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Introduction: Hemorrhagic Fever with Renal Syndrome (HFRS) is the most 
commonly diagnosed zoonosis in Asia. Despite taking various preventive 
measures, HFRS remains prevalent across multiple regions in China. This study 
aims to investigate the impact of climatic and environmental factors on the 
prevalence of HFRS in Anhui Province, China, utilizing satellite and reanalysis 
data.

Methods: We collect monthly HFRS data from Anhui Province spanning 2005 to 
2019 and integrated MODIS satellite datasets and ERA5 reanalysis data, including 
variables such as precipitation, temperature, humidity, solar radiation, aerosol 
optical depth (AOD), and Normalized Difference Vegetation Index (NDVI). 
Continuous wavelet transform, Spearman correlation analysis, and Poisson 
regression analysis are employed to assess the association between climatic 
and environmental factors and HFRS cases.

Results: Our findings reveal that HFRS cases predominantly occur during the 
spring and winter seasons, with the highest peak intensity observed in a 9-year 
cycle. Notably, the monthly average relative humidity exhibits a Spearman 
correlation coefficient of 0.404 at a 4-month lag, taking precedence over 
other contributing factors. Poisson regression analysis elucidates that NDVI at 
a 2-month lag, mean temperature (T) and solar radiation (SR) at a 4-month lag, 
precipitation (P), relative humidity (RH), and AOD at a 5-month lag exhibit the 
most robust explanatory power for HFRS occurrence. Moreover, the developed 
predictive model exhibiting commendable accuracy.

Discussion: This study provides key evidence for understanding how 
climatic and environmental factors influence the transmission of HFRS at 
the provincial scale. Insights from this research are critical for formulating 
effective preventive strategies and serving as a resource for HFRS prevention 
and control efforts.
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1 Introduction

Hemorrhagic Fever with Renal Syndrome (HFRS) is the most 
commonly diagnosed zoonosis in Asia. This zoonotic infection is 
caused by exposure to aerosols contaminated with the virus. For 
instance, infection with Ortho hantavirus can induce HFRS, a 
condition characterized by acute kidney injury and increased vascular 
permeability (1). Ortho hantavirus is typically transmitted to humans 
through the inhalation of, or contact with, rodent excreta such as urine, 
feces, and saliva. The clinical manifestations of this infection include 
fever, hemorrhage, headaches, back pain, abdominal pain, severe renal 
failure, and hypotension (2). The disease progresses through five 
distinct stages: the febrile phase, hypotensive shock phase, oliguria 
phase, polyuria phase, and recovery phase. Currently, HFRS poses a 
serious threat to public health and economic development in more 
than 30 countries worldwide (3). Despite preventive measures such as 
vaccination, environmental management, and systematic rodent 
control, HFRS remains prevalent across multiple provinces, cities, and 
autonomous regions in China (4). The high incidence rate in China 
underscores the considerable risk it poses to public health (5).

Rodents, as the primary hosts of HFRS, play a crucial role in the 
natural occurrence of this epidemic disease. The prevalence of HFRS 
is shaped by a combination of natural factors, including climate, 
environment, and landscape, as well as social factors such as 
population dynamics, economic development, healthcare conditions, 
immunization practices, and their interactions (4, 6). Among these 
factors, climatic and environmental elements such as temperature, 
humidity, precipitation, sunlight, air pollution, and the normalized 
difference vegetation index (NDVI) significantly influence disease 
transmission. These elements create ecological conditions that allow 
pathogens, animal hosts, and vectors to thrive, thereby affecting the 
epidemiological characteristics of HFRS (5–7).

Despite the recognized influence of these factors, there is still no 
consensus on their exact impact on the disease, as some studies have 
reported contradictory findings (6, 8). For instance, the relationship 
between precipitation and disease incidence has been reported as 
positive (2, 5, 9), negative (7, 10, 11), or not significantly correlated 
(12). Rats, which thrive in marshes and low-lying areas with sufficient 
moisture, May influence disease transmission in the following months 
due to favorable conditions for their reproduction. Precipitation is 
linked to overall health indicators and greenery, which in turn affect 
rat habitat and food availability, thereby influencing the likelihood of 
disease transmission. Similarly, studies on temperature-related 
indicators, including mean, minimum, and maximum air 
temperatures as well as surface temperatures, have yielded inconsistent 
results (2, 5, 12, 13). Although these findings vary, the prevailing view 
is that rats and hantaviruses thrive most actively within a temperature 

range of 10 to 25°C (6). Research on humidity, on the other hand, has 
been more consistent, with most studies identifying it as a protective 
variable against HFRS occurrence (2, 12–15). Moreover, recent studies 
on external factors influencing HFRS prevalence (11, 16) have 
revealed that variables such as temperature, relative humidity, 
precipitation, solar radiation hours, air quality, and NDVI are all 
associated with the frequency of HFRS cases. Additionally, recognizing 
the latency period in the infection’s replication and spread, which 
often results in a lag effect of 1 to 6 months for climatic and 
environmental conditions, is crucial for accurate analysis (2).

However, it should be noted that the majority of aforementioned 
studies rely on meteorological station measurements, which provide 
only small-scale observations. This approach poses challenges in 
accurately capturing broader spatial and temporal patterns, leading to 
limitations in research findings and restricting the applicability of these 
conclusions to larger scales, such as city or provincial levels. 
Alternatively, the use of remote sensing technology, which can gather 
extensive data with varying geographical and temporal characteristics, 
offers a promising solution. The objective of this study is to gain a 
comprehensive understanding of how climatic and environmental 
factors influence the epidemiological characteristics of HFRS at a larger 
scale. To achieve this, we utilize remote sensing and reanalysis data to 
establish quantitative statistical relationships between climatic factors 
(e.g., precipitation, temperature, humidity, and solar radiation) and 
environmental factors [e.g., aerosol optical depth (AOD) and NDVI] 
with the epidemiological characteristics of HFRS in Anhui Province, 
eastern China. The findings are expected to provide valuable theoretical 
insights for medical professionals, enhancing the understanding of 
HFRS epidemiological characteristics and supporting the development 
of predictive models to forecast HFRS frequency. Such insights will 
be critical for formulating effective preventive strategies and serving as 
a resource for HFRS prevention and control efforts.

2 Materials and methods

2.1 Study area

Anhui Province, located in the eastern part of China (Figure 1A), 
is an epidemic area of HFRS Figure 1B is the map of Anhui Province, 
which spans 450 kilometers from east to west and 570 kilometers from 
north to south, covering a jurisdictional area of 140,100 square 
kilometers, of which 139,400 square kilometers is land. Anhui features 
a diverse range of landforms, including plains, plateaus, hills, and 
mountains, and is home to a population of 61.27 million residents. 
The annual average temperature in Anhui ranges from 14 to 17°C, 
while the annual average precipitation varies from 773 to 1,670 
millimeters, with abundant rainfall during the summer months, 
accounting for 40–60% of the total annual precipitation.

2.2 Data collection

2.2.1 The HFRS dataset
The monthly HFRS data collected in this study, covering the 

period from 2005 to 2019 in Anhui Province, are obtained from the 
Chinese Center for Disease Control and Prevention’s Public Health 
Science Data Center (CCDC). All disease surveillance data are 

Abbreviations: HFRS, hemorrhagic fever with renal syndrome; NVDI, normalized 

difference vegetation index; AOD, aerosol optical thickness; P, precipitation; T, 

mean temperature; Tmin, mean minimum temperature; Tmax, mean maximum 

temperature; RH, relative humidity; SR, solar radiation; CWT, continuous wavelet 

transform; CCDC, Chinese Center for Disease Control and Prevention's Public 

Health Science Data Center; MVC, maximum value composites; RR, relative risk; 

CI, confidence interval; ERA5, fifth generation ECMWF atmospheric Reanalysis of 

the global climate; VIF, variance inflation factor; AIC, Akaike information criteria; 

R, Pearson correlation coefficient; RMSE, root mean squares error.
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anonymized, and all included patients meet the diagnostic criteria and 
management principles for HFRS established by the Ministry of 
Health of the People’s Republic of China.

2.2.2 Satellite and reanalysis datasets
Several auxiliary datasets are utilized to investigate the impact 

of external environment and climate on the development of HFRS 
(Table 1). The satellite datasets include the 16-day composite NDVI 
product (MOD13Q1) and the daily AOD product (MCD19A2), 
both derived from the Moderate Resolution Imaging 
Spectroradiometer (MODIS), which are recognized for their high 
accuracy globally, including in China (17–19). The MCD19A2 
dataset provides AOD measurements at two wavelengths, namely 
blue wavelength at 470 nm and green wavelength at 550 nm. For this 
study, we select the highest quality MAIAC AOD data at the 550 nm 
wavelength to minimize the influence of outliers. The MOD13Q1 
employs the maximum value composites (MVC) method to 

generate the monthly NDVI data, aiming to improve the accuracy 
of NDVI data (20). All MODIS products used in this study are 
accessible through the NASA website.1

The reanalysis datasets are sourced from ERA5, the fifth 
generation ECMWF atmospheric reanalysis of the global climate, 
which integrates model data with observational data from around the 
world using physical laws and offers a comprehensive representation 
of the global climate from 1950 to the present (21, 22). These datasets 
offer advantages such as high spatio-temporal resolution, a wide range 
of variables, and rapid update speeds, making them a valuable resource 
for diverse research and applications (23, 24). This study utilizes four 
variables from ERA5, including total precipitation, relative humidity, 
surface solar radiation downwards, and 2 m air temperature (25). All 

1 https://search.earthdata.nasa.gov/

FIGURE 1

Geographical location (A) and map display (B) of Anhui Province, China.

TABLE 1 Overview of the climatic and environmental datasets used in this study.

Variables Database Spatial resolution Annotations

Satellite products AOD MCD19A2 1 km Aerosol Optical Depth

NDVI MOD13Q1 250 m Normalized Difference Vegetation 

Index

Reanalysis products P ERA5-Total precipitation 0.25° Precipitation

RH ERA5-Relative humidity 0.25° Relative Humidity

SR ERA5-Surface Solar radiation 

downwards

0.1° Solar radiation

T (Tmin and Tmax) ERA5-2 m temperature 0.25 Mean Temperature (Minimum and 

Maximum Temperature)
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satellite and reanalysis datasets covering the period from 2005 to 2019 
are used to synthesize monthly average data for Anhui Province.

2.3 Statistical analysis

2.3.1 Wavelet analysis
Wavelet analysis is a versatile tool for time-series analysis, 

providing insights into both the temporal and frequency characteristics 
of signals (26–28). This technique is particularly effective in identifying 
non-stationary features within a signal and has been widely applied 
across various fields. In this study, continuous wavelet transform 
(CWT) is employed to detect periodic fluctuations in the monthly 
cases of HFRS in Anhui Province from 2005 to 2019. The CWT 
operates by performing an inner product operation on the original 
time-domain signal x(t) with a chosen mother wavelet ψ(t), resulting 
in the decomposition of wavelet transform coefficients λ(s, t). This 
process constructs a time-frequency signal with good localization in 
both time and frequency domains, defined as Equation 1 (29):

 ( ) ( ) ( )s,s,t x t t dt∗
τλ = ∫ ψ

 (1)

Where ψ*s,τ(t) represents the conjugate operations of the wavelet 
basis functions ψs,τ(t).

2.3.2 Spearman correlation analysis
Preliminary analysis indicated that the data do not follow a 

normal distribution and May lack a linear relationship between 
variables. As a result, a nonparametric method is chosen for the 
analysis. Specifically, we employ Spearman’s rank correlation analysis, 
where the relationship between variables x and y is determined by the 
Equation 2 (30):
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2.3.3 Poisson regression analysis
In general, the occurrence of HFRS is a low-probability event, 

and as a type of time series data, it approximates a Poisson 
distribution. In this study, a time-series-based Poisson regression 
model is employed to investigate the association between monthly 
HFRS cases and various climatic (e.g., P, T, Tmin, Tmax, RH, and SR) 
and environmental (e.g., AOD and NDVI) factors in Anhui Province 
from 2005 to 2018. The model’s effectiveness is evaluated using the 
monthly incidence data from an independent year, specifically 2019 
(31, 32).

The generalized linear model is represented by the Equation 3:

 ( ) 0 1 1 2 2 j jg Y X X Xη µ β β β β=   = + + +…+   (3)

η  is known as the connectivity function and [ ]g  represents a 
specific function of µ. After expressing [ ]g  in its logarithmic form, 

the formula is then transformed into its exponential form, resulting in 
Equation 4:

 ( ) 0 1 1 2 2ln j jY X X Xβ β β β= + + +…+  (4)

When jX  changes by one unit, the multiple of the predicted 
count, known as the relative risk (RR), is given by ( )exp jβ . This 
relationship is expressed in Equation 5:

 ( ) ( )1 1 2 2exp j jRR Y X X Xβ β β= + +…+  (5)

To account for the lagged and seasonal effects of climatic and 
environmental factors on HFRS incidence, lagged variables 
(1–6 months) are incorporated into the original Poisson regression 
model, resulting in the development of a time-series-based regression 
model which is described in Equation 6:

 ( ) ( ) ( )0 1 1ln t jt n i t nY X Xβ β β− −= + +…+  (6)

Where tY  is the number of monthly HFRS cases, jβ is the partial 
regression coefficient, t  is the month, n is the lag period, and ( )i t nX −  
represents the lag period-adjusted climatic and environmental factors. 
This study uses the variance inflation factor (VIF) to evaluate the 
multicollinearity among explanatory variables, selects suitable 
candidates for Poisson analysis, and then applies the Akaike 
information criteria (AIC) to test the model’s goodness of fit (12, 33). 
The Pearson correlation coefficient (R) and the root mean squares 
error (RMSE) are selected as metrics to evaluate the correlation and 
error between fitted and actual values, respectively (34–36). 
Furthermore, an F-test is employed to statistically determine whether 
a significant difference exists between aforementioned two datasets. 
All these analyses are conducted using MATLAB software.

3 Results

3.1 Characteristics of monthly HFRS 
incidence from 2005 to 2019

From 2005 to 2019, a total of 2,744 HFRS cases are reported in 
Anhui Province, Figure 2A displays the monthly number of HFRS 
cases, it can be observed that the incidence of HFRS follows a clear 
seasonal pattern, with peaks generally occurring in autumn (September 
to November) and winter (December to February of the following 
year), accounting for 31.79 and 30.94% of cases, respectively. This is 
followed by an incidence rate of 20.3% in spring (March to May), while 
the incidence rate decreases significantly in summer (June to August), 
reaching only 16.98%. In terms of annual characteristics (Figure 2B), 
there is a significant increase from 2005 to 2006, followed by a decline 
from 2007 to 2008, with the annual incidence rate decreasing to 0.017 
per 100,000. From 2015 to 2018, a small peak in the number of cases is 
observed, reaching 0.045 per 100,000 in 2018, the highest incidence 
rate during the study period. Notably, the age group of 30 to 60 years 
old consistently shows a higher incidence rate than other age groups, 

https://doi.org/10.3389/fpubh.2024.1447501
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Liu et al. 10.3389/fpubh.2024.1447501

Frontiers in Public Health 05 frontiersin.org

accounting for more than 50% of all cases each year (ranging from 
55.73 to 74.63%). Among them, the proportion of cases in this age 
group reach the lowest at 55.73% in 2019, while it peak at74.63% in 
2012. Since 2013, there is an increasing trend in the incidence rate 
among people over 60 years old, while the incidence rate among those 
under 30 years old remain relatively stable in most years.

To gain a better understanding of the periodicity of HFRS cases 
in Anhui Province, we conducted a Morlet wavelet analysis on the 

incidence of HFRS from 2005 to 2019. By plotting the contour map of 
the real part of the wavelet coefficients (Figure 3), it can be observed 
that the number of HFRS cases exhibits periodic variations at three 
time scales: 0.5–1 year, 4–6 years, and 7–11 years. While the oscillation 
at the 0.5–1 year time scale is less pronounced compared to the other 
two, it persists throughout the entire study period and shows a higher 
frequency and complexity in its oscillation cycles. Additionally, the 
oscillation periods at the 4–6 year and 7–11 year time scales are more 

FIGURE 2

Epidemiological Features of HFRS in Anhui Province from 2005 to 2019. (A) Monthly number of HFRS cases. (B) Annual incidence rate and age 
distribution.

FIGURE 3

Wavelet coefficient real part contour map of the incidence number series of HFRS from 2005 to 2019.

https://doi.org/10.3389/fpubh.2024.1447501
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Liu et al. 10.3389/fpubh.2024.1447501

Frontiers in Public Health 06 frontiersin.org

evident, with each exhibiting 2.5 and 1.5 cycles of “high-low” disease 
incidence, respectively.

By applying the formula for wavelet coefficients and wavelet 
variance, the wavelet variances at different time scales are calculated 
to reveal the distribution of energy in the time series (Figure 4). From 
2005 to 2019, three distinct peaks are observed, corresponding to time 
scales of approximately 0.5 years, 5 years, and 9 years. The peak with 
the most obvious intensity is observed in the 9-year cycle, indicating 
the strongest energy and maximum cyclic oscillations. The 5-year cycle 
shows a secondary peak, while the 0.5-year cycle, representing the 
shorter cycle, has the weakest peak. These three cycles reflect the 
changing characteristics of HFRS incidence in Anhui Province over 
the study period.

3.2 Spearman correlation analysis

A Spearman correlation analysis is first conducted between the 
incidence of HFRS and each climate and environmental factor in 
Anhui Province from 2005 to 2019 (Figure 5). The results indicate a 
close correlation between the number of HFRS cases and changes in 
climate and environmental conditions, with varying degrees of 
association. Both P and SR show a consistent pattern, exerting 
negative impact on HFRS prevalence in the three preceding months 
and a positive impact in the 4-6-month lag period, reaching peak 
positive correlation coefficients at a 6-month lag. Notably, the 
correlation coefficient for AOD remains consistently negative, with the 
maximum correlation coefficient observed in the current month or 
within 1-month lag. Interestingly, all temperature-related factors, 
including monthly average temperature, maximum temperature, and 
minimum temperature, shift from a negative to a positive correlation 
as the lag time progresses, and the correlation coefficients gradually 
increase. The greatest impact on the incidence of HFRS is observed at 

a 5-month lag, which is consistent with the findings of Li et al. (12). 
This is likely because temperature significantly influence rodent 
population density and hantaviruses infection rates, both of which are 
affected by seasonal changes (37, 38). Regarding NDVI, it exhibits 
relatively low correlation coefficients and lacks statistical significance 
across multiple time periods (p > 0.05), possibly because NDVI May 
not directly reflect the key factors related to the transmission and 
incidence of HFRS in Anhui. These findings underscore the 
importance of considering appropriate lag times for climatic and 
environmental variables in order to enhance the accuracy of predictive 
models and improve strategies for preventing of HFRS outbreaks.

3.3 Result of Poisson regression analysis

3.3.1 Single-factor correlation analysis
To further understand the epidemiological characteristics of HFRS, 

this section investigates the effect of individual factor on the monthly 
HFRS cases through Poisson regression analysis. The results indicate 
that all eight factors (Figures 6A–H) and their associated lag variables 
are statistically associated with HFRS cases in most instances (p < 0.1). 
Interestingly, temperature-related indicators (i.e., T, Tmax, and Tmin) 
have statistical significance at lag times of 0–6 months. At a 4-month lag, 
each 1°C increase in Tmin is associated with a 3.55% increase in HFRS 
cases (95% CI, 3.08–4.03%), and each 1% increase in RH, there is a 
3.97% increase in HFRS cases (95% CI, 3.41–4.53%). At a lag time of 
6 months, for every 1 mm increase in precipitation corresponds to a 3.3% 
rise in HFRS cases (95% CI, 0.29–0.37%). Additionally, a 0.01 increase 
in NDVI is linked to a 1.64% increase in HFRS cases (95% CI, 
1.3–1.97%). It can be noted that T and Tmax have the same RR at lag 
times of 4 and 5 months, both reaching the highest risk for HFRS 
incidence. Conversely, SR and AOD present the lowest relative risks in 
the same month (Figure 6).

FIGURE 4

Wavelet variance plot of monthly HFRS incidence number series in Anhui Province.
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3.3.2 Attribution analysis based on Poisson 
regression

After evaluating potential model predictors using the VIF test, 
we  identified significant multicollinearity among the temperature-
related variables (T, Tmin and Tmax), which impacts the model’s 
explanatory capacity. Considering this, along with findings from 
previous studies (9, 10, 39), we choose to retain the primary temperature 
variable T, while excluding Tmin and Tmax. The VIF values of the 
retained factors after this exclusion are all less than 10. Consequently, 
based on the AIC, we finalize the selection of climatic (e.g., P, T, RH, 
and SR) and environmental (e.g., AOD and NDVI) factors, along with 
their corresponding under specific lag periods (Table 2). Specifically, 
the included factors are lagged P at 5 months, lagged T at 4 months, 
lagged RH at 5 months, lagged SR at 4 months, lagged AOD at 5 months, 
and lagged NDVI at 2 months. Figure 7 shows the relationship between 
the cases estimated by the Poisson regression model and the actual cases 
for each month in 2019. The evaluation indicates that the final model 
we  constructed fits the actual cases well, although there are some 
discrepancies between the fitted and actual cases. For example, the fitted 
cases are higher than the actual cases from January to July, while the 
fitted cases from August to November are lower than the actual cases. 

Despite this, the R and RMSE of the predictive model, compared to the 
actual data, reach 0.887 and 11, respectively. Furthermore, the F-test 
shows that there is no significant difference between the actual and 
fitted cases (p = 0.67), suggesting the robustness of the constructed 
model. Moreover, our final Poisson regression results suggest that a 
1 mm increase in monthly P May be associated with an 0.14% increase 
in HFRS cases (95% CI, 0.07–0.21%). Importantly, temperature has the 
most significant impact on HFRS cases. For every 1°C increase in 
monthly T, HFRS cases increase by 4.22% (95% CI, 3.22–5.23%) per 
month. In addition, RH and NDVI are found to exert positive influences 
on the cases of HFRS, whereas SR and AOD have opposite effects.

4 Discussion

In this study, a substantial correlation is identified between the 
number of HFRS cases and various meteorological and environmental 
factors. Consistent with previous research, a higher incidence rate of 
HFRS is observed in Anhui Province during autumn and winter, 
followed by spring (40–43). Given the known peak seasons for 
hantavirus outbreaks in specific rodent types, such as apodemus in 

FIGURE 5

Spearman’s correlation heat map between monthly incidence of HFRS and each climatic and environmental factor in Anhui Province, China. ** 
Indicates a significant correlation at the 0.01 level of significance, * indicates a significant correlation at the 0.05 level of significance.
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autumn and winter, house mice in spring, and mixed types 
experiencing outbreaks across multiple seasons (40), it is inferred that 
Anhui May represent a mixed epidemic area. The cold winter 
conditions encourage rodents to gather in residential areas, leading to 
increased population density and closer contact with humans, creating 
a favorable environment for hantavirus transmission (16). However, 
considering the lag effect of diseases, focusing solely on rodent control 
during the high infestation periods of autumn and winter is 
insufficient (44). Overall, the seasonal variations in HFRS incidence 

highlight the vital role of climatic and environmental factors in 
disease transmission.

In comparison to other age groups, the 30–60 age group exhibits 
a significantly higher incidence rate of HFRS. This pattern May 
be attributed to the increased engagement in outdoor labor among 
individuals in this age bracket, which elevates their risk of viral 
exposure and HFRS infection (40). This emphasizes middle-aged 
individuals as a high-risk and susceptible population for HFRS (16). 
Between 2017 and 2019, there has been a slight increase in the 
incidence rate of HFRS among individuals aged 60 and above, while 
a slight decrease has been observed among younger people. This shift 
May be associated with more young and middle-aged individuals 
participating in outdoor labor, leading to greater exposure to wild 
rodents and their excreta. Consequently, the expanded vaccination 
program in key areas for young and middle-aged individuals has 
likely contributed to elevated immune levels against HFRS in this 
population. Furthermore, our analysis reveals three distinct cycles 
within the HFRS cases data, with the most pronounced peak in 
wavelet variance corresponding to the 9-year cycle, indicating 
significant periodic fluctuation in HFRS cases (45). The application 
of wavelet analysis in this study not only uncovers the underlying 
periodicity in HFRS incidence but also paves the way for a more 

FIGURE 6

Results of univariate analysis of the number of HFRS incidence and each influencing factor [(A) P, (B) T, (C) Tmin, (D) Tmax, (E) RH, (F) SR, (G) AOD, and 
(H) NDVI]. The red solids represent a statistically significant difference (p  <  0.01), while the blue solids indicate the opposite.

TABLE 2 Parameters estimated by Poisson regression analysis of climatic 
and environmental factors in the cases of HFRS.

Variable RR 95%CI p-value

P, 5-month lag 1.0014 (1.0007, 1.0021) 0.0001

T, 4-month lag 1.0422 (1.0322, 1.0523) 0.0000

RH, 5-month lag 1.0080 (1.0000, 1.0161) 0.0491

SR, 4-month lag 0.9981 (0.9975, 0.9987) 0.0000

AOD, 5-month lag 0.9967 (0.9940, 0.9993) 0.0123

NDVI, 2-month lag 1.0120 (1.0086, 1.0154) 0.0000
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nuanced investigation into the interplay between climatic variables 
and disease transmission dynamics (46).

It is noteworthy that climate change can significantly impact the 
transmission dynamics of HFRS (2). The monthly HFRS cases exhibit 
a shift from negative to positive correlation with P over a lag range of 
0–6 months, showing the most significant impact at a 6-month lag. 
Increased precipitation can directly or indirectly influence vegetation 
growth, providing a food source for rodent hosts and subsequently 
leads to an increase in rodent population density (37, 47). However, 
during periods of continuous heavy rainfall or flooding, excessive 
precipitation or flooding May have destructive effects on rodent 
habitats, reducing rodent mobility and, consequently, lowering the risk 
of human contact with rodents (43). Temperature and humidity also 
play pivotal roles in influencing rodent activity, hantavirus movement, 
and infectivity. Warm and humid climates can prolong the survival time 
of rodents, increase the number of infectious rodents throughout their 
lifecycle, and enhance the spread and persistence of hantaviruses (2).

Given that solar radiation and sunshine duration are strongly 
correlated (42), SR is used in this study as an indirect measure of 
sunshine duration. The number of HFRS cases shows a negative 
correlation with SR in the current month and at lags of 1–2 months, 
while a positive correlation is observed at lags of 5–6 months. Increased 
SR or prolonged sunshine duration, coupled with increased outdoor 
human activity, May exacerbate the spread of HFRS. The AOD value 
used in this study can, to some extent, represent air quality and the lag 
effect of AOD on HFRS risk aligns with previous research findings 
(47). Additionally, NDVI is employed to reflect the vegetation growth 
status and coverage level, and the higher the value, the better the 
vegetation growth. Multiple studies have shown that there is a certain 
correlation between NDVI and the spread of HFRS (4, 48, 49). NDVI 
can even serve as an indicator food availability for rodent hosts (37). 
However, in our study, NDVI does not show a statistically significant 
impact on HFRS across multiple time periods, which May be related 

to the fact that NDVI values are not obtained from the specific 
locations of patients. Despite this, vegetation factors should not 
be overlooked when formulating prevention and control measures (4).

In fact, the developed model for predicting HFRS incidence 
provides a valuable tool for relevant authorities to plan and issue 
timely warnings, and implement public health interventions. However, 
it is essential to acknowledge certain limitations in this study. Firstly, 
the research scope is limited to the entire Anhui Province due to the 
lack of detailed HFRS data, and the nuanced differences in 
meteorological and environmental factors across cities and counties 
have not been fully considered, which May introduce uncertainties in 
the research results. Secondly, the reliance on passive surveillance data 
from the CCDC for case numbers May result in the oversight of 
unreported clinically asymptomatic cases, potentially underestimating 
the true incidence rate. Lastly, the predictive model developed in this 
study primarily focuses on short-term forecasts, limiting its ability to 
capture long-term trends in HFRS incidence. Furthermore, other 
factors, such as rodent density, socio-economic variables, and disease 
prevention measures play crucial roles in HFRS transmission and 
should be  incorporated into future research to provide a more 
comprehensive analysis of the relationship between HFRS and its 
influencing factors.

5 Conclusion

The research findings underscore the pivotal roles of climatic and 
environmental factors in influencing the transmission of HFRS in 
Anhui Province, China. These factors what we found exert an impact 
on both the viral and rodent transmission of HFRS. It is crucial, 
especially in climate change-prone regions, to promptly establish early 
warning systems and implement effective public health measures to 
mitigate potential outbreaks. Early warning systems based on 

FIGURE 7

Relationship between the number of HFRS cases and the Poisson regression fitted in Anhui Province in 2019.
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meteorological forecasts can enhance the prediction of HFRS 
incidence, offering valuable insights for timely interventions and the 
formulation of prevention strategies.
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