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Introduction: The emergence and resurgence of pathogens have led to 
significant global health challenges. Wastewater surveillance has historically 
been used to track water-borne or fecal-orally transmitted pathogens, 
providing a sensitive means of monitoring pathogens within a community. This 
technique offers a comprehensive, real-time, and cost-effective approach to 
disease surveillance, especially for diseases that are difficult to monitor through 
individual clinical screenings.

Methods: This narrative review examines the current state of knowledge on 
wastewater surveillance, emphasizing important findings and techniques used 
to detect potential pathogens from wastewater. It includes a review of literature 
on the detection methods, the pathogens of concern, and the challenges faced 
in the surveillance process.

Results: Wastewater surveillance has proven to be  a powerful tool for early 
warning and timely intervention of infectious diseases. It can detect pathogens 
shed by asymptomatic and pre-symptomatic individuals, providing an accurate 
population-level view of disease transmission. The review highlights the 
applications of wastewater surveillance in tracking key pathogens of concern, 
such as gastrointestinal pathogens, respiratory pathogens, and viruses like 
SARS-CoV-2.

Discussion: The review discusses the benefits of wastewater surveillance in 
public health, particularly its role in enhancing existing systems for infectious 
disease surveillance. It also addresses the challenges faced, such as the need for 
improved detection methods and the management of antimicrobial resistance. 
The potential for wastewater surveillance to inform public health mitigation 
strategies and outbreak response protocols is emphasized.

Conclusion: Wastewater surveillance is a valuable tool in the fight against 
infectious diseases. It offers a unique perspective on the spread and evolution 
of pathogens, aiding in the prevention and control of disease epidemics. This 
review underscores the importance of continued research and development 
in this field to overcome current challenges and maximize the potential of 
wastewater surveillance in public health.
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1 Introduction

Recent decades have seen a rise in both the emergence and 
reemergence of pathogens, which has led to significant and deadly 
outbreaks (1, 2, 3). Authorities such as the global scientific community, 
the National Institutes of Health (NIH), USAID, and the World Health 
Organization (WHO) are aware of the substantial worldwide impact 
these outbreaks have and the importance of developing predictive and 
preventive systems. Since 1970, there has been the identification of over 
1,500 new pathogens, with about 40 being deemed emerging infectious 
diseases (4). Regular mass screening in clinical settings poses 
difficulties, and those who are asymptomatic or exhibit mild symptoms 
frequently go undetected. The increase in the global population is likely 
to escalate these challenges and the risk of infectious diseases, 
highlighting the need for a surveillance method that is comprehensive, 
provides real-time results, can monitor multiple diseases—including 
rare ones—and is both scalable and cost-effective. Wastewater 
surveillance historically serves to monitor water-borne or fecal-orally 
transmitted pathogens by collecting samples from sewage systems, 
offering a sensitive way to observe changes and varieties of pathogens 
within communities (5). Over the past three decades, studies have 
consistently shown the accuracy of wastewater testing in representing 
disease at the population level (6). Chemical and biological markers in 
wastewater could even act as an early alert system for disease breakouts, 
potentially improving current surveillance systems for infections (7). 
The origins of wastewater surveillance can be traced to John Snow’s 
seminal work on London’s cholera outbreak in 1854, where 
he identified contaminated water as a primary source (8–10). In the 
1940s in the United States, wastewater was pivotal for tracking and 
managing polio outbreaks, with poliovirus detection still considered 
highly sensitive today, becoming common practice in many parts of the 
world (11, 12).

The advantage of sampling wastewater lies in its high pathogen 
content compared to other environmental samples (13, 14). It also 
allows for the inclusion of pathogens from individuals who are either 
asymptomatic or pre-symptomatic, unlike clinical tests, thus 
presenting a potent early indicator and prompt intervention tool for 
infectious diseases. Moreover, recent interest has emerged in using 
wastewater examination for AMR (antimicrobial resistance) 
surveillance, with studies revealing seasonal distributions of AMR, 
worldwide gene abundance, and correlations between AMR found in 
wastewater and clinical contexts (15, 16, 17).

Despite various reviews discussing wastewater surveillance’s 
significance, there’s a gap in literature providing a thorough review 
that collectively highlights concerning pathogens, wastewater 
surveillance applications, available technologies, and pathogen 
detection challenges in wastewater. Thus, this narrative review focuses 
on wastewater surveillance for infectious diseases, aiming to 
consolidate these issues. In preparing this narrative review, a 
methodical approach was used, using a selection of prominent 
medical search engines to ensure a comprehensive exploration of the 

literature. The databases harnessed for this review included PubMed, 
Scopus, ScienceDirect, The Cochrane Library, and Google Scholar. 
Only published studies were included for this review. Non–peer-
reviewed articles such as short communications and research letters 
were excluded.

The methodology entailed a systematic and structured search 
using a set of predetermined search terms that were central to the 
theme of wastewater surveillance and its role in public health. These 
terms included “wastewater surveillance,” “pathogens,” “detection 
methods,” “public health,” and “epidemiology,” among others. The 
search was refined to capture articles that shed light on the 
methodologies for pathogen detection in wastewater, the challenges 
encountered in the surveillance process, and the implications for 
public health policy and disease prevention.

2 Wastewater surveillance: monitoring 
key pathogens of concern

Human pathogens, causing infections and even death, remain a 
leading threat to global public health. Currently, there are 
approximately 538 species of pathogenic bacteria, 208 viruses, 57 
species of parasitic protozoa and some fungi and helminths infecting 
humans (24, 25). Numerous pathogen species found in wastewater 
pose a serious threat to human health. Different type of pathogens and 
concerned diseases have been listed in Table 1. Also, the pathway for 
and effective wastewater surveillance has been explained in Figure 1.

Most pathogens in wastewater are shed by humans, although 
some might originate from other sources such as animals. Some of 
these pathogens have been discussed in detail below.

2.1 Gastrointestinal pathogens

Campylobacter spp. is major cause of diarrhea, and human 
gastroenteritis worldwide (48). It is comprised of 17 species and 6 
subspecies, out of which Campylobacter jejuni and Campylobacter coli 
account for 80–85% and 10–15% of total infections, respectively 
(Leblanc et al., 2011) and are also the main species widely detected 
and isolated from wastewater (49, 50). C. jejuni was first isolated from 
the feces of patients with gastrointestinal disease in the 1970s (51). 
Subsequently, many studies have demonstrated C. jejuni to be a major 
cause of human infections (52) transmitted by the fecal-oral route 
through contaminated food and water (53).

Salmonella is another important enteropathogenic bacteria, 
causing approximately 94 million infections and 155,000 deaths 
annually worldwide (54, 55). Salmonella enterica serovar Typhi and 
Salmonella enterica serovar Paratyphi are the main causes of typhoid 
fever and paratyphoid fever, respectively (56, 57). Both are gram-
negative, human-restricted, and species-specific bacterial diseases. 
The transmission can occur from person to person by eating 
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contaminated food or water or by contact with an acute or chronic 
infected person (58, 59). To evaluate the water quality and the 
likelihood of contracting waterborne infections, a study was carried 
out in Nigeria that examined several sources of drinking water (19). 
Areas with a high number of reported waterborne cases and those 
with a low number of cases had their water samples taken. Most tests 
contained Vibrio cholerae, Salmonella typhi, and Shigella dysenteriae, 
and it was hypothesized that discharge of polluted water during the 
intense rainy season had contaminated drinking water sources (19).

Enterohaemorrhagic and enteroinvasive Escherichia coli are 
pathogenic and causes illness in mammals including humans. Shiga 
toxin producing E. coli (STEC) O157:H7 causes diarrhea, 
haemorrhagic colitis, haemolytic uremic syndrome, that leads to 
serious long-term complication, and it is often employed as a model 
for pathogenic bacteria study in wastewater (20). Through PCR, high 
amount of E. coli O157:H7 gene were detected in the sewage sludge 
(1,819,700 copies of gene/100 mL). The common feature of STEC 
E. coli O157:H7 is that even a low inoculum as little as 10 cells may 
trigger disease (60). In 2000, an outbreak in Walkerton, Ontario was 
linked to E. coli O157:H7 in the Great Lakes area, resulting in 2300 
illness cases (61). In 2011 in Germany, a STEC E. coli (strain O104:H4) 
was the causative agent of severe cases of acute diarrhea and bloody 
diarrhea due to the consumption of uncooked sprouts that were 
irrigated with contaminated water (62).

The protozoan parasites, Cryptosporidium and Giardia, are also 
important enteric pathogens of public health concern and major 

waterborne pathogens (63, 64). Cryptosporidium is the second most 
important cause of moderate to severe diarrhea and mortality in 
children under 5 years of age in developing countries (65). The largest 
cryptosporidiosis outbreak due to Cryptosporidium protozoa 
occurred in 1993  in United  States, which affected over 400,000 
individuals, was due to drinking water becoming contaminated with 
wastewater (66). Giardiasis is the most common enteric protozoan 
parasitic infection worldwide, with an estimated 280 million people 
infected annually (67). Both parasites are prevalent in wastewater with 
concentrations in as high as 60,000 Cryptosporidium oocysts and 
100,000 Giardia cysts (68).

Among viruses, Adenoviruses are a leading pathogen of clinical 
diseases, such as gastroenteritis, conjunctivitis, respiratory illnesses, 
haemorrhagic cystitis, and systemic infections. Adenoviral infections 
accounts for 2 to 10% cases of diarrhea. They are commonly detected 
in raw wastewater and have been cited as among the most significantly 
abundant human viruses in wastewater. Adenoviruses have also been 
detected in human excrement of infected persons, including both 
feces and urine (69).

In both low to middle-income and high-income countries, 
Norovirus is considered the second main cause of viral acute 
gastroenteritis after rotavirus. Globally, norovirus is responsible for 
nearly 20% of all acute gastroenteritis cases, with 677 million cases per 
year and over 213,000 deaths. Studies have linked the level of enteric 
viruses such as Norovirus, Hepatitis E and Hepatitis A virus in 
wastewater with incidence of clinical cases. Hence, wastewater 

TABLE 1 Major pathogens of concern in water system and relatable diseases.

Pathogens Associated disease Concentration in wastewater *Health impact

Bacteria

Campylobacter spp. Diarrhea, gastroenteritis Medium to high High

Yersinia enterocolitica Diarrhea, reactive arthritis High

Escherichia coli Acute diarrhea, bloody diarrhea and gastroenteritis High

Burkholderia pseudomallei Melioidosis High

Salmonella typhi Typhoid fever, paratyphoid fever and other serious 

salmonellosis

High

Shigella spp. Bacillary dysentery or shigellosis High

Vibrio cholerae Cholera, gastroenteritis High

Virus

Adenovirus Gastroenteritis Medium to high High

Enterovirus Gastroenteritis High

Hepatitis A virus Hepatitis High

Hepatitis E virus Infectious hepatitis; miscarriage and death High

Rotavirus Gastroenteritis High

Sapovirus Gastroenteritis High

Norovirus Gastroenteritis High

Protozoa

Cryptosporidium cayetanensis Diarrhea Low to medium High

Giardia intestinalis Diarrhea High

Entamoeba histolytica Acute amoebic dysentery High

Giardia duodenalis Giardiasis High

Data obtained from Zhang et al. (18), Ramirez et al. (19), Fijalkowski et al. (20), Ahmed et al. (21), EPA (22), and WHO (23).
*Health significance relates to the severity of impact, including association with outbreaks.
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FIGURE 1

Wastewater surveillance pathway.

surveillance can provide an early warning of outbreaks involving 
enteric viruses (70, 71).

2.2 Respiratory pathogen

The emergence in 2020 of the severe acute respiratory 
syndrome Coronavirus 2 (SARS-CoV-2), which causes viral 
pneumonia, has heightened the focus on Wastewater as a 
surveillance tool to provide early detection of disease in the 
community. There are more than 2,000 locales in 55 nations where 
wastewater surveillance for SARS-CoV-2 is ongoing, and there are 
many cases across the literature reporting on the detection of 
SARS-CoV-2 from sewage (72). Although SARS-CoV-2 typically 
causes respiratory symptoms, and is shed in nasal, buccal, 
esophageal, and respiratory discharges into wastewater, it can also 
result in gastrointestinal symptoms and/or viral shedding in feces 
(73, 74). In a meta-analysis of COVID-19 studies, finding revealed 
that 17.6% of COVID-19 patients had gastrointestinal symptoms 
and 48.1% of COVID-19 patients had SARS-CoV-2 RNA detected 
in their feces. Thus, monitoring the presence of SARS-CoV-2 
RNA in wastewater is becoming widely used to track changes in 
COVID-19 case numbers in communities.

Among other respiratory pathogens, 13 respiratory viruses were 
detected from different wastewater treatment plants in Queensland, 
Australia. Out of these 13 viruses, Bocavirus (BoV), Parechovirus 
(PeV), Rhinovirus A (RhV A) and Rhinovirus B (RhV B) were 
detected in all wastewater samples (21). Different studies reported 
here shows that the application of wastewater surveillance to monitor 
respiratory viruses can be  a potential tool in community disease  
surveillance.

3 Application of wastewater 
surveillance

3.1 Understanding outbreaks and public 
health through wastewater studies

The detection of the Polio virus nationwide in late 1930s 
United States sewers (75), the presence of non-polio enteroviruses in 
the Philippines’ children (76), and recent traces in New York (77, 78) 
and London (79, 80) highlighted the need for swift governmental 
action against potential outbreaks.

Detection of SARS-CoV-2, Mpox virus and PMMoV in 
community wastewater of United States was evaluated by Keegan 
et  al. (81). A study done in Hong Kong Zheng reported that 
wastewater surveillance can even provide spatiotemporal SARS-
CoV-2 infection dynamics (82). Wolken et  al. (83), in Houston 
demonstrated role of wastewater surveillance in detection of SARS 
CoV-2 and Influenza outbreaks. Similarly, Evidence of SARS-
CoV-2 in Australian wastewater was presented by Ahmed et al. (84), 
shedding light on community prevalence and aiding public health 
measures (85, 86). Hasan et al. (87), and Vo et al. (88) completed 
further wastewater studies in the UAE, discovering early indications 
of SARS-CoV-2 variants prior to clinical case identification. Kirby 
et al. (89) detected omicron mutation markers in the United States 
sewage, underscoring the predictive capability of wastewater-
based epidemiology.

In South Africa, a study done by Yousif et al. (90), demonstrated 
the utility of wastewater genomics to monitor evolution and spread of 
endemic viruses. Investigation in Sweden by Hellmér et al. (91), using 
qPCR found substantial amounts of Norovirus GII and Hepatitis A 
indicating upcoming outbreaks. This technique allows estimation of 
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affected individuals based on viral load in sewage. Countries like 
Spain and United  States with documented clinical cases and 
community spread detected the Mpox virus in wastewater samples 
(92, 93). In Nepal, Salmonella typhi bacteriophages were detected from 
surface waters which was reported as a scalable approach to 
environmental surveillance (94).

Rechenburg and Kistemann (95) found Campylobacter 
contamination in German rivers increased infection risks, while Liu 
et al. (58), reported typhoid-causing bacteria in India and Bangladesh’s 
wastewater. Diemart and Yan’s study (96) exposed undiscovered 
S. enterica outbreaks linked to wastewater strains via genetic analysis. 
Barrett et al. (97), isolated Vibrio cholerae O1 from Louisiana sewage, 
and Zohra et al. (98), identified toxigenic strains in Pakistan’s water 
presenting continual infection threats unrelated to season patterns.

Razzolini et  al. (99), disclosed a high frequency of 
Cryptosporidium and Giardia in Brazilian chlorine-treated 
wastewater, leading to gastrointestinal disease transmission through 
poor hygiene. Additionally, Amoah et al. (100), observed multiple 
parasites in South African wastewater, with particular concern for 
worm-infested community water sources as evidenced by a Monte 
Carlo study (101).

These comprehensive wastewater surveillance studies aid in 
formulating public health policies and establishing outbreak response, 
demonstrating their value in epidemiological research.

3.2 Antimicrobial resistance detection in 
wastewater

One of the major factors affecting the re-emergence of infectious 
diseases is antimicrobial resistance (102). According to the United 
Nations, around 700,000 people die yearly of infections associated 
with antimicrobial resistant microorganisms. Wastewater is one of the 
primary routes for resistant pathogens and antimicrobe to enter 
the environment.

Mao et al. (103) studied prevalence of antibiotic resistance genes 
reported in wastewater treatment plants. Similarly (104), studied 
diverse range of multiple antibiotic resistance genes in 10 large-scale 
membrane bioreactors for municipal wastewater treatment. The 
effects of seasonality upon antibiotic resistance genes in wastewater is 
another underexplored area, though (105) reported that strong 
seasonal presence of ARGs (Antibiotic Resistance Genes) within 
wastewater, with higher levels observed in autumn and winter which 
coincided with increased antibiotic prescribing in those months (105). 
Higher levels of resistance have been found in wastewater with higher 
antibiotic concentrations (e.g., hospitals discharge vs. municipality) 
(106). Understanding the relationship between antibiotic 
concentrations and resistance further could inform where to target 
mitigation measures more effectively.

3.3 Markers of pharmacological 
intervention

The proportion of regular pharmaceutical in wastewater has been 
assessed in numerous studies as a metric of disease prevalence. 
Analyses of metformin (a medication frequently used to treat type 2 
diabetes), found in wastewater have been used to assess the prevalence 

of type 2 diabetes (107, 108). Measurement of pharmaceutical 
concentrations in wastewater has been used alongside non-wastewater 
indicators, such as survey data, socio-economic or demographic data, 
or environmental data to identify correlations (109).

Elevated levels of isoprostanes detected from wastewater, were 
suggested to be an indicator of increased levels of community anxiety 
during the COVID-19 (110). The use of these pharmaceutical 
biomarkers needs to be  validated more, and extensive research is 
required to determine how the data may be used to improve public 
health measures.

4 Sample collection methods

4.1 Moore swab

The Moore swab was first proposed by Brendan Moore (111) to 
trace S. paratyphi B from sewage contaminated water in a small town 
in England (112, 113). In this method, a cotton gauze swab tied with 
string is submerged in water. The method traps pathogens as water 
passes through swab. After leaving it in water for 2–4 days, the swabs 
are sent to the laboratory inside sterile jars and processed further (111, 
114). This method has been utilized throughout the world to detect 
several pathogens such as human norovirus, poliovirus, E. coli, 
V. cholerae and now SARS-CoV-2 as well.

Liu et al. (115), conducted a study in which Moore swab method 
was used for wastewater surveillance of COVID-19 at institutional 
level. Among the 219 swab samples tested, 28 (12.8%) swabs collected 
were found positive for SARS-CoV-2. Sbodio et al. (116), detected 
E. coli O157:H7 and S. enterica using Moore swab methodology in 
large volume field samples of irrigation water. Similarly, McEgan et al. 
(117), detected Salmonella spp. from larger volume of water by Moore 
swab method. In Farnham, United Kingdom, Hobbs (118) reported a 
case of typhoid in a 7-year-old child who had exposure to a sewage-
contaminated river and the use of Moore swabs to trace the carrier. 
Greenberg et al. (119), and Shearer et al. (120), described detection of 
a single carrier in the isolated town of Portola, CA via use of Moore 
swabs in sewers; that carrier had been responsible for cases of typhoid 
occurring intermittently over 5 years (Figure 2).

4.2 Grab method

In this method, raw sewage is collected from sampling point 
either at 1 point in time or at specified points in time to form a 
composite sample. Many wastewater treatment plants use automated 
equipment to take samples at regular intervals during a 24-h period 
or during peak periods of domestic wastewater flow (122). The larger 
the volume of wastewater analyzed, higher the theoretical sensitivity 
to detect pathogen circulation in the source population (23). However, 
volumes greater than 1 L can be difficult to handle in the laboratory 
and can be replaced by multiple parallel regular samples.

Sampling is preferred to trapping because it is a more quantitative 
method that allows an estimation of the detection sensitivity of the 
system (123). In addition, long-term experience indicates that 
programs using concentrated sampling detect Polioviruses and 
non-polio enteroviruses more frequently than those using trap 
sampling (124) (Figure 3).
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FIGURE 2

Moore swab collection method (a), (b) (111, 114, 121, 122).

FIGURE 3

Grab and composite sampling methods (122–124).

5 Methods available for detection of 
pathogens in wastewater

5.1 Culture based method

The utilization of culture-based approaches to capture antibiotic-
resistant bacteria (ARB) is beneficial for various reasons such as 
verifying viability, testing for virulence (26), profiling phenotypic and 
genotypic multi-drug resistance (MDR) (125), and producing data 
that may be  utilized for risk assessment related to human health. 
However, much of the media used to isolate opportunistic infections 
were not effective on environmental samples because they were 
created for clinical use.

Certain bacteria found in wastewater originate from the feces and 
can survive in surface water, while other populations of these bacteria 
are autochthonous and found in aquatic habitats. Acinetobacter spp., 
Aeromonas spp., and Pseudomonas spp., have been found to 
be important opportunistic pathogens that can grow in wastewater 
and natural aquatic environments. These pathogens can also acquire 
genes that confer multiple antibiotic resistance, making them 
potentially useful targets for culture-based monitoring (27).

The drawback of the culture-based approach is that, while some 
organisms may be inactivated (dead) or unable to grow on the chosen 
media (bacteria) or cell culture (used for viruses), molecular 
approaches can detect quantities from 1 to 10,000 greater than those 
of culture methods (126) (Table 2).
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5.2 Polymerase chain reaction

The identification of pathogens in wastewater can be accomplished 
by culture-based approaches, however the process can take many days 
or weeks. Without the requirement for cultivation, alternative 
molecular techniques like the PCR have proven successful in 
identifying bacterial, viral, and protozoan pathogens in sewage (127). 
PCR is the most common molecular-based technique to detect lesser 
amounts of a specific nucleic acid and is widely used for detection of 
pathogens (28). It enables the detection of a single pathogenic strain 
by targeting specific DNA sequences (28). This benefit makes it 
possible to identify and detect even lower amount of the target DNA 
sequence. It is thus widely used in the diagnosis of human pathogens 

(128). Fan et al. (129), reported PCR assay to achieve the simultaneous 
detection of various human pathogens in a single tube, with the 
detection sensitivities between 10 to 102 CFU/100 mL in seawater. 
Omar et al. (29), identified commensal and pathogenic E. coli from 
medical and environmental water sources by using multiplex PCR 
technique. PCR technique, due to its high specificity, was also adopted 
to detection of enteroviruses and Hepatitis A virus (HAV) 
in environment.

Quantitative real-time PCR (qPCR), another PCR variant, allows 
for the measurement of DNA targets by tracking amplified products 
throughout cycle as evidenced by rising fluorescence (130). This 
approach decreases the potential of cross-contamination, offers excellent 
sensitivity and specificity, a faster rate of detection, and eliminates the 

TABLE 2 Methods available for detection of pathogens in wastewater.

S.no. Methods Advantages Disadvantages Applications References

1. Culture based 

method

Verifies viability, tests for virulence, profiles 

MDR, produces data for risk assessment.

Not effective on environmental 

samples, slow, cannot detect 

inactivated or unculturable 

organisms.

Isolating ARB, opportunistic 

pathogens, and enteric 

bacteria.

Lagier et al. (26) and 

Joly-Guillou et al. (27)

2. PCR Fast, sensitive, specific, detects bacterial, 

viral, and protozoan pathogens.

Cannot discriminate viable 

from non-viable cells, low 

concentration of some 

pathogens, lacks data on 

infectious risk.

Detecting enteroviruses, 

HAV, E. coli, 

Cryptosporidium, Giardia, 

etc.

Law et al. (28) and Omar 

et al. (29)

3. DNA 

microarray

Detects multiple targets in a single 

experiment, accurate, identifies low 

abundance species.

Expensive, complex probe 

design, affected by 

hybridization temperature, 

purity and degradation of 

genetic material, and 

amplification process.

Identifying 18 pathogenic 

bacteria, eukaryotes, and 

viruses; 941 pathogenic 

bacterial species in 

groundwater; 84 types of 

pathogens.

Severgini et al. (30) and 

Opitz et al. (31)

4. FISH Locates nucleic acids in cells or sample 

matrices, counts specific microbial 

populations, less sensitive to inhibitory 

substances

Can only detect a limited 

number of phylogenetically 

distinct targets simultaneously.

Detecting Salmonella spp., 

Enterobacteriaceae, E. coli, 

etc.

Santiago et al. (32) and 

Lukumbuzya et al. (33)

5. LAMP Isothermal, sensitive, specific, fast, detects 

pathogenic bacteria

Difficult to design specific 

primers.

Identifying Legionella spp., 

Leptospira spp., etc.

Niu et al. (34), Lu et al. 

(35), and Nzelu et al. (36)

6. Pyrosequencing Facilitates microbial genome sequencing, 

identifies bacterial species, strains, and 

mutations, analyzes genetic diversity of anti-

microbial resistance.

Requires DNA templates at 

picomole level, expensive, 

complex, needs massive 

computing power.

Analyzing bacterial biofilm 

communities, potential 

pathogenic bacterial 

sequences, etc.

Wu et al. (37) and Peccia 

et al. (38)

7. Digital PCR Highly sensitive and robust, can detect 

multiplex viral targets Absolute 

Quantification.

Sample analysis cost and 

processing time typically 

higher than other PCR.

To detect and quantify 

SARS-CoV 2 variants, 

Greater precision and 

reproducibility in 

quantifying fecal markers.

Sedji et al. (39), Heijnen 

et al. (40), Cao et al. (41), 

and Tiwari et al. (42)

8. Whole genome 

sequencing

Enables a comprehensive analysis of an 

individual’s entire genome

Profiling of bacterial diversity and potential 

pathogens in wastewater.

Challenging due to low target 

concentration, complex 

microbial and chemical 

background, and lack of robust 

nucleic acid recovery 

experimental procedures.

Detect SARS-CoV-2, 

Norovirus GII, E. coli 

genotypes through RNA’s 

recovered from wastewater.

Behjati et al. (43), Crits-

Christoph (44), and 

Fumian et al. (45)

9 MALDI-TOF 

MS

Rapid and accurate method of identification 

of bacterial and fungal isolates in the 

laboratory.

Relatively low resolving power 

compared to other high-

resolution mass spectrometers.

Identification of V. cholerae, 

V. alginolyticus, S. typhi. 

Characterization of proteins 

present in wastewater.

Camacho et al. (46) and 

Rychert et al. (47)
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requirement for post-PCR analysis (131). Shannon et al. (132), detected 
E. coli, Klebsiella pneumoniae, Clostridium perfringens and Enterococcus 
faecalis through wastewater by application of qPCR. With a lower 
quantification limit of 2.5 oocysts/sample, qPCR techniques have also 
been devised for the detection and identification of Cryptosporidium 
spp. in river water (133). qPCR had a sensitivity of 0.45 cysts per 
reaction for the detection of G. lamblia and Giardia ardeae in wastewater 
samples (134). For detection of RNA viruses, quantitative reverse-
transcriptase (qRT)-PCR was developed to provide quantitative 
estimation of the pathogen concentration in water (135).

Limitations of PCR includes the inability to discriminate between 
viable from non-viable cells that both contain DNA, the low 
concentration of several pathogens in water such as Cryptosporidium, 
Giardia and viruses, and the lack of data to indicate the real infectious 
risk to a population (128, 131).

5.3 DNA microarray

One of the most innovative molecular biology-based 
techniques, DNA microarray technology enables researchers to 
run several environmental samples simultaneously in large-scale, 
data-intensive investigations (136). It is widely utilized to monitor 
gene expression under different cell growth conditions, detecting 
specific mutations in DNA sequences and characterizing 
microorganisms in environmental samples. It is a unique glass or 
silicon chip that has a DNA microarray that covers a surface area 
of several square centimeters with many nucleic acid probes. After 
being coupled with the probes, DNA, complementary DNA 
(cDNA), and RNA in the sample are identified by fluorescence or 
electric signal (137). DNA microarrays allow the hybridization-
based detection of numerous targets in a single experiment. As a 
result, it is a quick and accurate diagnostic approach for analyzing 
several clinical or environmental samples (30). Wilson et al. (138), 
identified 18 pathogenic bacteria, eukaryotes, and viruses by using 
species-specific primer sets to amplify multiple regions unique 
toward individual pathogen in the microarray. Inoue and et al. 
(139) studied the occurrence of 941 pathogenic bacterial species in 
groundwater and were able to differentiate between human and 
animal sources. Leski et  al. (140), developed a high-density 
re-sequencing microarray that has the capability of detecting 84 
different types of pathogens ranging from bacteria, protozoa, and 
viruses, including Bacillus anthracis, Ebola virus and Francisella 
tularensis with detection limit of 104 to 106 copies per test for most 
of the pathogens exhibiting high specificity.

This technology is helpful as most known bacteria found in samples 
can be detected without the need for culturing, and the sensitivity of this 
approach allows for the detection of species with lower abundances 
(detection limit of 0.01% of microbial communities) (141). However, 
accuracy of the microarray data, complex probe design work, and clinical 
relevance of the early results have been criticized (127).

A single microarray experiment can be very expensive, there are 
many probe designs based on low-specificity sequences, and most 
widely used microarray platforms only use one set of manufacturer-
designed probes, which leaves little control over the pool of transcripts 
that are analyzed. These are the main drawbacks of microarray 
technology. Along with their high sensitivity to changes in the 

hybridization temperature (142), the purity and rate of genetic 
material degradation (31), and the amplification process (143), 
microarrays also have other limitations. These factors, when 
combined, have the potential to affect gene expression estimates.

5.4 Fluorescent in situ hybridization

A cytogenetic method called FISH is used to locate the nucleic acids 
in cells or sample matrices. In molecular ecology, fluorescently labeled 
nucleic acid probes can be used to identify genes on chromosomes or 
to label ribosomal RNA in various taxonomic bacteria or archaea by 
hybridizing only with highly similar nucleic acids. It is possible to use 
FISH to count specific microbial populations (144).

Santiago et al. (32), detected Salmonella spp. from wastewater 
reused for irrigation by using FISH as a molecular method tool. 
Amann and Fuchs (144) isolated members of the family 
Enterobacteriaceae and E. coli in drinking water systems, freshwater 
and river water by this tool. In addition, emerging human pathogens 
in water, wastewater, sludge, and cellular survival and infection 
mechanisms have all been investigated with FISH (32, 33). Because it 
is less sensitive to inhibitory substances than PCR, FISH is better 
suited for complex matrices. However, the fact that only a limited 
number of phylogenetically distinct targets can be  detected 
simultaneously is a major drawback of FISH.

5.5 Loop-mediated isothermal 
amplification

LAMP is a method for isothermal nucleic acid amplification. 
Currently, LAMP has been used to identify and quantify 
pathogenic bacteria with benefits in terms of sensitivity, specificity, 
and speed (145, 146). With a detection limit of 10 copies or less in 
the template for one reaction, the LAMP approach was also proven 
to be 10–100 times more sensitive than PCR detection (34). Lu 
et al. (35), utilized LAMP-based method for a rapid identification 
of Legionella spp. from the environmental water source. Koizumi 
et al. (147), used loop-mediated isothermal amplification method 
for rapid, simple, and sensitive detection of Leptospira spp. in 
urine sample.

This method can directly detect pathogenic microorganisms in 
wastewater avoiding the tedious step of culture and nucleic acid 
extraction (36). However, the major drawback of LAMP is it is more 
difficult to design specific primers for LAMP than for PCR (because 
LAMP requires 4–6 primers and PCR only two).

5.6 Pyrosequencing

Pyrosequencing is a DNA sequencing technique that facilitates 
microbial genome sequencing to identify bacterial species, 
discriminate pathogenic strains, and detect genetic mutations that 
confer resistance to anti-microbial agents (148). Hong et al. (149), 
analyzed bacterial biofilm communities in water meters of a drinking 
water distribution system by Pyrosequencing technique. Study 
conducted by Ibekwe et al. (150), identified most of the potential 
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pathogenic bacterial sequences from three major phyla, namely, 
Proteobacteria, Bacteroidetes, and Firmicutes in a mixed urban 
watershed as revealed by pyrosequencing. The advantages of 
pyrosequencing for microbiology applications include rapid and 
reliable high-throughput screening and accurate identification of 
microbes and microbial genome mutations. The pyrosequencing 
instrument can also analyze the complete genetic diversity of anti-
microbial drug resistance, including SNP typing, point mutations, 
insertions, and deletions, as well as quantification of multiple gene 
copies that may occur in some anti-microbial resistance 
patterns (151).

However, the DNA present in wastewater samples could limit the 
sensitivity of this tool as it requires DNA templates at picomole level, 
but a much lower amount of DNA can hamper the output (37, 38). 
This technology is also limited by the cost, the complexity of analysis, 
the need for increasing availability of massive computing power and 
the efficiency of data generation (152).

5.7 Digital PCR

To identify enteric virus contamination in water and wastewater, 
PCR and its variants such as quantitative PCR (qPCR), real-time 
RT-PCR, RT-qPCR, nested PCR, and digital PCR (dPCR) have been 
implemented (153). In contrast, qPCR can detect multiplex viral 
targets (154). Digital PCR (dPCR) has proven to be  efficient for 
wastewater surveillance, owing to its increased robustness against 
PCR inhibitors commonly encountered in more difficult sample types 
(39, 155).

Heijnen et al. (40), evaluated that digital PCR may be utilized to 
detect and quantify mutations in SARS-CoV-2 in raw sewage samples 
from the cities of Amsterdam and Utrecht in The Netherlands. With 
its sensitivity and precision in quantification, digital PCR (dPCR) was 
quickly identified as a suitable choice for monitoring SARS-CoV-2 in 
wastewater monitoring (156). In terms of quantifying human-
associated fecal markers in water, it was discovered that dPCR 
displayed superior precision and reproducibility than qPCR (41). 
With dPCR, the sample analysis cost and processing time are higher 
than qPCR. For the quantification of pathogens, dPCR can be a viable 
alternative if enhanced analytical performance (i.e., accuracy and 
sensitivity) is essential (42).

5.8 Whole genome sequencing

Profiling bacterial diversity and potential pathogens in wastewater 
has been a widely used application of sequencing, a robust analytical 
tool. For surveillance and outbreak investigations, the state of the art 
is shifting toward WGS (Whole Genome Sequencing) as a replacement 
for conventional molecular techniques (43, 157). WGS study of the 
complete pathogen genome has the potential to transform outbreak 
analysis by providing understanding of distinguishing even closely 
related bacterial lineages (158).

As demonstrated by Christoph et al. (44), numerous SARS-CoV-2 
genotypes were found through sequencing of viral concentrations and 
RNA recovered directly from wastewater. Fumian et al. (45), identified 
Norovirus GII genotypes through genome sequencing from a 

wastewater treatment plant in Rio de Janeiro, Brazil. Mahfouz et al. 
(159), analyzed whole genome sequences for the indicator species 
E. coli of the inflow and outflow of a sewage treatment plant which 
revealed that nearly all isolates are multi-drug resistant, and many are 
potentially pathogenic. Recently, Mbanga et  al. (160), reported 
genomics of antibiotic resistant Klebsiella grimontii novel sequence 
type ST350 isolated from a wastewater source in South Africa.

Whole genome sequencing reveals insights into recent 
improvements in sequencing technologies and analysis tools have 
rapidly increased the output and analysis speed as well as reduced the 
overall costs of WGS (158). Nevertheless, Genomic surveillance is still 
challenging due to low target concentration, complex microbial and 
chemical background, and lack of robust nucleic acid recovery 
experimental procedures (161).

5.9 MALDI-TOF

Matrix-assisted laser desorption ionization time of flight mass 
spectrometry (MALDI-TOF MS) is a rapid and accurate method of 
identification of bacterial and fungal isolates in the laboratory (162). 
The identification of microorganisms is based on the protein 
fingerprint unique to the microorganism (163, 164).

V. cholerae non-O1 isolates from wastewater were identified by 
MALDI TOF MS by Eddabra et al. (165). V. alginolyticus isolated from 
Perna perna mussles was efficiently identified by MALDI TOF MS by 
Bronzato et al. (166).

There are numerous studies that have proven the use of MALDI 
TOF MS on bacterial and fungal isolates. Croxatto et al. (167), have 
reported that numerous studies have been attempted to perform direct 
testing of urine using MALDI TOF MS. The method could be used 
with up to 94% accuracy but only if bacterial count is 105/ml. 
Nachtigall et al. (168), found that MALDI TOF was 80% concordant 
with RT-PCR in identifying SARS-CoV-2 from nasal mucus 
secretions. Rybicka et al. (169), found that MALDI TOF was better 
than RT-PCR in detecting SARS-Cov-2. Gerbersdorf et al. (170), have 
shown that dextran, gellan and xanthan from anaerobic microbial 
aggregates can be differentially demonstrated by MALDI TOF MS in 
different wastewater. The exopolysaccharides in biofilms are found to 
be important in microbial adhesion and aggregation (171). Picó et al. 
(172), found that MALDI TOF can be adapted for rapid detection and 
characterization of proteins in wastewater. However, MALDI-TOF MS 
has relatively low resolution power if compared to other high-
resolution mass spectrometers and the accuracy of identification 
depends on the quality of the reference database (46, 47).

6 Challenges of wastewater-based 
epidemiology

6.1 Complexity of wastewater matrix

Although Wastewater-Based Epidemiology (WBE) offers 
appealing advantages for the monitoring of public health, it comes 
along with several challenges. One major challenge being the level of 
biomarkers (chemical and/or biological compounds) as it is far more 
diluted in wastewater which makes it difficult to trace (173). The 
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complex matrix is also challenging for pathogen detection (174). 
Nucleic acid-based Polymerase chain reaction (PCR) is the primary 
technique for analyzing pathogens; however, wastewater contains a 
variety of PCR inhibitors, including fat, protein, and other compounds, 
that might affect PCR analysis (18).

6.2 Estimation of population size

The dynamic population size estimation is another challenge 
(175, 176). For example, it may be difficult to determine whether the 
presence of a pathogen in wastewater was caused by visitors passing 
through or by residents of the community in the concerned area 
(177). However, the presence of pathogens in wastewater, whether 
from the local population, undoubtedly provides valuable 
information, which may indicate an outbreak of disease in the 
community, thereby providing real time data for proper preparedness 
and response (178). This also ensures that WBE is used to provide 
timely warning of infectious disease outbreaks.

6.3 Detection methods

The physical distinctions between the major pathogen groups, the 
presence of inhibitors in the sample, established standard techniques 
for sample collection, culture-independent detection methods, and 
identification of pathogen host origin are the problems of detection 
methods (179). Specificity, sensitivity, repeatability of results, rapidity, 
automation, and cheap cost are the most significant prerequisites for 
reliable analysis (180). Furthermore, because human pathogens that 
reside in a viable but non-culturable (VBNC) form, such as E. coli, 
Helicobacter pylori, and V. cholerae, have a wide environmental 
dispersion, culture-dependent approaches may provide false negative 
results (28, 181).

7 Economics of wastewater 
surveillance

Performing clinical testing for mass surveillance puts a huge 
financial burden on low-and middle-income countries (LMICs), 
because WHO recommended testing protocols are costly to 
implement. In addition, the recent recommendation of the real-time 
surveillance of pathogens of concern that need prohibitively expensive 
next generation sequencing technology is less affordable by LMICs 
(182). While clinical surveillance will always be vital for the response 
to infectious diseases, wastewater-based surveillance allow for quick 
and economical surveillance–even in areas that are currently 
unexplored. Wastewater monitoring enables community prevalence 
quantification and rapid detection of pathogen. At sites where 
wastewater from the population collects and mixes, so do a diverse 
array of microbes shed from individuals (183). Pathogen 
concentrations accurately estimate prevalence (the number of current 
infections in the population) and given that wastewater trends often 
precede corresponding clinical detections, they may allow for early 
detection (184, 185).

To summarize, because wastewater surveillance covers a wide-
scale population, the additional cost per resident would be very small, 
even when focusing on an institutionalized population. Primary 
screening with wastewater surveillance is highly likely to 
be economically more justifiable, scalable, providing results in real 
time than a primary screening with clinical tests. However, progressing 
toward more equitable and sustainable surveillance will require 
continued development of local, self-sustaining scientific ecosystems 
through laboratory and computational methods development and 
training, capacity building efforts, and financial support of domestic 
scientific enterprise.

8 Conclusion

Wastewater surveillance had shown great potential in providing 
complete health status information in a comprehensive and near-
real-time manner at the community level. It offers a unique 
perspective on the spread and evolution of pathogens, aiding in the 
prevention and control of disease epidemics. This review 
underscores the importance of continued research and development 
in this field to overcome current challenges and maximize the 
potential of wastewater surveillance in public health. It also offers a 
framework and evidence foundation to guide laboratories in 
selecting the most suitable tools for implementing wastewater  
surveillance.

Since, there are so many emerging new pathogens that are causing 
illnesses and waterborne outbreaks, pathogen indicators need to 
be  continually strengthened. Optimizing presently available 
technologies could increase our understanding of infectious 
pathogens, our ability to predict pathogen contamination, and our 
potential to safeguard public health. These technologies would be able 
to identify causal agents more precisely and quickly, detect viable 
microorganisms and characterize them according to microbial 
communities, and enable the creation of accessible data.

If wastewater monitoring is conducted consistently, it may 
be utilized to locate possible pathogen carriers, provide comprehensive 
data, determine the origin of the infections, and deliver reliable early 
warning. However, there is still a lot of work to be done for adoption 
on a broader scale.
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