence nowadays. The
most conventional approach involves visitors using paper and pen
to register their entry into a location. This could potentially result
in a cluster infection as a consequence of shared contact with
the sign-in materials. Furthermore, recording and processing the
data from the sign-in sheet can be time-consuming, rendering it
challenging to enforce immediate access control. An increasingly
favored substitute is the display of health codes for venue entry
(4). However, the shortcoming of this approach is its inability
to maintain a record of individuals entering the premises, which
may result in a lack of headcount data. Another method, utilized
by certain schools and hotels, involves visitors recording their
check-in details via an access control device using ID cards (5).
This may add to the responsibilities of venue managers, as they
are tasked with installing or temporarily adjusting a piece of
similar equipment in advance, resulting in increased maintenance
expenses, and the unique data they generate cannot be exchanged
with other establishments.

To achieve contactless check-in and efficient access control,
while overcoming the limitations of the aforementioned
approaches, we devise and execute a system named HealthPass.
Figure 1 depicts the process of creating and displaying an entry
QR code that contains the unique identifier of the venue. Upon
arrival, visitors have the option to swiftly scan the QR code
using their mobile phone camera to fulfill and send a check-in
request. Through this procedure, the venue can evaluate the
liability of visitors by considering the data they willingly provide
(Figure 1a). The system employs data regarding the current
venue occupancy status and the visitor’s liability information
(Figure 1b) to dynamically regulate venue access, either providing
immediate entrance or placing them on a waiting list (Figure 1c).
While developing the HealthPass system, our goal is to tackle the
subsequent hurdles:

1. How to profile visitor’s liability? During a public health
emergency, visitor-related liability data can be multifaceted
and extensive, encompassing aspects such as their residence,
places visited, and presence of specific symptoms, among
others. However, gathering excessive details might infringe on

visitors’ privacy rights and elongate the check-in procedure.
Additionally, formulating an all-encompassing approach to
determine visitors’ liability, considering the provided data poses
a considerable challenge.

2. How to estimate the venue’s availability? Amidst a public
health catastrophe, the accessibility of a venue can be influenced
by various elements, like its size and congestion level.
Furthermore, the presence of patrons within the venue and
the surrounding neighborhood also impact its accessibility.
However, gathering and quantifying this kind of data poses
challenges. As a result, there is a need for an efficient model that
can evaluate venue accessibility from diverse perspectives.

3. How to optimize venue access control strategy? To prevent
a surge of individuals entering the venue during high-traffic
periods, it’s necessary to allocate appropriate entry times based
on various conditions. Given the dynamic nature of visitor
liability and venue availability, devising an optimal strategy for
venue access control presents a significant challenge.

Considering the previously discussed concerns and aims, this
paper primarily contributes in the following ways:

• We delve into the issue of dynamic venue access management
during public health crises, facilitating contactless check-in
and reducing cluster infection risks in an efficient, cost-
effective, and automated manner.

• We develop and introduce the HealthPass system. Initially, we
implement QR codes to expedite venue check-ins and store
the relevant data in a graph database. Second, we employ a
radar-based approach to assess visitors’ liability and combine
their risk with venue connectivity and crowdedness levels to
gauge venue availability. To mitigate congestion, we suggest a
priority queue-based approach that considers both the liability
of visitors and the availability of venues for access control.

• We implement the HealthPass system within an actual
university campus, amassing abundant anonymous usage data
for analysis, commencing from its launch in May 2020.
Drawing from the accumulated data, we carry out a series
of simulation experiments to evaluate the effectiveness of our
system in lowering infection risks. In addition, we conduct a
system usability scale survey (SUS) to prove that our system
has good usability and perform two case studies on the campus
to assess the performance of our system.

2 Related work

Amultitude of infection-prevention applications have surfaced
due to the COVID-19 outbreak. Traditional access control
methods are usually rules-based. As an illustration, Zhang et al.
(6) introduced a symptom screening application that empowers
employees to conduct self-screening for COVID-19 symptoms
prior to entering the facility. García et al. (7) present a simple
and versatile method for calculating the maximum capacity of
public spaces constrained to social distancing. Drew et al. (8)
introduced a mobile app designed to collect data from individuals
with symptoms and track the disease’s progression through daily
voluntarily providing health data.
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FIGURE 1

The implementation of the HealthPass system in real-world scenarios. (a) Upon arrival, visitors have the option to swiftly scan the QR code using

their mobile phone camera to finalize and submit a check-in request. Through this procedure, the venue can assess the liability of visitors derived

from the information they furnish. (b) The HealthPass system provides real-time updates on venue status and the liability of visitors’ profiles.

According to this information, the system dynamically manages visitor entry, granting immediate entrance or placing them on a waiting list. (c, d) The

registration information gets stored in a graph database.

Furthermore, numerous contact-tracing applications utilizing
mobile location technology have surfaced. As an instance, the
Singaporean authorities launched the TraceTogether app (9), which
employs the Bluetooth functionality of smartphones to retain data
regarding the proximity of other smartphones to your device. These
accumulated data aid the government in conducting contact tracing
procedures, helping to trace individuals who may have had possible
exposure to the virus. China’s Ali-pay released the Health Code app
(4, 10), which generates a unique digital QR code for each user,
taking into account their health status, travel records, and potential
interactions with individuals from affected regions.

Access control systems play a crucial role in various
applications, particularly in preventing the spread of viruses
and managing personnel movement. Depending on the method
of authentication, access control systems can be classified into
biometric and non-biometric systems.

Biometric technology has been widely adopted in access
control systems, especially in high-security environments and
during public health crises. By utilizing technologies such
as fingerprint, iris, or facial recognition, biometric systems
provide highly reliable methods of identity verification. Research
indicates that biometric systems have significant advantages
in reducing human intervention and enhancing security.
The typical process flow of a biometric system includes data
acquisition, feature extraction, matching and verification,
and access control decision-making. Initially, sensors acquire
the user’s biometric data during the data acquisition phase;
then, feature extraction converts this data into feature vectors

suitable for matching. Subsequently, the system compares these
features with pre-registered data in the database. If a match
is successful, the user is granted access. Although biometric
systems offer a high level of security, they also face challenges
related to privacy protection, data processing, and technical
costs.

Non-biometric systems primarily rely on the user’s knowledge
(such as passwords), possessions (such as smart cards or
keys), or behavioral characteristics (such as typing rhythm)
to verify identity. The advantages of such systems include
simplicity of implementation, lower costs, and widespread use
in many traditional scenarios. The typical process flow of non-
biometric systems includes inputting authentication information,
verification, and access control decision-making. Users prove their
identity by entering a password or using a smart card, and the
system compares the input data with pre-registered data. If the
match is successful, access is granted. However, these systems
may be vulnerable to attacks, such as credential theft or loss, and
therefore have certain limitations in high-security environments.

Moreover, some use machine learning-based approaches to
control human flow (11, 12). For instance, Durań-Polanco and
Siller (13) introduced an approach using a point-of-interest (POI)
recommendation system, which offers nearby safe alternatives
when a user requests to visit a specific POI. This system aims to
monitor and regulate crowd levels in indoor locations or POI. The
work by Punn et al. (14) suggests a deep learning-driven framework
that automates the process of surveilling social distancing by
analyzing surveillance video.

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1448901
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Luo et al. 10.3389/fpubh.2024.1448901

TABLE 1 Conpetitive product analysis.

Method User
profiling

Dynamic
access
control

Venue
availability

Privacy

MVP (6) Voluntarily
providing

Rule-based N/A N/A

Health
code
(4, 10)

State of
health,travel
history,
contact
record

Rule-based N/A N/A

Estimate
capacity
(7)

N/A N/A Maximum
capacity

N/A

ABM
(13)

Voluntarily
providing

Recommendation
system

Data-driven N/A

Monitor
distancing
(14)

N/A Monitor
distance

N/A N/A

HealthPass
(ours)

Voluntarily
providing

Heuristic Data-driven Anonymous
collection

MVP: a digital symptom screening and attestation application that would enable employees

who work onsite at a facility that provides direct patient care to be able to self-screen for

symptoms concerning COVID-19 infection prior to being allowed into the facility (6).

Health Code: the Health Code App assigns a digital QR code to each user according to their

state of health, travel history, and whether they contacted people from epidemic areas (4, 10).

Estimate Capacity: a simple and versatile method for calculating the maximum capacity of

public spaces constrained to social distancing, following the recommended measures of the

WHO due to the COVID-19 pandemic outbreak (7).

ABM: based on a POI recommendation system that suggests the nearest safe options upon

request of a particular POI to visit by the user to monitor and manage crowd levels in interior

places or point-of-interests (POI) (13).

Monitor Distancing: a deep learning-based framework for automating the task of monitoring

social distancing using surveillance video (14).

In recent years, Rahman et al. (15) explored the application
of contactless services in the hospitality industry, particularly
in the post-COVID-19 era , highlighting the potential of these
technologies to guide future research directions. The study
emphasized the importance of contactless technology and its
potential to provide a safe and seamless user experience.
Meanwhile, Kaur et al. (16) reviewed various forms of access
control systems and their feasibility in the context of COVID-
19. This comprehensive review covered both biometric and non-
biometric systems, including technologies such as fingerprint,
facial, palm print, vein pattern, iris, and retinal recognition.
The study also analyzed the advantages and limitations of these
technologies, providing a solid theoretical foundation for this
research.

We also clarify the differences between these works and the
proposed work using the Table 1.

3 Preliminaries and framework

3.1 Preliminaries

3.1.1 Visitor liability
We assess the liability score of each visitor to a venue from the

following three aspects, i.e., whether they live in high-risk regions,
whether they have traveled to high-risk regions, and whether they

have specific symptoms or close contact to confirmed cases. When the
visitor’s risk is higher, their corresponding liability will be lower.We
profile visitors’ liability based on their voluntarily providing sheets
to identify the source of infection.

3.1.2 Venue availability
We define the venue availability as a safety metric of the

venue which is the probability of a random visitor not getting
infected in random contact with other visitors in the venue. We
estimate the venue availability metric to control the route of
transmission according to three factors, i.e., the in-venue visitor’s
risk the density of visitors in the venue, the venue’s connectivity
the connection intensity with neighboring high-risk venues, and
the venue’s crowdedness the number of low-liability visitors in the
venue.

3.1.3 Access control
We define access control as the method which can grant

different priorities to different visitors to protect susceptible
populations in the venue. The system takes both visitor liability and
venue availability into consideration and arranges an appropriate
time for visitors to enter the venue.

By adhering to these three principles, the HealthPass system
ensures epidemic infection prevention and reduces the risk of
cluster infections within venues.

3.2 Framework

Illustrated in Figure 2, we introduce HealthPass, a novel
solution enabling contactless check-in and dynamic access control.
To initiate the process, the visitor utilizes their mobile device
to scan the venue’s QR code, completes self-declaration forms,
and submits an entry request upon arrival (Figure 2a). This
information is retained in a graph database (Figure 2b). Next, the
application employs a radar map to assess visitor liability based
on the self-declared data, incorporating their home address, places
visited, and health condition (Figure 2c). The system subsequently
approximates the venue’s accessibility, taking into account the
count of low-liability visitors inside, the potential contagion risk
from nearby venues, and the venue’s congestion level (Figure 2d).
Ultimately, the system dynamically regulates visitor venue access
or offers a suggested waiting period, determined by their liability
and the venue’s accessibility (Figure 2e). The subsequent sections
provide a detailed explanation of the crucial steps of the framework.

4 Visitor liability profiling

In a public health emergency, data on visitor liability can be
intricate and varied. Some applications declare they gather details
such as visitor’s age, email id, contact number, and zip code; the
device’s geographic location, unique identifiers, mobile internet
protocol (IP) address, and operating system; along with the kinds
of browsers utilized on the mobile device (17). However, such
extensive data collection might infringe on the privacy of the
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FIGURE 2

Framework of the HealthPass system. (a) The visitor scans the QR code and completes the voluntarily providing forms. (b) The data is stored in a

graph database. (c) The application employs the radar map to assess visitor liability. (d) The system gauges the venue availability. (e) The system

dynamically controls the visitor’s access by granting them access.

visitors. Based on the hands-on experience in epidemic prevention
and control (18), three key factors significantly influence visitor
liability: residency in high-risk areas, travel history to high-risk zones,
and presence of specific symptoms. These factors may correspond
to the three necessary conditions of virus transmission mentioned
in the infectious disease transmission model SEIR (19), viz., the
source of infection, the route of transmission, and the susceptible
populations. Consequently, we devise comprehensive voluntarily
providing forms that solely encompass these three dimensions.

Moreover, it is not trivial to profile visitors’ liability via these
aspects. For example, some places judge whether to allow visitors to
enter only based on their temperature. Since only one dimension is
considered, the profiling is not comprehensive. Therefore, we build
a radar map based on the information visitors provide and profile
their liability by calculating its area. In the following, we introduce
our solution to address these problems.

4.1 Voluntarily providing data collection

We create anonymous voluntarily providing forms for visitors
to disclose merely three categories of information, as depicted
in Figure 3a, thereby balancing the efficiency of form completion
and the relevance of the provided data. Particularly, the Residence
category encompasses the visitor’s Home and Workplace, the
Mobility category includes the visitor’s Travel Record andMeans of

Transport, and the Health category involves the visitor’s Symptoms

and Close Contact instances.

In order to ensure the security of data, all collected data
is encrypted during transmission and storage. We use advanced
encryption algorithms, such as AES-256, to protect the data
from unauthorized access. Additionally, all sensitive information
is only used within the internal system, and external systems
cannot directly access this data. Furthermore, we have implemented
strict access control policies, allowing only authorized system
administrators to access visitor data.

To quantify the details given by visitors, administrators of the
venue can assign diverse scores to each category using adaptive
scoring standards, which are adjusted based on varying phases of
the epidemic situation. We provide a detailed explanation below.

Initially, we assess the vulnerability linked to the areas
where visitors reside, including their Home and Workplace.
This risk is rated based on regional risk grades, defined in
five tiers, as updated by the government. Consequently, we
allocate a liability rating ranging from one to five for each
category. Next, we assess the potential risks associated with the
visitor’s Travel Record and Means of Transport. In particular,
we designate a diminished liability score for congested public
transport options such as metros and buses, while assigning a
relatively elevated liability score to individual commuting methods
like driving and walking. Finally, we assess elements related
to the visitor’s Symptoms and Close Contact instances, based
on their severity and the changing pandemic conditions. For
instance, when a visitor exhibits indications like elevated body
temperature and respiratory distress, we designate a livability
score that aligns with the guidelines for epidemic prevention and
control (20).
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FIGURE 3

Overview of Visitor Liability Model. (a) The proposed voluntarily providing data sheets include 3 aspects, i.e., Residence, Mobility and Health. The

answers are compared with our predefined rules to derive six corresponding scores. (b) The radar map is used to quantify visitor liability. The larger

area corresponds to a higher visitor liability.

In this study, we create a 6-dimensional vector V for each
visitor, where each element of V corresponds to the visitor’s rating
for the respective item.

4.2 Visitor liability modeling

Using the previously mentioned factors, we develop a six-axis
radar map and utilize it to evaluate visitors’ liability by calculating
its enclosed area. Illustrated in Figure 3b, the radar map comprises
six endpoints including Symptoms representing Health, Traveling
History representing Mobility, and Home representing Residence.
These vertices are assigned scores that correspond to the respective
factors’ values. The radar map allows us to observe that a higher
liability score for the six factors corresponds to a larger area, while
even a slight variation in the axes’ values can lead to a significant
change in the area, making it an effective and sensitive method to
finely assess visitors’ liability. Consequently, by computing the area
of the radar map formed by vectorV and subsequently normalizing
it, we obtain the visitor’s liability score ϕ(u) using the approach
proposed by Porter and Niksiar (21):

ϕ(u) =

∑a−1
i=0 (Vi%a · V(i+1)%a)∑a−1
i=0 (V̂i%a · V̂(i+1)%a)

(1)

Given that V has a dimensions, where Vi and V̂i denote the
value and upper limit of the ith component of V , respectively.
If a visitor’s liability score ϕ(u) is below the designated threshold
θliability, the visitor is categorized as a low-liability visitor. The value
of θliability can be determined at the discretion of venue managers
according to their specific requirements.

5 Venue availability monitoring

During a public health crisis, the availability of venues,
which is considered a safety metric in this study, can be
influenced by several factors, including the density of people
within the venue, the proximity of neighboring venues, and the
venue’s inherent capacity. However, quantifying such information
can be challenging. Hence, according to the infectious disease
transmission model SEIR, we evaluate the venue availability from
three factors as follows: First, visitors with low liability in the
venue may have potential risks. Second, the transmission of
visitors with low liability among venues may provide a potential
risk for the virus to spread. Third, visitors are easily susceptible
to crowded venues, because they are more likely to be in
close contact, which leads to the risk of virus transmission
increasing. In this section, we propose effective solutions to
quantify these three factors to comprehensively estimate venue
availability.

5.1 Venue member liability risk

The number of visitors with low liability in the venue is
an important indicator to measure visitors’ risk of the venue.
Therefore, we calculate the visitor’s risk R1 in the venue by using
the following formula:

R1 = nl (2)

where nl represents the number of visitors with low liability. The
larger R1 represents the lower venue availability.
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5.2 Neighboring venue propagation risk

The venue’s risk from the neighboring venue is related to the
number of visitors with low liability that may be transferred from
neighboring venues. We discover potential connections among
venues based on the historical check-in records stored in the
graph database. And we regard the number of potential low-
liability visitors transferring from neighboring venues as the venue
propagation risk R2, which can be calculated as follows:

R2 =

b∑

i=1

ri ·
ni

mi
(3)

where b is the number of venues, ri is the number of low-liability
visitors in the ith venue in current, ni is the number of visitors
transferred from the ith venue to the current venue in history, and
mi is the total number of visitors leave from the ith venue in history.
The larger R2 represents the lower venue availability.

5.3 Venue crowdedness risk

The venue’s crowdedness risk denotes the probability of the
visitor’s contact with another visitor in the venue. For example, a
venue with a higher crowdedness risk is more likely to lead to more
contact between visitors. We calculate the venue crowdedness risk
R3 using the following equation:

R3 =
N

Nc
(4)

where N refers to the number of visitors in the venue, and
Nc refers to the maximum capacity of the venue, which is set
by the venue manager. The larger R3 represents the lower venue
availability.

5.4 Venue availability calculation

Based on the above-mentioned three factors R1, R2 and R3, we
evaluate the venue availability ω(v) by calculating the probability of
a random visitor not getting infected in random contact with other
visitors in the venue using the following equation:

ω(v) = (1− β)(R1+R2)·R3 (5)

In the Equation 5, β refers to the transmission rate when a
people contact with a COVID-19 case, which is defined as R0/τ ,
where R0 is the basic reproduction number of virus (22), and τ

represents the average number of person-to-person contact during
the infectious period. Therefore, (1 − β) refers to the probability
that a visitor will not get infected when they contact each visitor in
the venue.

R1 refers to the number of low-liability visitors in the venue. R2
refers to the number of potential low-liability visitors transferring
from neighboring venues to the current venue. Consequently, (R1+
R2) refers to the total number of low-liability visitors that the visitor

may contact in the venue. The venue crowdedness risk R3 is used
as a scaling factor to adjust the probability of a visitor getting in
contact with a low-liability visitor. For example,R3 is large when the
venue’s visitor count exceeds the maximum capacity of the venue,
which corresponds to more contact between visitors.

In conclusion, Equation 5 can represent the probability that a
visitor will not get infected in the venue, taking into consideration
the number of low-liability visitors in current and neighboring
venues and the probability of contact among visitors.

6 Dynamic access control

During the public health crisis, to effectively avoid the influx
of people into the venue during a specific period to reduce risks,
we need to arrange a reasonable entry time for them individually.
Intuitively, the venue managers can set thresholds of visitor liability
and venue availability to control visitors’ access to the venue.
However, because different venues have different risk levels, venue
managers have to set different thresholds for them, which requires
human experience and research. Therefore, we propose to apply a
queuing model based on M/M/s with non-preemptive priority to
provide each visitor with an appropriate time to enter the venue to
keep the number of visitors in the venue at a lower level, to lower
the infection risks.

Visitor’s priority is a concept in queuing theory (23). Visitors
with lower priority usually need to wait a longer time than those
with higher priority to receive service. For example, in the hospital
queuing system, emergency patients usually have a higher priority
to receive treatment first. Similarly, in our active access control
strategy, we regard a visitor’s liability score as their priority, i.e.,
visitors with higher liability scores have a higher priority to enter
the venue, while visitors with lower liability scores need to wait
for a specific period calculated by the system. The reasons are,
on the one hand, we encourage visitors to fill in the voluntarily
providing sheets completely to obtain higher liability (since unfilled
items are assigned to zero scores). On the other hand, we also
encourage visitors with low liability, such as those who traveled to
high-risk regions recently or have suspected symptoms, to wait for
the appropriate time to enter the venue, to reduce the potential risks
that they may bring to the venue.

We first use visitor’s liability ϕ(u) to denote visitor’s priority k

(a lower k corresponds to a higher priority) in the M/M/s queuing
model as follows:

k = ϕ(u)−1 (6)

As a result, we use the venue’s openness ω(v) to calculate the
venue’s available capacity s in the M/M/s queuing model as follows:

s = ω(v) · Nc (7)

where Nc represents the maximum capacity of the venue
predefined by the venue manager. We assume that a venue with
a lower availability leads to a lower available capacity.

Finally, based on the M/M/s queuing model, we calculate the
average waiting time of the queuing system for a visitor with
priority k (k=1,2,. . . ,m) asWk:
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Wk =
[s!(1− ρ)(sµ)

∑s−1
i=0 (sρ)

(i−s)/i!+ sµ]−1

(1− σk−1)(1− σk)
(8)

where

σr =

{
1, r = 0
∑r

i=1 ρi, r > 0
, ρi =

λi

sµ
, ρ =

λ

sµ
,

λ =

m∑

i=1

λi, s.t. ρi < 1 (9)

where λi represents the arrival rate of visitors with priority i

which follows Poisson distribution, and λ represents the arrival rate
of all visitors. λi can be estimated by (ni/n)λ, where ni represents
the number of visitors with priority i, and n represents the total
number of visitors. The service rateµmeans the number of visitors
that the venue can serve per hour, which can be calculated by 1/T,
where T represents the average time a visitor stays in the venue
and follows Exponential distribution. In practice, we assume that
the visitors arriving at the venue form a queue, and we assign the
average waiting timeWk to the head of the queue. When the queue
head enters the venue, the waiting time of other visitors is updated
according to the new queue head.

7 Evaluation

In this segment, we assess the functionality and efficiency of
the HealthPass implementation. To obtain comprehensive data for
evaluation, we deploy an initial version of the system within the
university campus and ensure its continuous operation starting
from May 2020. Initially, a comprehensive statistical examination
of the amassed dataset is performed to detail the implementation
of the HealthPass system. Subsequently, we perform a set of
simulation tests on the campus, using real-world data collected
from the operational HealthPass system, to validate its efficiency.
Lastly, we assess its usability and operational capabilities via a
System Usability Scale (SUS) survey (24) and two case studies.

7.1 System deployment

We’ve created a web-based app for touch-free check-in, which
provides visitors with convenience and imposes no additional
burden, since check-ins can be completed using only the mobile
phone’s camera, without necessitating the download of any
superfluous apps. On the server side, we’ve set up a relation
graph database to archive the connections between visitors and
venues. To safeguard the privacy and protection of the visitors, we
allocate entirely random anonymous identifiers without following
any particular pattern, and all data are encrypted.

In practical implementation, the system initially creates a
unique QR code carrying the venue’s identifier for each location.
Next, as depicted in Figure 4a, the visitor is prompted to complete
voluntarily providing forms consisting of three sections, post
scanning the venue’s QR code with their mobile phone camera.

Thus, the app is able to assess the visitor’s liability accordingly
(Figure 4b). In particular, visitors can fill in their reasons for
entering the venue so that venue managers can better optimize
corresponding services, which reduces the time that visitors spend
in the venue. Third, the system will combine the visitor’s risk
assessment and the venue’s capacity status to create a dynamic
access control strategy. As shown in Figure 4c, the feedback page
visitors receive contains their waiting times. Besides, three types
of information are provided to help visitors have comprehensive
knowledge about the three parts, as shown in Figure 4d. More
specifically, the first part is a radar map displaying the visitor’s
liability, the second part is a chart showing the in-venue visitor
liability risk, and the third part is a line chart showing the visitor
count within the venue. To accurately track the visitor count
currently in the venue, visitors need to scan the code again when
they left the venue. As for people who are incapable of using
technology, the on-site venue volunteers will help them record their
voluntarily providing information to the system, and obtain waiting
times for the visitors based on the system.

7.2 Statistical analysis

We have conducted an analytical study on the user behavior
dataset that has been collected sinceMay 2020 using the HealthPass
system. This dataset comprises data from a total of 29,791 users
and records 2,044,719 instances of visitors accessing 52 venues. Our
statistical analysis indicates an average of 68.64 check-ins per user,
while the most prolific user has contributed an impressive 3,663
check-ins. Also, the mean number of check-ins per venue amounts
to 39,321.52, with the venue of highest popularity attracting 716,333
check-ins. Figure 5a illustrates the varying appeal of distinct venues.
We delve into the analysis of the characteristics of regular weekdays
and weekends at three typical venues: university entrances, shuttle
transportation, and academic buildings.

The analysis, as presented in Figure 5b, highlights varied
movement trends at distinct venues, offering valuable insights to
effectively distribute resources for virus prevention.

7.3 Simulation experiment

Since there were no COVID-19 infection cases reported on
the university campus before and after the system deployment,
we conduct a series of simulation experiments using the collected
data to validate the performance of the HealthPass system.
We take the Haiyun campus where the HealthPass system was
deployed as an example for simulation experiments, involving
1,416 visitors and their 128,656 pairs of check-in and check-out
records from 05/01/2020 to 07/01/2020 in five venues as shown
in Figure 6a. This 3D model was generated using data collected
by a laser scanning system, clearly indicating several important
access points on campus. These venues represent critical areas in
the implementation of the HealthPass system, which are used to
accurately track the movement and contact paths of visitors. This
provides realistic environmental data support for our simulation,
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FIGURE 4

The user interface of the HealthPass system.

FIGURE 5

The recorded data on the utilization of the HealthPass system.

making the experiments more closely aligned with real-world
conditions and enhancing the validity of the results.

Based on the existing literature about epidemic prevention and
control, one of the most important goals is to flatten the curve

(25), which aims to mitigate the rapid spread of the epidemic,
thereby lowering the peak number of individuals in need of care
simultaneously, and preventing the healthcare system from being

overwhelmed. Consequently, we proposed two metrics to access
the effectiveness of the HealthPass system in flattening the curve,
i.e., reducing the peak number of active cases and extending the time

until reaching the highest point (peak).

We build a simulation platform using real-world settings of
the university campus and the collected check-in data to evaluate
the effectiveness of the system under different circumstances.
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FIGURE 6

The overview of the simulation platform, and the comparison of the COVID-19 prevention e�ects of using the HealthPass system to that of taking no

social distancing measures under di�erent initial infection rate I0.

Specifically, we first model the 3D environment of the campus from
a laser scanning system (as shown in Figure 6a), and restore the
indoor environment according to the layout of the venue (as shown
in Figure 6b).

Then, we set up the COVID-19-related parameters for the
simulation platform using real-world information collected from
the campus and the corresponding region. Specifically, (1) we set
θliability as 0.8, which means that if the visitor’s liability fall below
0.8, the visitor will be classified as a low-liability visitor; (2) We
assess the risk of different regions based on an updated regional risk
level provided by the government. (3) We assign the reproduction
number of infection R0 (26) in the region of the campus with 2.24
(27), indicating that an infected case is likely to infect an average
of 2.24 people during the period of infection; 4) We set an average
of 50 contacts per infected case per day before they recover; 5) We
set the infection time experienced by a patient to 21 days, which
includes a 6-day asymptomatic period (28); 6) We set the initial
infection rate I0 to 5%, 10%, and 15%, respectively, to observe the
effects of our system in lowering the infection risks under different
infection rates.

Finally, we imported the HealthPass system-collected check-
in data from the campus into the simulation platform to replay
people’s mobility behaviors (as shown in Figure 6b). Specifically, (1)
we randomly fill in the voluntarily providing sheets for each visitor
to derive their liability scores, and we assume that the low-liability
visitors are the infected case, so as to facilitate the simulation.
Therefore, the initial infection rate I0 is the same as the initial ratio
of low-liability visitors; (2) When the visitors check in at a venue,

they are put in a waiting queue and given waiting times according
to the access control strategy mentioned in Section 6; (3) Visitors
move freely in the 3D environment of the venue, and they are
infected according to the transmission rate β when they interact
with an infected case. The infected visitors go through four stages
in turn, i.e., exposed, asymptomatic, infectious, and recovered. As
shown in Figure 6b, the green color represents the healthy visitors,
including the uninfected visitors and the recovered visitors; the
orange color represents the visitors who are in the asymptomatic
stage without capable of infection; the red color represents the
infectious visitors.

We compared the COVID-19 prevention effects of using
the HealthPass system to that of taking no social distancing
measures under different initial infection rates I0. Figures 6c–e
show that, compared with taking no social distancing measures, the
HealthPass system can effectively flatten the curve by reducing the
peak number of active cases from 1302 by 63.82% to 471, and delay
the time to reach the peak from 11 days to 19 days. When the initial
infection rate is low (5%), as shown in Figure 6c, the HealthPass
system is highly effective, quickly reducing the peak number of
cases and extending the epidemic’s duration. At a moderate rate
of 10%, as shown in Figure 6d, controlling the outbreak becomes
more complex, requiring more resources and stricter measures,
although the system’s effectiveness remains clear. When the initial
rate reaches 15%, as shown in Figure 6e, the challenge intensifies
with a sharp rise in cases and transmission speed; while the
HealthPass system still helps, its role shifts more toward delaying
the peak and easing the burden on healthcare resources. Overall,
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TABLE 2 System Usability Scale Scores (24) (Higher scores imply better

user experience. Note that the SUS scores for S1-S10, learnability and

usability range from 0 to 4, while the overall SUS score ranged from 0 to

100.).

SUS statements Average
score

S1: I think that I would like to use this system frequently. 3.37

S2: I found the system unnecessarily complex. 2.55

S3: I thought the system was easy to use. 3.53

S4: I think that I would need the support of a technical
person to be able to use this system.

3.62

S5: I found the various functions in this system were well
integrated.

3.35

S6: I thought there was too much inconsistency in this
system.

3.11

S7: I would imagine that most people would learn to use this
system very quickly.

3.73

S8: I found the system very cumbersome to use. 3.35

S9: I felt very confident using the system. 3.62

S10: I need to learn a lot of things before I could get going
with this system.

3.61

Learnability dimension (S4 and S7) 3.61

Usability dimension (other 8 statements) 2.57

Overall SUS score 84.59

a health pass system would effectively reduce the risk of COVID-
19 infections on campus and reduce the strain on healthcare
resources.

7.4 Usability study

In this study, we use the SUS (System Usability Scale) to
evaluate the HealthPass system, which is a set of usability evaluation
scales widely used in academic and industrial fields. The SUS scale
includes 5 positive descriptions and 5 negative descriptions (24).
All the items on the voluntarily providing questionnaire use a
five-point Likert scale from Strongly Disagree to Strongly Agree.
The score of every single question is converted into 0-4, and the
overall score is converted into a percentile result according to a
calculation method: (

∑
(positive description score − 1) +

∑
(5 −

negative description score) ∗ 2.5) (24). Concretely, the positively-
worded statements are numbered 1, 3, 5, 7, and 9. In contrast,
the statements numbered 2, 4, 6, 8 and 10 are negatively-worded.
We divide the statements into two aspects (24): statements 4 and
10 measure the Learnability of the system and others can evaluate
the Usability. Intuitively, the higher the overall score is, the better
the user’s evaluation of the system. In the same way, usability
and learnability can also be measured by their average score
respectively, which can be used to study the future improvement
of the system.

We send out the survey through social networks and email
to participants who have used the system during this period. At
the same time, we also collect user’s comments to better get their

feedback. We have 74 participants in total, and half of them are
female. The professions of the participants are various.

Table 2 shows the final results we have obtained for the
questions designed in this survey. The higher the score is, the
better the performance of the system. Based on the data collected,
the overall SUS score of the HealthPass system is 84.6. At the
same time, we also find that the Usability and Learnability scores
are 2.57 and 3.61, respectively. According to the study of Bangor
et al. (29), the HealthPass system generally achieves a Good rating,
and it also achieved good performance in terms of Usability and
Learnability.

In addition, through the specific analysis of the score of
each sub-question, we gain more understanding of the evaluation.
Among them, We can see the scores of S4, S7 and S10 are relatively
high, and they did not encounter too many difficulties in the
process, which proves that the HealthPass system offers a good user
experience. However, we also find that the system scored only 2.55
in S2, which indicates that the system is still unnecessarily complex.
We believe that the reason for this may be that the statements in the
voluntarily providing sheet are cumbersome for users. Moreover, in
real-life deployment, the pages are loaded slowly when there are too
many visitors using the system at the same time.

7.5 Case study

Within this segment, we carry out two case studies to
authenticate the performance of the HealthPass system. On the
one hand, since special events happen sometimes and may
cause crowdedness in the venue, it is necessary to validate the
effectiveness of the HealthPass system in avoiding crowdedness
in the venue. On the other hand, it is meaningful to analyze the
reasons for entering the venue. In the subsequent examination, we
provide two case studies of the collected data from the university
campus. Figure 7 shows avoidance of a crowdedness event, and
Figure 8 is the word cloud of users’ demands on the campus.

7.5.1 An o�ce building during graduation season
In this case study, we take an Office Building as an example

to validate the effectiveness of the HealthPass system in avoiding
crowdedness and explaining the corresponding event. As shown
in Figure 7b, we observe a potential crowding event in the
venue. According to Figure 7a, the number of visitors entering
the office building was significantly higher than usual between
11 am and 5 pm on 06/19/2020. Further investigation revealed
that this was due to a large number of graduating students
visiting the office building to handle graduation procedures, leading
to a sharp increase in the number of visitors. To address this
crowding situation during peak periods, the HealthPass system
effectively maintained the number of visitors in the venue below
the maximum capacity by extending the average waiting time.
This approach helped visitors maintain proper social distancing
within the venue, reduced the risk of contact, and prevented
potential cluster infections, demonstrating the significant role
of the HealthPass system in managing high-density crowd
events.
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FIGURE 7

The e�ect of the HealthPass system on preventing crowdedness in an O�ce Building in the graduation season on 06/19/2020.

7.5.2 The new campus of a university
During the epidemic, it is suggested that people reduce

outgoing to reduce the possibility of contacting outsiders for safety
(30). However, due to imperfect campus facilities, people inevitably
need to leave school to handle affairs. Therefore, it becomes very
meaningful to analyze the reasons and flow of people leaving the
school, because the infrastructure in the school can be improved
through it. In this case study, we take the new campus of a
university as an example, to count the reasons for going out
and conduct a corresponding demand analysis. We receive 28,650
records and perform word frequency statistics on the reasons by
adopting the word clouds.

The heat map in Figure 8a displays that most students go out
from two school gates. First, as shown in Figure 8b, it summarizes
the outgoing traffic of the easternmost gate at about 10 am,
1 pm, and 5 pm and the word cloud of the reasons mainly
related to shopping, restaurant, and food. From the analysis of the
surrounding environment there, it can be found that most of the
service facilities provided are convenience stores, restaurants, and
fruit shops. In response to this phenomenon, campus prevention
and control strategies can be adapted to the pattern during these
periods. Besides, the reasons why people go out through the
westernmost gate are usually more inclined to study and work
where we learn that there is a bus station nearby. Many people
use this route to go to another campus of the university, which
may explain the different phenomenon (as shown in Figure 8c)
of this gate (the long distance between two campuses is shown in
Figure 5b). In this regard, we consider providing shuttle buses for
students to go out, and arrange shifts based on the peak traffic time
shown, so as to reduce the possibility of unnecessary contact with
outsiders, as well as to complete the purpose of epidemic control.

8 Discussion

8.1 Subjective initiative of voluntarily
providing data

8.1.1 Verify answers
While the assessment demonstrates the HealthPass system’s

ability to effectively schedule users’ entry times and mitigate

the potential for group infections, it is challenging to entirely
prevent the chance of individuals attempting to manipulate
the outcome to gain higher priority. Considering that users
are only encouraged to report their data in the system, the
information may be fake. We can verify the reliability of
their answers by calculating the Cronbach coefficient of their
reporting data, which can avoid fake answers more effectively.
Also, it is believed that there is only a small part of the
subjective behavior and does not represent others, but we will
continue to improve the reliability and ease of use of the entire
system.

8.1.2 Incentives besides law enforcement
In this work, we consider user incentives from the following two

perspectives. First, we encourage users to enrich their voluntarily
providing sheets, the more accurate they fill in, the higher liability
score they will get, and they will be more likely to enter the
venues. Second, we obtain information about the anonymous
ID of each user and their relations with different venues. Users
can conveniently log in to the HealthPass app to review the
locations they have visited. Furthermore, the HealthPass system
proficiently identifies anonymous users potentially at risk of
exposure by scrutinizing the infection sequence derived from the
accumulated venue attendance data. Such users will be promptly
alerted through messages, enabling them to promptly adopt
appropriate precautions, such as going to the hospital for nucleic
acid testing.

8.2 Ethical consideration

8.2.1 Information collection
The data we gather is solely employed for generating visitors’

liability scores within the system, ensuring that the particular input
details remain confined and are not uploaded. Furthermore, we
meticulously crafted the voluntarily providing forms to guarantee
visitors’ convenient completion under the premise of 1) minimal
questions, 2) straightforward response methods, and 3) minimal
exposure to private information.
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FIGURE 8

Word cloud of demands for leaving school.

8.2.2 Information storage
As visitors access venues utilizing anonymous identifiers,

the stored check-in data remains devoid of any actual personal
identification.

8.2.3 Operation body
The university’s COVID-19 control and prevention committee

granted official endorsement to the HealthPass system, which
was subsequently implemented and managed by the university’s
information center.

8.3 Usability in non-COVID times

The HealthPass system can be useful in dynamically controlling
crowds based on available resources at a particular place. For
example, the system can be deployed in hospitals to schedule
patients efficiently according to their conditions and the availability
of medical resources (e.g., the number of doctors). The system can
also be used in large-scale social activities which need to control the
human flow to ensure safety. For example, the serious stampede in
the 2014 Shanghai New Year celebration (31) might be prevented if
the HealthPass system was deployed for human flow control.

8.4 Limitations and future improvements

The limitation of the HealthPass system lies in the lack of
experimental data for direct comparison with other non-contact
registration systems. This constraint is mainly due to our emphasis
on user privacy, ensuring that all visitor data is anonymized,
which prevents us from obtaining data from other systems for
comparison. Additionally, data collection limitations during the

pandemic have made acquiring experimental data from other
systems challenging. In the future, we will optimize the HealthPass
system and expand its application scenarios, while also conducting
comparative analyses with traditional paper registration systems
and other electronic registration systems to further validate its
effectiveness and practicality, enhancing its potential in public
health crises.

8.5 Further experiment

To investigate the effectiveness of machine learning-based
approaches in COVID prevention and venue access control, we also
conducted a pilot experiment to predict the pressure of medical
institutions in a city. We build a spatiotemporal prediction model
which uses a recurrent neural network (RNN) to capture the time
dependencies and a graph neural network (GNN) to model the
spatial correlations.

9 Conclusion

In our study, we present the HealthPass, an automated check-
in solution that integrates anonymous visitors’ voluntarily provided
to establish an active venue access strategy informed by both the
visitor’s risk assessment and the venue’s capacity status. Initiating,
we evaluate the visitor’s level of responsibility derived from the
information they furnish through radar map analysis. Next, we
gauge the accessibility of venues by quantifying the potential for
low-liability members in the venue, the transmission risk from
neighboring venues, and the potential for crowdedness against
social distancing. Third, a queuing model is utilized to control
visitor access in an adaptable manner, considering the extent of the
risk posed by visitors and the capacity status of the venue. Utilizing
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the real-world implementation, we carry out a series of simulation
experiments and case studies to confirm the effectiveness of the
HealthPass system in lowering infection risks.

Moving forward, we plan to enhance this study by addressing
the following areas. Initially, we aim to incorporate additional data
analysis methods to achieve a more comprehensive quantitative
understanding of users’ check-in behaviors in terms of common
patterns and abnormal patterns. Second, we plan to go deep
into studying the cognitive psychology of users to evaluate their
behavior patterns when interacting with the HealthPass system.
Third, we intend to broaden our scope by incorporating additional
factors, thus enhancing the adaptability of the access control
approach.
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