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Introduction: This study addresses a critical gap in understanding how 
technological advancements, specifically industrial robots, influence urban 
pollution emissions and public health. The rapid evolution of technology and 
changing working conditions significantly affect these areas, yet research has 
not extensively explored this domain.

Methods: Utilizing 2018 China Labor-force Dynamic Survey (CLDS) dataset, this 
study examines the impact of industrial robots on public health. An analytical 
framework is employed to assess the correlation between the adoption of eco-
friendly industrial robots and improvements in worker health, attributed to the 
reduction of pollution emissions.

Results: The findings reveal that the adoption of industrial robots significantly 
enhance both public physical and mental health. This study also identifies 
potential demographic heterogeneity in the effects of industrial robots. The 
benefits are more pronounced among non-insured manual female workers 
who are older, have lower education levels, and hold rural hukou. These benefits 
are closely linked to improvements in the quality of the production environment 
and reductions in pollution emissions at both macro and micro levels.

Discussion: The study underscores the significant potential of industrial robots 
to positively impact urban health, advocating for strategies that promote the 
development of safer, greener environments.
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1 Introduction

In recent years, urbanization in developing countries has rapidly accelerated due to the 
significant growth of the global economy. Currently, over 50% of the global population lives 
in urban areas-this is 3.9 billion, and by 2030, this number will rise to about 5 billion (1). 
Urbanization has a positive impact on residents’ quality of life by enhancing the quality of 
medical services and infrastructure available to them (2). However, urbanization also leads to 
the high concentration of secondary industries, such as manufacturing, within limited spaces 
(3). This intensive production results in severe environmental pollution, contributing 
significantly to overall urban pollution. For example, in 2021, China’s industrial sulfur dioxide 
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FIGURE 1

Number of operational robots, by Country, 2000–2021. Source: International Federation of Robotics (IFR) database.

emissions reached 2.748 million tons，accounting for 76.31% of the 
total emissions. Excessive emissions of industrial pollutants have not 
only resulted in severe pollution of water, air, and soil, but also 
contributed to human health issues such as respiratory ailments, 
cardiovascular diseases, and blood disorders (4).

Currently, new technologies represented by industrial robots play 
a significant role in production, fundamentally altering production. 
These technologies also bring important green environmental benefits, 
making them one of the key channels for achieving pollution 
reduction (5). However, existing literature does not directly address 
the relationship between the adoption of robots and urban green 
development. On one hand, according to the research by Gutierrez 
and Teshima (6), production technology and emission reduction 
technology are the main channels for enterprises to reduce emissions. 
The adoption of robots leads to advancements in production 
technology, improving productivity (7) and reducing energy intensity, 
known as the production effect. Furthermore, advancements in 
production technology and scale expansion increase corporate 
investment in emission reduction equipment, improving emission 
reduction technology (8), known as the emission reduction effect. 
Both the production effect and the emission reduction effect 
contribute to reducing emission intensity. On the other hand, scale 
expansion increases the total amount of pollution emissions, known 
as the scale effect.

Although existing research has drawn some important 
conclusions regarding the impact of robots on public health, 
significant gaps remain. According to the data from National Safety 
Council (NSC), in 2022, the number of preventable work deaths 
reached 4,695, and work-related medically consulted injuries totaled 
4.53 million, costing 167 billion dollars. Robot adoption can 
significantly improve the working environment and reduce high-risk 
and high-pollution factors in the production field. Specifically, a one 
standard deviation increase in robot adoption (1.34 robots per 1,000 

workers) reduces work-related injury rates by approximately 1.2 
injuries per 100 full-time workers (9). Prior research in public health 
has mainly focused on specific groups, including the older adult or 
migrant populations. Additionally, the indicators used to measure 
public health outcomes vary widely and are often relatively singular, 
lacking a comprehensive approach. Finally, few studies have 
discussed the integration of green industrial practices within urban 
production spaces in relation to public safety and health. This poses 
our prime research question: how does robot adoption contribute to 
the green development of urban industrialization, and what is its 
impact on public health?

To answer this question, China is a natural choice for a study of 
robotics because of its incredible jump from negligible numbers of 
robots in the early 2000s to the world’s leading user of industrial 
robots in the 2010s, deploying over half the world’s industrial robots 
as of 20211 (see Figure 1). In recent years, China has been committed 
to reducing emissions and pollution, achieving significant results. 
From 2018 to 2021, China’s total investment in environmental 
pollution control has increased from 891.15 billion yuan to 949.18 
billion yuan, industrial sulfur dioxide emissions have decreased from 
5.161 million tons to 2.748 million tons, and industrial solid waste 
production also has decreased from 4152.69 million tons to 3970.06 
million tons.2 Thus, it is crucial to thoroughly investigate the green 
innovation factors in production that affect the public health of 
urban residents.

This study utilizes both macro and micro data to validate the 
relationship between green production in urban areas and public 
health across different regions of China. The analysis is based on 

1 In 2021, the number of robot stock in China was 1,224,236 units.

2 Source: China Environmental Statistical Yearbook.
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large-scale population data from the China Labor-force Dynamic 
Survey (CLDS). Various public health variables were employed, 
including self-rated health, illness status, and mental health indicators. 
The findings indicate that robot adoption in workplaces benefits both 
public physical and mental health. Additionally, robots significantly 
reduce adverse weather conditions (PM 2.5) and polluted water levels 
at the city level. At the micro level, robot adoption reduces pollution 
in work environments and enhances safety in production processes, 
contributing to improved urban green spaces and public health. By 
mitigating environmental hazards, the integration of robotic 
technology in industrial production promotes a healthier, more 
sustainable urban environment, enhancing the well-being of 
city residents.

Furthermore, considering the significant bias in the impact of 
robot adoption on the labor market (10), the analysis also examined 
the varying effects on different demographic groups. The adoption of 
robots has notably improved high-pollution, high-risk production 
environments, significantly enhancing individual health in heavy 
physical labor occupations. Evidence shows that the adoption of 
robots has a more pronounced positive impact on the physical and 
mental health of non-insured manual female workers who are older, 
have lower education levels, and come from rural households. This 
indicates that technological application in production can significantly 
raise public health standards, thereby improving the overall well-being 
of workers.

The marginal contributions of this paper are: first, in terms of 
research perspective, this paper extends the impact of industrial 
robots on the job market from the level of jobs and wages to the 
production environment and public health, which is a useful addition 
to the existing literature and enriches the relevant studies on the socio-
economic impacts of industrial robots. Second, in terms of research 
content, this paper uses regional macro-pollution data as the basic 
indicator of public environmental level, and uses micro-individual 
survey data to measure the working environment and work safety of 
workers, and on this basis identifies the potential mechanism of the 
robot adoption affecting workers’ health (physical and mental health). 
Third, in terms of policy implications, the findings of this study will 
serve as a valuable resource for urban planners and decision makers, 
contributing to the enhancement of public health among 
urban residents.

The remainder of the paper is organized as follows: Part II 
provides a more detailed literature review on public health; Part III 
describes the data variables and empirical model; Part IV presents the 
baseline results; Part V discusses the heterogeneity and potential 
mechanisms behind the impact of robot adoption on public health; 
and the conclusion summarizes the main findings and provides 
suggestions for future research.

2 Literature review

2.1 Urbanization, robotics and green 
workplace

The advent of Industry 4.0 has seen industrial robots become a 
cornerstone of modern manufacturing, significantly enhancing 
production efficiency and economic benefits. These robots 
contribute to operational cost savings, labor productivity 

improvements, and increased total factor productivity (11). Notably, 
while the primary intent of deploying industrial robots is economic, 
their adoption has inadvertently yielded substantial environmental 
benefits. These benefits include waste reduction, improved energy 
efficiency, and the facilitation of cleaner production processes (12), 
which collectively lower carbon intensity and promote 
sustainable development.

Industrial robots have catalyzed technological innovation within 
enterprises, fostering knowledge creation, learning capabilities, 
research and development (R&D), and talent investment (13, 14). This 
technological innovation simplifies green process innovations and 
reduces carbon intensity, demonstrating a potential alignment 
between economic growth and environmental sustainability (15). The 
optimization of production factors, driven by the integration of 
industrial robots, leads to a reconfiguration of production resources, 
enhancing energy efficiency and reducing carbon emissions (16). 
Consequently, industrial robots contribute to improving urban green 
spaces and public health.

The relationship between technological progress and pollution has 
been debated since the pioneering studies by Ehrlich and Holdren (17) 
and Simon (18). While some researches indicate that technological 
advancements can mitigate pollution (19–21), other studies present 
mixed results (22–24). The introduction of industrial robots provides 
environmental benefits such as reduced material losses, opportunities 
for digitized environmental monitoring, and enhanced environmental 
accounting systems. However, potential risks include increased energy 
intensity and electronic waste from proliferated production.

The impact of industrial robots on the environment is mediated 
through various mechanisms. Energy-efficiency effects typically 
reduce energy consumption, while rebound effects and scale effects 
can increase it. Many studies have explored these countervailing forces 
(25, 26). The relationship between energy consumption and air 
pollution is well-documented, with increased energy consumption 
being a primary cause of pollution and carbon dioxide emissions 
(27, 28).

Research on the robot adoption and their environmental impacts 
has yielded insightful findings. For instance, Chen et al. (29) used 
panel data from 72 countries and regions and found that robots 
decreased the ecological footprint through time-saving, green 
employment, and energy upgrading effects. Singhania and Saini (30) 
utilized carbon emission data from 21 countries spanning from 1990 
to 2016, finding that the technological effects in developing countries 
demonstrate that R&D has played a role in mitigating environmental 
degradation. Xu et al. (31) used data from 279 prefecture-level cities 
in China between 2007 and 2016, discovering that trade liberalization 
has a suppressive effect on haze pollution through technological 
spillovers. Luan et al. (32) indicated that industrial robots improve 
productivity and energy efficiency, thus reducing greenhouse gas 
emissions. Moreover, Song et al. (33) and Zhu et al. (34) have shown 
that robot adoption reduces firms’ pollution intensity, especially in 
high-pollution industries.

Green technology innovation, initially introduced as “sustainable 
development” in the 1980s and later termed ‘eco-innovation’ in the 
1990s, has become a focal point in reducing environmental pollution. 
Feng et al. (35) and Wang et al. (36) demonstrate that green technology 
innovation significantly mitigates pollution, using methods like the 
Spatial lag model and the Spatial Durbin model to analyze panel data 
across various Chinese cities and provinces. These innovations not 
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only improve energy efficiency but also reduce emissions, aligning 
with broader sustainable development goals.

Despite these positive findings, existing research on the 
environmental impact of industrial robots is limited and fragmented. 
Most studies focus on either energy consumption or green technology 
innovation without integrating both aspects into a comprehensive 
analysis. Moreover, empirical evidence at the individual or city level is 
scarce, with most research conducted at the national level.

2.2 Technological advancements and 
public health

The intersection of technological advancement and public health 
presents a multifaceted landscape with significant implications for 
occupational safety, environmental sustainability, and healthcare 
delivery. Recent literature highlights both the potential benefits and 
limitations of integrating these technologies into various sectors.

Recent studies argue that AI and robots can reduce occupational 
injuries. For instance, robots can replace workers in hazardous 
environments, such as chemical and mining industries, thereby 
mitigating exposure to dangerous conditions (37, 38). Moreover, 
robots can enhance workplace safety by monitoring environments 
and issuing alerts when unsafe conditions arise (39). In rescue 
operations, robots can prevent secondary injuries to rescue workers, 
thereby safeguarding rescue teams (40).

However, the efficacy of robots in reducing occupational 
injuries is debated. Despite advancements in AI, more than 90% of 
jobs cannot be fully automated due to the limitations of current AI 
technology (41). Robots often lack the flexibility, comprehension, 
cognitive capacity, and decision-making skills that human workers 
possess, making effective human-computer interaction challenging 
(42, 43). Additionally, programming defects and reliability issues 
can lead to communication breakdowns and accidents, sometimes 
resulting in injuries or fatalities (37, 44, 45). The successful adoption 
of robots in reducing occupational injuries hinges on two critical 
premises: accurate and stable robot programming and well-trained 
operators (46). In developed countries, where AI technology is 
more advanced, robots can operate more reliably, and human-
computer interactions are more effective (47). However, in 
developing countries, technology limitations and inadequate 
training for robot operators pose significant challenges (48, 49).

The role of robots in healthcare, especially in the context of 
public health emergencies like the COVID-19 pandemic, is also 
gaining attention. Robots have been deployed for disinfection, 
delivering medications and food, measuring vital signs, and 
assisting in border controls. During the 2015 Ebola outbreak, 
workshops highlighted the potential roles of robots in clinical care, 
logistics, and reconnaissance. In clinical care, robots are used for 
disease prevention, diagnosis, and patient management (40). The 
digitalization of healthcare offers significant potential for improving 
public health. AI can support community health workers and 
educators by providing information and decision-making support, 
thereby enhancing health outcomes, especially in underserved 
communities (50, 51). Also, the deployment of robots in public 
health settings extends beyond clinical care to include social 
support. For example, social robots can provide continued social 

interaction for isolated individuals, addressing the mental health 
challenges posed by prolonged quarantine.

In conclusion, the integration of advanced technologies into 
public health and occupational safety offers significant potential but 
also poses challenges that require careful consideration.

3 Data and methodology

3.1 Data

3.1.1 Explanatory variable
This study primarily bases the construction of explanatory 

variables on data from the International Federation of Robotics 
(IFR) database. IFR conducts an annual survey of global robot 
manufacturers, compiling first-hand data provided by these 
manufacturers to form the world robot statistics. Currently, the 
IFR database covers annual average installations and stock of 
industrial robots in over 100 countries and regions since 1993. It 
serves as an authoritative and comprehensive robot statistical 
database, widely used in relevant literature both domestically 
and internationally.

Following Acemoglu and Restrepo (7), we combine this data with 
the employment of various industries to construct an indicator of 
industrial robot adoption at city level. This indicator serves to measure 
the extent of industrial robot adoption (See details of indicator 
constructions in Appendix D). The equation for constructing the 
industrial robot adoption in this paper is as follows:

 
robot l PR

L
ct

s S
cs

st

s
=

∈
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In Equation 1, PRst represents the stock of robots in industry s in 
China for year t . Ls2006 denotes the number of employees in industry 
s in China in 2006, and lcs2006 indicates the number of employees in 
industry s in city c in 2006. Given the typical facts that China entered 
a period of rapid growth in robot adoption in 2006, we choose this 
year as the base period. This selection helps to eliminate the effects of 
industry employment fluctuations on the robot adoption, thereby 
enhancing the precision of the results.

3.1.2 Dependent variable
This study primarily bases the construction of dependent 

variables on data from the China Labor-force Dynamics Survey 
(CLDS) database. It tracks urban and rural residents across 
China, creating a comprehensive database that includes 
longitudinal and cross-sectional data on labor force individuals, 
families, and communities. This database provides high-quality 
foundational data for empirical research and policy analysis. The 
survey is characterized by its wide range of topics and diverse 
representational levels, focusing on the current situation and 
changes in education, employment, labor rights, occupational 
mobility, occupational protection and health, job satisfaction, 
and well-being of the working-age population aged 15 to 64. It 
also covers samples from 29 provinces and cities across China, 
ensuring national representation, as well as representativeness in 
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the eastern, central, and western regions, Guangdong Province, 
and the Pearl River Delta. Overall, the survey encompasses 
multiple topics related to the political, economic, and social 
development of the communities where the labor force resides, 
as well as the demographic structure, family wealth and income, 
family consumption, family donations, rural family production, 
and land of the labor force’s families.

We utilize questions from the CLDS micro-survey. With 
regard to the health of workers, we focuses on measuring both 
physical and mental health. Physical health refers to a good 
condition that enables a person to work normally without any 
hidden health risks, and directly affects the attendance rate, work 
efficiency and safety of workers. Mental health means that all 
aspects of the mind and the process of activity are in a good or 
normal state, and are related to the motivation, teamwork, 
innovation and job satisfaction of the workers. Thus, we  also 
select variables to depict the physical health from two dimensions: 
self-rated health and illness status, and mental health constructed 
by a depression scale calculating the arithmetic mean. Also, 
we measure the quality of environments through the responses to 
the question about occupational safety and workplace 
pollution control.

3.1.3 Control variable
We select a series of demographic characteristics as control 

variables to avoid potential estimation errors. At the micro level, the 
selection of control variables in this study is primarily based on 
demographic information from CLDS. The average age of workers in 
the sample is 52.7 years, with males accounting for 47.5% and rural 
household registrations accounting for 83.4%. At the macro level, 
control variables are constructed mainly based on data from the China 
Statistical Yearbook. GDP per capita, investment, average salary, and 
industrial structure are used to describe the economic status of the 
city, while number of physician is used to depict the level of medical 
care, and number of internet user is utilized to represent the level of 
technological advancement in the city. The statistical descriptions of 
the relevant indicators involved in this paper are shown in Table 1, and 
the detail of variable description is shown in Table A1 in Appendix A.

3.2 Identification strategy

This paper aims to explore the impact of robot adoption on public 
health. To achieve this, an empirical model is constructed as follows:

TABLE 1 Statistical description.

Var Obs. Mean Sta. Dev. Min Max

Dependent variable

Self-rated health 37,467 2.610 1.006 0 4

Illness status 37,458 0.891 0.312 0 1

Depression 37,515 1.372 0.464 0 4

Medical care 4,083 0.378 0.485 0 1

Hospitalization 37,458 0.910 0.287 0 1

Occupational safety 30,197 2.581 0.842 0 4

Pm2.5 3,739 44.453 19.631 3.382 110.121

Industrial wastewater 3,658 7464.775 9456.857 7 91,260

Workplace pollution 

control
30,254 2.472 0.870 0 4

Explanatory variable Robot 31,630 1578.254 2547.638 0 20317.430

Control variable

Macro-level

GDP 3,703 2002.094 2739.727 51.9279 28178.65

Investment 3,433 1228.512 1460.599 33.0703 17245.770

Average salary 3,720 40117.090 17754.370 4,958 137085.500

Industrial structure 3,747 44.24524 13.94521 1.8 84.4

Number of physician 3,750 9385.709 8984.253 1 96,445

Number of internet user 3,715 75.1086 138.2286 0.024 5,174

Micro-level

Gender 37,515 0.475 0.499 0 1

Age 37,515 52.663 14.537 11 104

Household register 37,452 1.412 4.431 1 3

Employment status 37,515 0.294 0.456 0 1

Marital status 37,515 2.015 0.759 1 6

Maladaptive behaviors 37,464 0.268 0.443 0 1
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 health robot Xic c ic
D

ic= + + +α β γ ε3 3 3  (2)

Equation 2 is used to test the health-promoting effects of 
robot adoption. The subscript i represents the individual 
respondent, c represents the city, respectively. healthic denotes the 
health status (i.e., self-rated health, illness status, depression) of 
respondent i, robotc  indicates the robot adoption in the city c in 
the year t , XicD includes a series of individual characteristic 
variables (including, age, gender, household register, employment 
status, marital status, and maladaptive behaviors) and εic is an 
idiosyncratic error term.

To further explore the potential mechanisms behind the effects of 
robots on public health, we  utilize both macro-and micro-level 
environmental variables. The regressions are as follows:

 regionenvironment robot Xct ct ct
D

c t ct= + + + + +α β γ σ θ ε1 1 1  (3)

 workplaceenvironment robot Xic c ic
D

ic= + + +α β γ ε2 2 2  (4)

Equation 3 is based on a two-way fixed effects model using 
macro-level panel data, designed to test the impact of industrial 
robot on environmental quality. The subscripts c and t  respectively 
represent the city and year. regionenvironmentct  represents the 
regional environmental quality (i.e., PM2.5, industrial wastewater) 
at the macro level for city c in year t , robotct  indicates the robot 
adoption in city c during year t . Xcti  includes a series of city 
characteristic variables (i.e., GDP, investment, average salary, 
industrial structure, physician number, internet user number), and 
εct  represents an idiosyncratic error term. The model in Equation 3 
also contains city fixed effects σc and year fixed effects θt to control 
for unobservable city-invariant and time-invariant differences 
across cities that may affect regional environment. The variables 
robot, PM2.5, industrial wastewater, GDP, investment, average 
salary, physician number, and internet user number are 
log-transformed. Furthermore, Equation 4 examines the impact of 
industrial robot on workplace environmental quality at the micro-
level, workplaceenvironmentic  represents the quality of the 
workplace environment (i.e., occupational safety, workplace 
pollution control) of respondent i  in city c at the micro-level. The 
other settings of the model are consistent with those in Equation 2.

4 Main results

4.1 The impact of robot adoption on public 
health

In this section, we  will explore the relationship between robot 
adoption and public health. With the continuous embedding of 
industrial robots in production field, China’s traditional production has 
been subjected to the corresponding impact and innovation in the 
process of robot adoption, which is reflected in the significant changes 
in the working environment and the content of the labourers’ work. 
Robots can undertake more physically demanding and high-pollution 
production tasks, thereby reducing the likelihood of worker injuries 
(52). However, the rapid advances in automation may also have a 
negative impact on the labor force participation, leading to a 
deterioration in the physical and mental health of the worker (53). Here, 
we base on several questions from CLDS to depict the physical health 
from two dimensions: self-rated health and illness status, and mental 
health constructed by a depression scale calculating the arithmetic mean.

Table 2 reports the impact of robot adoption on workers’ health 
status. The robot adoption has a significant positive correlation with 
public health, especially when control variables are included in the 
regression model. Specifically, for each unit increase in robot adoption 
in the city, self-rated health score increases by 0.048 units, injury and 
illness score increases by 0.03 units, and depression scale score decreases 
by 0.026 units. This indicates that robot adoption have significant positive 
effects on workers’ health across multiple dimensions. Overall, as 
industrial robots become increasingly embedded in the production 
domain, there is a continuous shift away from high-risk and high-
pollution jobs through “automation of tasks” (54, 55). On one hand, this 
is conducive to directly improving workers’ physical health levels and 
reducing the incidence of occupational accidents and diseases. On the 
other hand, it also helps alleviate psychological stress among workers by 
making work tasks more relaxed and flexible and production 
environments safer and more controllable.

4.2 Robustness check

In this section, we conduct several robustness checks. Firstly, taking 
into account the possible bias in the selection of indicators, we verify the 
robustness of the baseline regression by replacing with alternative 
dependent variables. Secondly, considering the dynamic adjustments in 

TABLE 2 The impact of robot adoption on public health.

(1) (2) (3) (4) (5) (6)

Self-rated health Illness status Depression

robot
0.054*** 0.048*** 0.002 0.003** −0.023*** −0.026***

(0.004) (0.004) (0.001) (0.001) (0.002) (0.002)

_cons 2.260*** 3.452*** 0.876*** 0.948*** 1.512*** 1.454***

(0.026) (0.033) (0.008) (0.011) (0.012) (0.016)

Control N Y N Y N Y

Observations 31,072 30,748 31,067 30,743 31,072 30,748

R-squared 0.117 0.118 0.009 0.009 0.018 0.019

(1) Standard errors are clustered at the individual level. (2) *** Significant at the 1% level ** Significant at the 5% level. * Significant at the 10% level.
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the labor market, where the impact of new technologies on labor may 
have a delayed response, and the gradual process of industrial robots 
from introduction to actual use and then to large-scale production, 
we also examine the lagged effects of industrial robot on the labor 
market as a part of our robustness checks.

4.2.1 Alternative dependent variable
In Table  3, we  replace the original dependent variables with 

medical care and hospitalization as alternative measures of worker 
health. The construction of the medical care and hospitalization 
indicators is based on questions from the CLDS questionnaire: “Have 
you  sought medical attention due to illness or injury in the past 
2 weeks?” and “In the past year, have you been diagnosed by a doctor 
as needing hospitalization?” respectively, with 0 representing “yes” 
and 1 representing “no.” Robot adoption still has positive effects on 

medical care and hospitalization. Additionally, in terms of workers’ 
mental health, we conducted separate regressions for the 20 questions 
that make up the depression scale, and the results are shown in 
Figure 2. These results further validate the positive impact of industrial 
robots on improving workers’ mental health.

4.2.2 Lagged effects
As shown in Table 4, we lag the robot adoption by one period and 

repeat the regression. The conclusions are consistent with the baseline 
regression, revealing that the health benefits of robot adoption have a 
certain degree of persistence. Besides, in terms of illness status and 
depression, the estimated coefficient of the lagged robot adoption rate 
is slightly larger than that of the current term, indicating that the 
positive effects of robot adoption on both physical and mental health 
have certain lags.

TABLE 3 Robustness check on replacing dependent variable.

(1) (2) (3) (4)

Medical care Hospitalization

robot
−0.001 0.001 0.008*** 0.008***

(0.005) (0.006) (0.001) (0.001)

_cons
0.384*** 0.421*** 0.857*** 0.987***

(0.036) (0.053) (0.007) (0.010)

Control N Y N Y

Observations 3,476 3,476 31,105 31,067

R-squared 0.001 0.010 0.002 0.020

(1) Standard errors are clustered at the individual level. (2) *** Significant at the 1% level.  
** Significant at the 5% level. * Significant at the 10% level.
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FIGURE 2

Robustness check on mental health. The regression model is referenced to Equation 4. The vertical line indicates the 90% confidence interval. See 
more details of regression tables in Appendix B. Specifically, BMI  =  bothered by minor issue, PA  =  poor appetite, CSS  =  cannot shake sadness even with 
help, FI  =  feel inferior, CC  =  cannot concentrate, FDO  =  feel down, EE  =  everything is an effort, FH  =  feel hopeless, FLF  =  feel life is a failure, FA  =  feel 
afraid, PS  =  poor sleep, FU  =  feel unhappy, TL  =  talk less, FL  =  feel lonely, FPU  =  feel people are unfriendly, FLM  =  feel life is meaningless, HC  =  have cried, 
FS  =  feel sorrowful, FDI  =  feel disliked, FLU  =  feel life is unlivable.
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4.3 Endogeneity

Although the baseline regression in the previous section controls 
for various individual characteristics, omitted variable bias may still 
pose endogeneity issues. Additionally, due to the common correlation 
between poor worker health and reduced work capacity, companies 
aiming to enhance productivity and maximize profits may have 
incentives to adjust the scale of “machine substitution” based on the 
health status of their workforce. This introduces reverse causality 
between robot adoption and worker health, further exacerbating 
endogeneity concerns.

In this section, we draw on the endogeneity handling method from 
Acemoglu and Restrepo (7). In their study on the employment effects of 
robot adoption in the United States, they used robot data from Germany, 
Japan, and South Korea—countries with rapid industrial robot 
adoption—to construct an instrumental variable for U.S. robot adoption 
rates. Similarly, we use the robot stock in the U.S. during the same 
period to construct an instrumental variable for China’s robot adoption 
rate. On one hand, with the increasing technological exchanges and 
cooperation between China and the U.S., the development and 
application trends of industrial robots in both countries exhibit a high 
degree of similarity, meeting the relevance requirement of an 
instrumental variable. On the other hand, the degree of robot adoption 
in the U.S. does not directly affect the health status of Chinese workers, 
satisfying the exogeneity requirement of an instrumental variable. The 
specific construction method of the instrumental variable is as follows:

 
robot l PR

L
ct
US

s S
cs

st
US

s
�

�
� 2006

2006

 
(5)

In Equation 5, PRstUS represents the robot stock in industry sss in 
the U.S. in year t , Ls2006represents the number of employees in industry 
s in China in 2006, and lcs2006 represents the number of employees in 
industry s in city c in China in 2006.

Table  5 reports the Two-Stage Least Squares (2SLS) 
estimations. In the first-stage regression, the coefficient of the 
U.S. robot adoption rate during the same period is significantly 
positive (p < 0.01), indicating a significant positive correlation 
between the U.S. and China robot adoption rates. The F-value is 
greater than 10, rejecting the weak instrument hypothesis. In the 
second-stage regression, the estimated coefficients of robot 
adoption rate for self-rated health, illness status, and depression 
are all significant (p < 0.01) and consistent with the baseline 
regression results.

4.4 Heterogeneity

Considering the significant bias in the impact of robot adoption 
on the labor market (10), and the fact that job content varies 
significantly across different occupational positions, as well as the 
presence of certain characteristic differences among worker groups, 

TABLE 4 Robustness check on lagged effect.

(1) (2) (3) (4) (5) (6)

Self-rated health Illness status Depression

robot(t-1) 0.052*** 0.048*** 0.003** 0.004*** −0.023*** −0.027***

(0.004) (0.004) (0.001) (0.001) (0.002) (0.002)

_cons
2.290*** 3.472*** 0.873*** 0.946*** 1.507*** 1.444***

(0.025) (0.032) (0.007) (0.01) (0.011) (0.015)

Control N Y N Y N Y

Observations 30,787 30,748 30,779 30,743 30,830 30,748

R-squared 0.006 0.118 0.001 0.009 0.006 0.019

(1) Standard errors are clustered at the individual level. (2) *** Significant at the 1% level. ** Significant at the 5% level. * Significant at the 10% level.

TABLE 5 Result of IV regression.

First-stage Second-stage

robot Self-rated health Illness status Depression

robot
0.121*** 0.035*** −0.077***

(0.026) (0.009) (0.012)

robotUS
0.117***

(0.006)

_cons
5.632*** 3.045*** 0.759*** 1.757***

(0.037) (0.166) (0.056) (0.075)

Control N Y Y Y

F-statistics 711.785

Observations 26,394 26,323 26,319 26,323

(1) Standard errors are clustered at the individual level. (2) *** Significant at the 1% level.  
** Significant at the 5% level. * Significant at the 10% level.
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further heterogeneity analysis is needed to understand the effects of 
robot adoption on worker health.

The impact of robot adoption may vary among workers with 
different characteristics. Here, we  use gender, age, household 
registration, and education level to describe the characteristics of 
worker groups. We use gender and age as the basis for categorizing 
worker groups to explore the impact on vulnerable groups in the 
labor market, such as female workers and middle-aged and older 
adult workers, in the context of robot adoption. For age group 
classification, we refer to the report published by the WHO, defining 
those aged 44 and below as young, those aged 45 to 59 as middle-
aged, and those aged 60 and above as older adult. Additionally, 
human capital refers to the sum of economically valuable knowledge, 
skills, and physical abilities residing within workers, primarily 
reflected in their work ability, learning capability, and innovation 
skills (56). Thus, we use household registration and education level 
to characterize the human capital levels of workers, to explore the 
differences in impact experienced by worker groups with varying 
levels of human capital during the robot adoption. Here, we  use 
educational level and type of household registration to characterize 
workers’ human capital levels. For household registration 
classification, we use the type of household registration at the time of 
the worker’s birth as the basis, dividing workers into two sample 
groups: rural household and urban household. For education 
classification, we  define high school education and below as low 
education level, and associate degree, bachelor’s degree, and above as 
high education level.

Additionally, the impact of robot adoption may vary across 
different types of occupations. Here, we  use job content and 
insurance status to characterize the features of these occupations. 
Cognitive labor primarily involves mental exertion, reflected in a 
worker’s scientific and cultural knowledge, production skills, and 
experience. In contrast, manual labor, or physical labor, primarily 
involves the musculoskeletal system (57). Due to differences in job 
content, different occupational positions are affected differently by 
the robot adoption. The CLDS questionnaire collects respondents’ 
occupational information and categorizes them into 16 occupational 
categories. Here, we define agriculture, forestry, animal husbandry, 
fishing, mining, manufacturing, and construction as heavy physical 
labor occupations, while finance and insurance, real estate, health 
care, sports and social welfare, education, culture and arts, 
broadcasting, film and television, scientific research, and 
comprehensive technical services, as well as electricity, gas, and 
water production and supply are defined as heavy cognitive labor 
occupations. And we classify insurance status based on participation 
in basic employee medical insurance.

In Figure 3, among different groups of workers, it is evident that 
the health improvement effects of robots are more significant in the 
vulnerable groups in the labor market. This inequality in effects is 
mainly evident in the dimensions of self-rated health and physiological 
health, indicating that female workers, middle-aged and older adult 
workers, and workers with low human capital benefit more from the 
health dividends brought by robot adoption. The reason may be that 
the health-promoting effects of industrial robots exhibit diminishing 
marginal returns. Vulnerable groups in the labor market are at a 
disadvantage in the labor market competition, leading them to 
be more concentrated in high-risk, high-pollution jobs. Compared to 
other workers, their working environments are worse, thus the 

improvements in their working conditions brought about by industrial 
robots are more pronounced (58).

Among different groups of occupations, it is observed that, in 
terms of self-rated health and physiological health, the health 
improvement effect of industrial robots is significant only among 
heavy physical labor and non-insuranced occupations. Regarding 
mental health, the regression coefficient of robot adoption is also 
higher among samples of workers in heavy physical labor occupations 
compared to those in heavy cognitive labor occupations. This could 
be attributed to the fact that robot adoption, as extensions of human 
limbs and senses, primarily manifest their health improvement effects 
through the replacement of high-risk and high-pollution jobs. At the 
same time, the lack of insurance often means that companies are 
unable to improve the safety of workers at work, which means that 
workers face more difficult working conditions. Hence, these effects 
are more pronounced in the domain of heavy physical labor and 
non-insuranced occupations.

5 Mechanism

In the previous section, we established the relationship between 
robot adoption and workers’ health. Next, we will explore the potential 
mechanisms at both macro and micro levels.

5.1 Environmental quality

Combining technological advancements with green 
transformation strategies can significantly reduce the opportunity cost 
of taking proactive climate actions while yielding substantial benefits 
(59). Specifically, robot adoption can promote capital-biased 
technological progress in enterprises. Increased investment in research 
and development not only enhances production efficiency and 
capacity but also improves enterprises’ technical capabilities in 
pollution reduction through technological spillovers (60). Thus, 
we use PM2.5 and industrial wastewater emissions to characterize the 
environmental quality of cities.

According to Table 6, robot adoption has a significant positive 
effect on environmental quality. Specifically, after controlling for 
various city characteristics, a 1% increase in robot adoption leads to 
a 0.9% decrease in city PM2.5 concentration and a 1.6% reduction 
in industrial wastewater discharge. This indicates that industrial 
robots can enhance workers’ health by improving 
environmental quality.

5.2 Workplace conditions

Industrial robots can handle tasks involving toxic substances or 
work in high-temperature and high-noise environments, reducing 
workers’ exposure to harmful materials and hazardous conditions, 
thereby lowering the risks of occupational diseases and injuries. 
Besides, Industrial robots undertake high-risk tasks like heavy lifting 
and operation in hazardous areas, improving overall workplace safety 
and reducing the occurrence of workplace accidents. Here, we use 
questions from the CLDS micro-survey such as “Does safety 
protection at work meet national standards?” and “Is workplace 
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environmental pollution exceeding standards?” to measure the quality 
of workers’ micro work environments. This dual-level approach 
further investigates the role of workplace conditions in the health 
promotion effects of robot adoption.

According to Table 7, robot adoption also significantly improves 
workplace conditions. Specifically, after controlling for various city 
characteristics, for every 1 unit increase in robot adoption, the 
workplace pollution control score and occupation safety score increase 
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FIGURE 3

Heterogeneity. (A–C) are the results of the regression coefficients for self-rated health, illness status and depression as the dependent variable. 
Respectively, the regression model is referenced to Equation 4. The horizontal line indicates the 90% confidence interval. See details of regression 
tables in Appendix C.

TABLE 6 The impact of robot adoption on environmental quality.

(1) (2) (3) (4)

PM2.5 Industrial wastewater

robot −0.007** −0.009*** −0.019** −0.016*

(0.003) (0.003) (0.008) (0.009)

_cons 3.707*** 6.472*** 8.460*** 6.828***

(0.011) (0.642) (0.033) (2.487)

Control N Y N Y

City fixed effect Y Y Y Y

Year fixed effect Y Y Y Y

Observations 3,739 3,346 3,658 3,337

R-squared 0.944 0.942 0.891 0.894

(1) Standard errors are clustered at the city level. (2) *** Significant at the 1% level.  
** Significant at the 5% level. * Significant at the 10% level.
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by 0.012 and 0.019 units, respectively. This indicates that industrial 
robots can enhance workers’ health by improving workplace conditions.

6 Conclusion

In this paper we  presented robust evidence of a highly 
significant relationship between public health and robot adoption, 
and analyze the role of workplace environmental quality in this 
relationship. Using the database from CLDS, we  find robot 
adoption has a positive correlation with workers’ physical and 
mental health status. This conclusion remains robost after 
robustness tests and endogeneity issues are concerned. 
Additionally, taking into account the potential heterogeneity, 
we  conduct group regression analysis on the sample based on 
workers’ and occupations’ characteristics, and find that manual 
and non-insuranced laborers and vulnerable groups in the labor 
market tend to enjoy more health benefits from robot adoption. 
Finally, we combine macro and micro data and find that robot 
adoption can achieve a positive impact on the health status of 
workers by improving environmental quality and 
workplace conditions.

With the continuous advancement of technologies represented 
by industrial robots, the urbanization process in developing 
countries is accelerating, and the large-scale trend of “machine 
substitution for human labor” in production is irreversible. While 
the impact of robots on workplace environmental quality and 
workers’ health is becoming increasingly profound, academic 
discussion in this field remains somewhat sparse. This paper aims 
to integrate relevant macro and micro data to provide empirical 
support from China’s experience in this field and offer academic 
evidence for pollution reduction and the improvement of workers’ 
health in China. Based on the results in this paper, the government 
should actively promote the widespread robot adoption in various 
sectors such as manufacturing, logistics, and construction. To 
achieve this, a series of corresponding policies should 
be implemented, including not only encouragement and support 
for research and innovation but also financial subsidies, tax 
incentives, and technical training. These measures can effectively 
foster the rapid development and widespread adoption of 
industrial robot, thereby fully leverage the potential of industrial 
robots to improve workplace environmental quality and 
workers’ health.

There are some limitations in this paper. Further refinement is 
possible in the characterization of environmental quality and worker 
health. In addition, the government significantly impacts workspaces 
and urban health through the protection of workers’ rights, the 
implementation of favorable technology policies, and environmental 
regulations. The specific direction and extent of this impact also 
warrant further discussion.
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TABLE 7 The impact of robot adoption on workplace conditions.

(1) (2) (3) (4)

Workplace pollution control Occupational safety

robot 0.015*** 0.012*** 0.018*** 0.019***
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R-squared 0.001 0.006 0.001 0.008
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