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A dynamical optimal control
theory and cost-e�ectiveness
analyses of the HBV and
HIV/AIDS co-infection model

Shewafera Wondimagegnhu Teklu* and Abushet Hayalu Workie

Department of Mathematics, Natural and Computational Sciences, Debre Berhan University, Debre

Berhan, Ethiopia

Studies have shown that the co-infection of Human Immunodeficiency Virus

(HIV) and Hepatitis B Virus (HBV) poses a major threat to the public health due to

their combined negative impacts on health and increased risk of complications.

Even though, some scholars formulated and analyzed the HBV and HIV co-

infection model they did not consider the compartment that contains protected

individuals against both HBV and HIV infections. They incorporated the optimal

control theory and cost-e�ectiveness analysis simultaneously. With this in

mind, we are motivated to formulate and analyze the HBV and HIV co-

infection model, considering the protected group and incorporating optimal

control theory and cost-e�ectiveness. In this study, we have theoretically

computed all of the models disease-free equilibrium points, all the models

e�ective reproduction numbers and unique endemic equilibrium points. The

two sub-models disease-free equilibrium points are locally as well as globally

asymptotically stable whenever their associated e�ective reproduction numbers

are less than one. We reformulated the optimal control problem by incorporating

five time-dependent control measures and conducted its theoretical analysis by

utilizing the Pontryagin’s maximum principle. Using the fourth order Runge–

Kutta numerical method and MATLAB ODE45, we performed the numerical

simulations with various combinations of control e�orts to verify the theoretical

results and investigate the impacts of the suggested protection and treatment

control strategies for both the HBV and HIV diseases. Also, we carried out

a cost-e�ectiveness analysis of the proposed control strategies. Eventually,

we compared our model results with other researcher similar model results

whenever cost-e�ectiveness analysis is not carried out the findings of this

particular study suggest that implementing each of the proposed control

strategies simultaneously has a high potential to reduce and control the

spread of HBV and HIV co-infections in the community. According to the

cost-e�ectiveness analysis, implementing the HBV treatment and the HIV

and HBV co-infection treatment measures has a high potential e�ect on

reducing and controlling the HBV and HIV co-infection transmission problem

in the community.

KEYWORDS

HBV and HIV co-infection, protection, stability analysis, optimal control measure, cost-
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Introduction

HBV is a microbial pathogenic virus that greatly influences the

normal work of individuals’ livers. About two billion individuals

throughout the world have been infected with the HBV epidemic

among which chronic HBV has affected more than 350 million

individuals throughout nations in the world (1–5). Millions of

individuals have been died from chronic HBV stages (liver cirrhosis

and cancer) and it spreads through direct contact and indirect

transmission, such as through blood contact or during birth (1).

The twomost common stages of HBV disease are acute and chronic

hepatitis stages (6). Through the first 180 days after individuals

are exposed to the hepatitis B virus, their immune system may be

able to remove the HBV virus, resulting in a complete recovery.

However, sometimes the HBV infection may progress to the

chronic HBV infection stage (6).

AIDS (acquired deficiency syndrome) is a highly infectious

disease that is caused by HIV (human immunodeficiency virus). It

is one of the major life threatening and most destructive epidemic

diseases in history (9). It has affected approximately 70 million

individuals across various nations worldwide (7). According to the

Joint United Nations Programme on HIV/AIDS (UNAIDS) report,

retroviruses are spreading throughout the world (7–9). Since 1981,

it has been declared as a global pandemic. In 2016, 36.7 million

individuals were living with HIV/AIDS, and more than two thirds

of those individuals in the world are living in sub-Saharan African

countries (8, 10). The most common infection stages of HIV are

acute, dormancy, and AIDS (11). HIV/AIDS can be transmitted

from an infected individual to a healthy individual through direct

or indirect transmission, and its possible control measures are

preventive measures and treatment regimens (10).

A co-infection is the co-occurrence of two or more pathogens

(infections) on a single individual at the population level (8). HIV

and HBV are the most common viral infectious diseases and share

similar modes of transmission. The HBV and HIV co-infection

disease is a common infectious disease throughout the world (2,

12, 13). More than 10% of individuals infected with HIV have been

reported as chronically infected with HBV, and the HBV-HIV co-

infection highly increases the risk for liver related morbidity and

mortality as compared with the HIV mono-infection (1, 14, 15).

HIV/AIDS infection continues to be one of the most common

public health problems, with additional risk of HCV and/or HBV

co-infection (3, 12, 16).

Mathematical modeling is the process of representing real-

world situations usingmathematical terms and expressions. It plays

a vital role to understand and predict the future behaviors and

results for the real-world problem solutions (49). By combining

the mathematical techniques with biological and epidemiological

knowledge, researchers are able to simulate different scenarios,

search for different control measures and different interventions,

and conduct a public health decision-making process (49).

From the diverse branches of mathematical modeling one can

motivate one to study about eco-epidemiological, ecological,

and epidemiological modeling. Epidemiological modeling is the

study of the infectious disease transmission dynamics at the

population level. It plays a crucial role in the study of transmission

dynamics such as HBV and HIV infectious diseases (17). There

are different single-infection disease studies using the integer-order

derivative approaches (18–22) and using fractional order derivative

approaches (23–30). On the other hand, the interactions between

two infectious diseases, particularly the HBV and HIV, have a

negative impact on the community and have become a global

concern these days. Therefore, different researchers have given

attention to studying the spreading dynamics of HBV and HIV

co-infection within the community (2, 31, 32).

Different researchers have studied different infectious diseases

with mathematical modeling approaches; for instance, Jan et al.

(23) formulated and analyzed the dynamical behavior and chaotic

phenomena of HIV infection through fractional order derivatives

primarily with the Atangana–Baleanu derivative in the Caputo

sense, to investigate the dynamics of CD4+T-cells in HIV infection.

Bowong et al. (2) formulated and presented the HBV and HIV

co-infection deterministic model, and they carried out numerical

simulations for the full co-infected model to verify the analytical

results. Endashaw and Mekonnen (32) investigated the impact of

HBV vaccination and HBV and HIV treatments on the spreading

dynamics of HBV and HIV/AIDS co-infection. Their findings

revealed that implementing HBV vaccination, HBV, HIV/AIDS,

and HBV and HIV/AIDS co-infection treatments at the highest

possible rate is recommended to control the transmission of HBV

and HIV/AIDS co-infection within the community. Endashaw

et al. (31) modified the HBV and HIV/AIDS co-infection model

(32) by incorporating vertical transmission, i.e., transmission from

mother to child, andmedical interventions. According to numerical

simulations, increasing the HBV and HIV mother-to-child vertical

transmission rates exacerbated the HBV and HIV/AIDS co-

infection. Based on the findings of the studies conducted by other

researchers, we are motivated to address the gap by formulating

the HBV and HIV co-infection model incorporating optimal

control theory and cost-effectiveness investigation. Ullah et al.

(51) developed and analyzed a new HBV and HIV co-infection

model with vaccination and asymptomatic transmission using real

data collected from Taiwan. The study considered vaccination,

exposed and asymptomatic compartments and from the numerical

simulation results, we observed that the vaccine and fractional

parameters changed the proposed model state variables, as well

as how the solutions behaved and how quickly they reached the

model’s equilibrium. A maximum vaccination effort against HBV

has a great effect on the HIV and HBV co-infection spreading

in the community. Yusuf and Idisi (52) formulated and analyzed

the HIV and HBV co-epidemics spreading dynamics. Nampala

et al. (53), formulated and analyzed modeling and investigating

hepatotoxicity and antiretroviral therapeutic effect in HIV/HBV

co-infection spreading dynamics. However, all of the above HBV

and HIV co-infection models do not incorporate the protected

group against both infections (by education or condom use) and

optimal control theory and cost-effectiveness analysis into the

transmission dynamics of these diseases.

Optimal control and cost-effectiveness analyses are vital tools

to investigate the possible impacts of intervention strategies

against infectious disease-spreading dynamics. It provides public

stakeholders and policymakers with the right decision on which

possible control intervention measure has the most beneficial

economic value (and is less expensive). For instance, Awoke and
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Semu (33) formulated a TB and HIV co-infection model with

optimal control theory in the presence of behavior modification.

They investigated the optimal impacts of their proposed control

strategies, and from their cost-effectiveness analysis results they

found that the treatment control measure is more effective

than the preventive control strategies. Shang (54) formulated

a mathematical model to investigate the impacts of optimal

control strategies for virus spreading in inhomogeneous epidemic

dynamics. The study investigated the spread of virus/worm in

computer networks with a view to addressing cyber security

problems using the same approaches used in epidemic models.

Ahmed et al. (55) investigated the optimal treatment strategies

to control acute HIV infection. From our findings, we found

that early initiation of treatment has a profound impact on

both improving the quality of life and reducing the economic

costs of therapy. Kamrujjaman et al. (56) investigated the

dynamics of a diffusive vaccination model with therapeutic impact

and non-linear incidence in the field of epidemiology. Ahmed

et al. (57) investigated the dynamics of a viral infection under

treatment. Asamoah et al. (46) investigated the global stability

and cost-effectiveness analysis on the spread of coronavirus

disease 2019 (COVID-19) spreading by considering the impact

of the environment using authentic data from Ghana. Teklu

(44) investigated the impacts of optimal control strategies on the

HBV and COVID-19 co-infection transmission dynamics. Kotola

et al. (37) formulated and analyzed a mathematical model for

the HIV/AIDS and COVID-19 co-infection with bifurcation and

optimal control analysis. Khondaker et al. (58) formulated and

analyzed the COVID-19 transmission model with optimal control

theory, physical distance, and treatment.

Therefore, it should be mentioned that researcher studies

like (2, 31, 32, 51–53) formulated and analyzed the HBV and

HIV co-infection models by considering HBV vaccination or/and

treatments for both infections. However, these models do not

incorporate the protected group against both infections (through

education or condom use) and optimal control theory and

cost-effectiveness analysis in the transmission dynamics of these

diseases. Our study assesses the impact of protection strategies

for both HBV and HIV infections as well as treatments for

both infections on the control and management of the HBV and

HIV co-infection spreading through a mathematical modeling

approach that incorporates optimal control theory and cost-

effective analysis. To the best of the our understanding from

literature review the HBV and HIV co-infection model, comprising

seven mutually exclusive compartments, such as being susceptible,

protected against both HBV and HIV infections, infected solely

with HBV, infected solely with HIV, co-infected with HVB and

HIV, treated from HBV infection, and treated from HIV infection

or/andHBV andHIV co-infection, with optimal control theory and

cost-effectiveness analysis, is being considered for the first time.

Furthemore, we performed a detailed theoretical and quantitative

analysis of the formulated HBV and HIV co-infection model.

It is along the same lines of idea as Endashaw et al. (31)

and Endashaw and Mekonnen (32), however the approach is

very different and we use optimal control theory and the cost-

effectiveness approach. From our literature review understanding

we have verified that there is no HBV and HIV co-infection

compartmental model that considers a protected compartment,

optimal control theory, and cost-effectiveness analysis. To this end,

our study considers individuals who are protected against both

HBV and HIV infections and formulates the HBV and HIV co-

infection compartmental model with optimal control theory and

a cost-effectiveness approach to obtain a better understanding

of the spreading dynamics and control mechanisms of the HBV

and HIV diseases. The main contributions of this study can be

organized as follows: a new HBV and HIV co-infection model

that contains the protected group and describes the co-dynamics

characteristics of HBV and HIV with optimal control theory by

applying the Pontryagin’s Maximum Principle is formulated. A

detailed theoretical analysis of the proposed co-infection model is

presented, and a cost-effectiveness analysis using the well-known

incremental cost-effectiveness ratio (ICER) is performed. This

results of this particular study suggest the potential of the proposed

control strategies used to implement for reducing and controlling

the HIV and HBV co-infection disease.

Research gap and significance of the
present study

From our literature review part, we confirmed that no

mathematical model researchers of HIV and HBV co-infection

disease considered the number of people who are protected against

both HIV and HBV infections using education and condom,

optimal control theory, and cost-effectiveness analysis in the

dynamics of this co-infection disease, despite the fact that some

researchers formulated and analyzed the HIV and HBV co-

infection dynamics. In view of this, we are motivated to develop

and evaluate the HIV and HBV co-infection spreading dynamical

system in this study, which includes five time-dependent control

measures with 31 possible combinations of these control strategies

and their cost-effectiveness analysis. The primary objective is to

investigate the most economical and ideal control approach. The

HIV and HBV co-infection spreading model explained the co-

existing characteristics of both infections through time-dependent

control strategies. A comprehensive qualitative (mathematical)

analysis of the HIV and HBV co-infection spreading dynamical

system is presented. The Incremental Cost-Effectiveness Ratio

(ICER) approach is used to perform cost-effectiveness analyses.

Graphical representations of the suggested control strategies

combined in various scenarios are presented, and the results are

compared. These constitute the most significant contributions of

this study.

The main objective of this study is to find an optimal trajectory

for the proposed control strategies that minimizes both the number

of co-infected individuals and costs by formulating and analyzing

the HBV andHIV co-infectionmodels with optimal control theory.

Without carrying out a cost-effectiveness analysis of the optimal

control problem, the findings of this particular study suggested

that the implementation of each of the proposed controlling

strategies simultaneously has a great potential to reduce and control

the HBV and HIV co-infection spreading in the community,

but cost-effectiveness analysis investigated that Strategy 15 [i.e.,

implementing HBV treatment and the HIV and HBV co-infection

treatment measures (c4 6= 0, c5 6= 0, c1 = c2 = c3 = 0)
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simultaneously] has a high potential to reduce and control the HIV

and HBV co-infection spreading in the community among each of

the 31 proposed control strategies under consideration in the study.

Methods

In this section, to formulate our proposed HBV and HIV

co-infection model, we subdivide the total number of human

population at a given time, t denoted by N (t) , into seven mutually

exclusive categories based on their infection status. These categories

include the number of people who are susceptible to either HBV or

HIV, denoted by [S (t)], the number of people who are protected

against both HBV and HIV infections, denoted by [P (t)], the

number of people who are infected solely with HBV, denoted by

[IB (t))], the number of people who are infected only with HIV,

denoted by [IH (t)], the number of people who are co-infected with

HVB and HIV, denoted by [C (t)], the number of people who are

treated from HBV infection, denoted by [TB (t)], and the number

of people who are treated fromHIV infection or/andHBV andHIV

co-infection, denoted by [T (t)], such that

N (t) = S (t) + P(t)+ IB (t) + IH (t) + C (t) + TB (t) + T (t) . (1)

The following are the assumptions of the proposed model

• Individuals in each category are homogeneously mixing,

• Treated individuals do not transmit the diseases due

to awareness,

• Individuals in each category are subject to natural mortality,

• The human population is not constant,

• There is no simultaneous dual-infection transmission,

• There is no vertical transmission of HBV infection,

• HIV vertical transmission has been considered,

• There is no permanent HBV infection,

• The protection may not be 100% effective,

• The co-infected individuals (C (t)) are more infectious than

single infected individuals (IB (t)) and (IH (t)); therefore, the

constants 1 ≤ ϑ1 < ∞, and 1 ≤ ϑ2 < ∞ are

the modification parameters used to compare the degree of

infectiousness of the co-infected individuals with HBV and

HIV single-infection individuals, respectively.

• Individuals who are susceptible to either HBV or HIV

infection acquire HBV or HIV infection at the force of

infection rates described respectively by:

λB (t) =
β1

N(t)

(

IB(t)+ ϑ1C (t)
)

, (2)

λH (t) =
β2

N(t)

(

IH(t)+ ϑ2C (t)
)

, (3)

where the parameters described by β1, and, β2 are the HBV and

HIV transmission rates respectively andN(t) is the total population

stated in Equation 1.

Using the model state variable definitions, the model

assumptions described above, and the descriptions of parameters

stated in Table 1, the HBV and HIV co-infection transmission

dynamics schematic diagram is shown in Figure 1.

Using the schematic diagram shown in Figure 1, the HBV and

HIV co-infection dynamical systems are represented by the systems

of differential equations given by:

dS

dt
= (1− τ )5 + πP −

(

λH + λB + d
)

S,

dP

dt
= τ5 −

(

π + d
)

P,

dIH

dt
= λHS+ (1− p)φνIH −

(

η1λB + ξ2 + d2 + d
)

IH ,

dIB

dt
= λBS+ κTB −

(

η2λH + ξ1 + d1 + d
)

IB,

dC

dt
= η1λBIH + η2λHIB + θT −

(

ξ3 + d3 + d
)

C,

dT

dt
= ξ2IH + ξ3C −

(

θ + d
)

T,

dTB

dt
= ξ1IB −

(

κ + d
)

TB, (4)

with initial population quantified by S (0) = S0 ≥ 0, P (0) = P0 ≥

0, IH (0) = I0H ≥ 0, IB (0) = I0B ≥ 0, C (0) = C0 ≥ 0, T0 = T0 ≥ 0,

and TB (0) = T0
B ≥ 0.

Non-negativity and boundedness of the
co-infection model solutions

In this subsection, we examine the fundamental outcomes

pertaining to the solutions of the co-infection dynamical system

(4), which hold significant importance in both mathematical and

epidemiological interpretations. Each of the state variables included

in the co-infection model (4) considers the human population;

therefore, it is necessary to reveal that all the state variables are

non-negative and bounded.

Theorem 1: The solutions to the HBV and HIV co-infection

model (4) are non-negative, unique, and bound in the region

represented by:

� =

{

(S, P, IH , IB,C,T,TB) ǫ R
7
+ : 0 ≤ N ≤

5

d

}

. (5)

Proof: All functions described in the right-hand side of the

co-infection model (4) are C1 on R
7
+. According to the Picard–

Lindelöf theorem the co-infection model (4) has a unique solution.

Let the dynamical system (4) be written as y
′
= g(y, t) where

y = (S, P, IH , IB,C,T,TB) and g is the right-hand side of the

model (4). According to the results of Picard–Lindelöf theorem the

function g
(

y, t
)

has the property of

fi (S, P, IH , IB,C,T,TB) ≥ 0. (6)

where y = (S, P, IH , IB,C,T,TB) stated in (6) is y ∈ [0,∞]7.

Since there exists a unique solution for the co-infection model (4),

it follows that y (t) ∈ [0,∞]7 for all t ≥ 0, whenever y(0) ≥ 0.

The rate of change of total human population derived by dN
dt

=
dS
dt

+ dP
dt

+ dIH
dt

+ dIB
dt

+ dC
dt

+ dTB
dt

+ dT
dt

is governed by;

dN

dt
= 5 − dN − d2IH − d1IB − d3C +

(

1− p
)

νIH ≤ 5 − dN. (7)
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TABLE 1 Description of parameters used to formulate and simulate the co-infection model.

Symbols Biological interpretation Values References

d Human natural mortality rate 0.01 (11)

5 Human recruitment rate 250 (34)

τ Portion of HBV or/and HIV protection 0.006 (35)

π Protection loss rate 0.59 (36)

η1 Parameter that shows an HIV-infected individual is more risky than a susceptible individual for HBV infection 1.2 Assumed

η2 Parameter that shows an HBV-infected individual is more risky than a susceptible individual for HIV infection 1.1 Assumed

d1 HBV infection death rate 0.1 (31)

d2 HIV infection death rate 0.333 (7)

d3 HBV and HIV co-infection death rate 0.01 (32)

κ HBV re-infection rate of HBV-treated individuals 0.2 Assumed

θ HBV re-infection rate of co-infected treated individuals 0.3 Assumed

β1 HBV infection transmission rate 0.3425 (37)

β2 HIV infection transmission rate 0.04 (31)

ξ1 HBV infection treatment rate 0.3 (31)

ξ2 HIV infection treatment rate 0.3 (32)

ξ3 HBV and HIV co-infected treatment rate 0.015 (32)

p Probability of death of newborns infected with HIV at birth 0.2 (31)

ν Vertical transmission rate of HIV from mother to child at birth 0.3 (31)

FIGURE 1

The schematic diagram of the HBV and HIV co-infection dynamics where λH and λB are stated in Equations 1, 2, respectively.

Solving Equation 7, we have derived the solution for

N (t) given by N (t) ≤ N0e
−dt + 5

d
(1 − e−dt). Therefore,

for the initial population illustrated in the co-infection

model (4) with the property 0 ≤ N0, we have determined

the result 0 ≤ N(t) ≤ 5
d

which implies that the solution

of the HBV and HIV co-infection model (4) exists, is
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unique, and is bound in a feasible region � given in

Equation 5.

Consequently, the dynamics of the co-infection dynamical

system (4) preserve the non-negativity of the states, as

demonstrated in previous studies (34, 36, 37, 44). Thus, it is

evident that the co-infection model (4) is positively invariant in the

region � =
{

(S, P, IH , IB,C,T,TB) ǫ R
7
+ : 0 ≤ N ≤ 5

d

}

.

Remark 1: The region � =
{

(S, P, IH , IB,C,T,TB) ǫ R
7
+ : 0 ≤ N ≤ 5

d

}

is invariant and

attracting for the co-infection dynamical system (4). Thus, the co-

infection model (4) is both mathematically and epidemiologically

well-posed, and it is sufficient to consider the dynamics of the flow

generated by the dynamical system (4) in �.

Disease-free equilibrium point and its
stability

The complete co-infection dynamical system (4) disease-free

equilibrium point (E0BH) is determined bymaking all the right-hand

side equations equal to zero, and assuming that there is no disease

in communities (i.e., IB = IH = C = TB = T = 0). Thus, the

disease-free equilibrium point of the dynamical system described

in Equation 4 is given by:

E0BH =
(

S0, P0, I0B, I
0
H ,C

0,T0
B, T

0
)

=

(

π5 + d5(1− τ )

d(π + d)
,

τ5

π + d
, 0, 0, 0, 0, 0

)

. (8)

Using the same procedures stated in (38), we have determined

the expressions

F
i (x) =











λHS+ (1− p)νIH
λBS

0

0











,

and Vi (x) =











(

η1λB + ξ2 + d2 + d
)

IH
(

η2λH + ξ1 + d1 + d
)

IB − κT
(

ξ3 + d3 + d
)

C − η1λBIH − η2λHIB − θT
(

θ + d
)

T − ξ2IH − ξ3C











.

Since the reproduction number is computed at the HBV and

HIV co-infection disease-free equilibrium point given by E0BH
stated in Equation 8, such that N0 = S0 + P0 and making the

infected compartments zero as IH = IB = C = TB = T = 0,

finally, we have computed the results given by:

F =











β2S
0

S0+P0
+ (1− p)ν 0 β2ϑ2S

0

S0+P0
0

0 β1S
0

S0+P0
β1ϑ1S

0

S0+P0
0

0 0 0 0

0 0 0 0











,

V =











(

ξ2 + d2 + d
)

0 0 0

0
(

ξ1 + d1 + d
)

0 0

0 0
(

ξ3 + d3 + d
)

−θ

−ξ2 0 −ξ3
(

θ + d
)











,

and the next-generation matrix given by:

FV−1 =

















β2(π+d(1−τ))+(1−p)ν(π+d)

(π+d)(ξ2+d2+d)
0 0 0

0 β1π+β1d(1−τ)

(π+d)(ξ1+d1+d)
0 0

0 0 0 0

0 0 0 0

















.

Therefore, the corresponding eigenvalues of the

next-generation matrix FV−1 are given by:

{

0, 0,
β2

(

π + d(1− τ
)

)+
(

1− p
)

ν(π + d)

(π + d)
(

ξ2 + d2 + d
) ,

β1π + β1d (1− τ)
(

π + d
) (

ξ1 + d1 + d
)

}

.

Thus, the effective reproduction number of the co-infection

model is given by

RHB=max

{

β2

(

π + d(1− τ
)

)+
(

1− p
)

ν(π + d)

(π + d)
(

ξ2 + d2 + d
) ,

β1π + β1d (1− τ)
(

π + d
) (

ξ1 + d1 + d
)

}

,

where

RB =
β1π+β1d(1−τ)

(π+d)(ξ1+d1+d)
is the HBV only infection effective

reproduction number and RH =
β2(π+d(1−τ))+(1−p)ν(π+d)

(π+d)(ξ2+d2+d)
is the

HIV sub-model effective reproduction number.

Remark: WheneverRHB < 1, the HBV and HIV co-

infection spreading will be eliminated in the near future without

implementing further control efforts, but if RHB > 1, the HBV

and HIV co-infection spreads in the community. In order to

reduce theHBV andHIV co-infectionmodel effective reproduction

numberRHB, we can vary the model parameters incorporated

inRHB. Since RHB is dependent on the model parameters β1, π ,

d, τ , ξ1, d1, β2, p, ν, ξ2, and d2. From the sensitivity indices results

illustrated in the sensitivity analysis section and the sensitivity

indices diagram shown in Figure 2, the co-infection model effective

reproduction number is directly proportional to some of the

model parameters, such as β1, π , d, β2, and ν and also inversely

proportional to some of the parameters, like τ , ξ1,d1, ξ2, and d2.

Theorem 2: The HBV and HIV co-infection model (4) disease-

free equilibrium point E0HB is locally asymptotically stable ifRHB <

1 and is unstable ifRHB > 1.

Proof: The Jacobian matrix J
(

E0HB
)

of the HBV and HIV co-

infection model (4) at the co-infection disease-free equilibrium

point E0HB is computed by:

J
(

E0HB
)

=



























−d ν −A −BS0 Aξ1 − Bξ2 −A 0

0 −C 0 0 0 0 0

0 0 D 0 0 0 0

0 0 0 −E 0 0 σ

0 0 0 0 −F ρ 0

0 0 ξ2 0 ξ3 −G 0

0 0 0 ξ1 0 0 −H



























,

where, A =
β2
N S0, B =

β1
N S0, C = (π + d), D = (1− τ) ν −

(

ξ2 + d2 + d
)

, E =
(

ξ1 + d1 + d
)

, F =
(

ξ3 + d3 + d
)

, G =
(

θ + d
)

, H=
(

κ + d
)

.
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FIGURE 2

Diagrams that reveal the sensitivity indices of the model parameters with respect to e�ective reproduction numbers. (A) Diagram of the sensitivity

indices of the model parameters with respect to RB. (B) Diagram of the sensitivity indices of the model parameters with respect to RH.

Then characteristic equation of J
(

E0HB
)

at co-infection model

(4) disease-free equilibrium point is given by

(−C − λ) (D− λ)
(

−λ + d−
)

[(−E− λ) (−H − λ)
(

G+ λ2 − FG+ Fλ + θξ3
)

(1− τξ1)] = 0.

Then, the solutions of corresponding characteristic

equation are

λ = D, λ = −
(

d + π
)

, λ = −d, λ = −E, λ = −(d + κ),

or

λ2 + [d + θ −
(

ξ3 + d3 + d
)

]λ +
(

ξ3 + d3 + d
) (

d + θ
)

+ θξ3 = 0. (9)

Here, all the eigenvalues except eigenvalues, with the exception

of those in the expression of Equation 9 are negative, and for

those in the expression (Equation 9) the Routh-Hurwitz stability

criteria is applied and proved that the first column of the Routh-

Hurwitz array has no sign change wheneverRHB < 1. Hence,

the co-infection model disease-free equilibrium point (DFE) is

locally asymptotically stable wheneverRHB < 1. The disease-free

equilibrium of the model is locally asymptotically stable when the

corresponding effective reproduction number is less than unity.

Model endemic equilibrium point

TheHBV andHIV co-infectionmodel (4) endemic equilibrium

point(s) is/are computed by making the right side of the system

(4) equal to zero provided that IB 6= 0, or IH 6= 0, or C 6= 0,

or TB 6= 0, or T 6= 0. Let the co-infection model (4) endemic

equilibrium point be E∗BH =
(

S∗, P∗, I∗B, I
∗
H , C

∗, T∗
B, T

∗
)

, and the

forces of infection for HBV and HIV, respectively, are:

and λB
∗ (t) =

β1
N∗
1

(

I∗B (t) + ϑ1C
∗ (t)

)

and λH
∗ (t) =

β2
N∗
2

(

I∗H (t) + ϑ2C
∗ (t)

)

. After solving and simplifying the

result, we determined the following:

S∗ =
(1− τ )5

(

λH
∗ + λB

∗ + d
) +

ν
(

λH
∗ + λB

∗ + d
)

(

τ5
(

π + d
)

)

,

P∗ =
τ5

(

π + d
) , I∗H =

(

1
(

η1λB
∗ + ξ2 + d2 + d

)

−
(

1− q
)

ν

)

(

(1− τ )5λH
∗

(

λH
∗ + λB

∗ + d
) +

πλH
∗

(

λH
∗ + λB

∗ + d
)

(

λH
∗τ5

(

π + d
)

))

,

I∗B =

(

(τ − 1)5λB
∗

(

λH
∗ + λB

∗ + d
) −

πλZ
∗

(

λH
∗ + λB

∗ + d
)

(

τ5
(

π + d
)

))(

(

κ + d
)

κξ1 −
(

κ + d
) (

η2λH
∗ + ξ1 + d1 + d

)

)

,

T∗ =
ξ2I

∗
H + ξ3C

∗

(

θ + d
) ,C∗ =

η1λB
∗I∗H + η2λH

∗I∗B + θT∗

(

ξ3 +m3 + d
) ,

T∗
B =

(

ξ1
(

θ + d
)

)(

(τ − 1)5λB
∗

(

λH
∗ + λB

∗ + d
) −

πλB
∗

(

λH
∗ + λB

∗ + d
)

(

τ5
(

π + d
)

))(

(

κ + d
)

θξ1 −
(

θ + d
) (

η2λH
∗ + ξ1 + d1 + d

)

)

.

Backward bifurcation for the co-infection
model

Let S = z1, P = z2, IH = z3, IB = z4, C = z5, T = z6
and TB = z7 and the total human population is given by N =

z1 + z2 + z3 + z4 + z5 + z6 + z7 . Furthermore, using the vector

representation Z = (z1, z2, z3, z4, z5, z6, z7)
T , the HBV and HIV

co-infection dynamical system (4) will be re-written as
dZ
dt

= H (Z) with H = (h1, h2, h3, h4, h5, h6, h7, h8, h9)
T

such that

dz1

dt
= h1 = (1− τ )5 + πz2 −

(

λH + λB + d
)

z1,

dz2

dt
= h2 = τ5 −

(

π + d
)

z2,
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dz3

dt
= h3 = λHz1 + (1− p)φνz3 −

(

η1λB + ξ2 + d2 + d
)

z3,

dz4

dt
= h4 = λBz1 + κz7 −

(

η2λH + ξ1 + d1 + d
)

z4, (10)

dz5

dt
= h5 = η1λBz3 + η2λHz4 + θz6 −

(

ξ3 + d3 + d
)

z5,

dz6

dt
= h6 = ξ2z3 + ξ3z5 −

(

θ + d
)

z6,

dz7

dt
= h7 = ξ1z4 −

(

κ + d
)

z7,

where λB (t) =
β1
N(t)

(

z4(t)+ ϑ1z5 (t)
)

, and λH (t) =

β2
N(t)

(

z3(t)+ ϑ2z5 (t)
)

,

for 1 ≤ ϑ1 < ∞ and 1 ≤ ϑ2 < ∞.

Then the Jacobian matrix of the new dynamical system given in

Equation 10 at E0BH , represented by J(E0BH)

and determined by

J
(

E0BH
)

=























−d π −
β2
N0 z

0
1 −

β1
N0 z

0
1 −

β1
N0 ϑ1z

0
1 −

β2
N0 ϑ2v

0
1 0 0

0 −
(

π + d
)

0 0 0 0 0

0 0 M1 0 β2
N0 ϑ2v

0
1 0 0

0 0 0 M2 0 κ 0

0 0 0 0 −
(

ξ3 + d3 + d
)

θ 0

0 0 ξ2 0 ξ3 −
(

θ + d
)

0

0 0 0 ξ1 0 0 −
(

κ + d
)























,

where M1 =
β2
N0 z

0
1 +

(

1− p
)

ϕν −
(

ξ2 + d2 + d
)

,M2 =
β1
N0 z

0
1 −

(

ξ1 + d1 + d
)

.

Let us assume that RB > RH without loss of the generality,

and RHB = 1, i.e., RB = 1. Moreover, let β1 = β∗ be a

bifurcation parameter. Solving for β1 using RB = 1 as RB =
β1π+β1d(1−τ)

(π+d)(ξ1+d1+d)
= 1 we determined as β∗ = β1 =

(π+d)(ξ1+d1+d)
π+d(1−τ )

.

Calculating the eigenvalues of the Jacobianmatrix J
(

E0HB
)

at the

disease-free equilibrium point E0HB, for β1 = β∗,we determined the

eigenvalues given by λ1 = −d < 0 or λ2 = −
(

π + d
)

< 0 or λ3 =

M1 =
β2
N0 z

0
1 +

(

1− p
)

ϕν−
(

ξ2 + d2 + d
)

=
(

ξ2 + d2 + d
)

[RH −

1] < 0 ifRH < 1 or λ4 = 0 or λ5 = −
(

ξ3 + d3 + d
)

< 0 or λ7 =

−
(

κ + d
)

< 0. From the results we observed that all the matrix

J
(

E0HB
)

eigenvalues are negative if RHB < 1. Then we applied the

Center Manifold theory to investigate whether the HBV and HIV

co-infection model (4) will or will not undergo the phenomenon

of backward bifurcation at RB = 1. Now let us compute the

eigenvectors of the Jacobian matrix Jβ∗ at RB = 1. Then, based

on the right eigenvectors x = (x1, x2, x3, x4, x5, x6, x7)
T and left

eigenvectors y = (y1, y2, y3, y4, y5, y6, y7) of the Jacobian matrix Jβ∗

at β1 = β∗ associated to the zero eigenvalue. After we computed

and simplified the result, we have determined the bifurcation

coefficients a and b such that

a = 2y4x1x4
∂2h4 (0, 0)

∂z1∂z4
+ 2y4x3x4

∂2h4 (0, 0)

∂z3∂z4

= 2β∗
1 y4x4 [z1 + z2 ] , (11)

= −2β∗
2 x4y

2
4

[

β1z
0
1

(

ξ1 + d1 + d
)

+
(

π + d
)

ϑ1β1z
0
1 + d

(

π + d
)

β1z
0
2

d
(

π + d
)

(1− τ)

]

< 0,

and

b = x4y4
∂2h4(0,0)
∂z4∂β1

= x4y4(z
0
1 + z02) > 0, where x4 = x4 > 0,

y4 = y4 > 0.

Therefore, according to the Castillo-Chavez and Song (50)

criteria our proposed HBV and HIV co-infection model (4) does

not exhibit bifurcation in the backward direction whenever RB =

1. This result implies that in the co-infectionmodel (4), the endemic

equilibrium point (s) is/are does not exist in the region RB < 1,

meaning only the disease-free equilibrium point exists in the region

RB < 1.

Remark: According to the results (values a < 0 and

b > 0) described in Equation 11 the HBV and HIV/AIDS

co-infection model (4) disease-free equilibrium point E0BH =
(

S0, P0, I0B, I
0
H ,C

0,T0
B, T

0
)

=
(

π5+d5(1−τ )
d(π+d)

, τ5
π+d

, 0, 0, 0, 0, 0
)

is

globally asymptotically stable wheneverRHB=max {RB, RH } <

1, whereRB =
β1π+β1d(1−τ)

(π+d)(ξ1+d1+d)
, is the HBV only infection effective

reproduction number andRH =
β2(π+d(1−τ))+(1−p)ν(π+d)

(π+d)(ξ2+d2+d )
.

Note: From the investigation results of the bifurcation

phenomenon above, it can be biologically (epidemiologically)

suggested that the HBV and HIV co-infection disease may die

out in the community whenever the HBV and HIV co-infection

model disease-free equilibrium point is globally asymptotically

stable whenever its effective reproduction number is less than one.

Theorem 3: The HBV and HIV co-infection model (4) disease-

free equilibrium point E0HB is globally asymptotically stable if

the effective reproduction number RHB < 1 and is unstable

ifRHB > 1.

Sensitivity analysis

Since our study considers optimal control theory, we carried

out the sensitivity analysis of the HBV and HIV co-infection

model parameters incorporated in the effective reproduction

numbers in this sub-section. Investigating the most influential

model parameters that will increase or decrease the value of the

threshold quantity (or the HBV and HIV co-infection model

effective reproduction number RHB) is very crucial. Finding such

influential model parameters that greatly impact the co-infection

model is fundamental to reduce the spread of HBV and HIV

co-infection spreading in the community. Using the model

parameter values described in Table 1, we need to compute the

sensitivity analysis of the model parameters using the HBV and

HIV co-infection model effective reproduction number denoted

by RHB using the following well-known criteria:

Definition: Let a be an arbitrary model parameter incorporated

in the HBV and HIV co-infection model (4) effective reproduction

numberRHB, then the forward sensitivity index formula is defined

by SI RHB
a = ∂ RHB

∂a × a
RHB

(7, 45).

Applying the HBV and HIV co-infection model parameters

stated in Table 1, we have demined that RH = 1.32 > 1 and
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RB = 1.14 > 1 and also we have computed the valuesRHB =

max {RH , RB} = RH = 1.32 > 1. And also we computed the

sensitivity indices as:

(1). SI RH
π =

(

∂ RH

∂π

)

∗

(

π

RH

)

H⇒ SI RH
π

=
β2π (1− π) + β2πdτ

(

π + d
)

[β2

(

π + d(1− τ
)

)+
(

1− p
)

ν(π + d)]
.

(2). SI RH
ν =

(

∂ RH

∂ν

)

∗

(

ν

RH

)

H⇒ SI RH
ν =

(

1− p
)

ν

d + (1− p)ν + d2 + ξ2
> 0.

(3). SI RH
β2

=

(

∂ RH

∂β2

)

∗

(

β2

RH

)

H⇒ SI RH
β2

=
π + d [1− τ ]

(

d + π
) (

d − ν + pν + d2 + ξ2
)

(

β2

RH

)

= 1 > 0.

(4). SI RH
τ =

(

∂ RH

∂τ

)

∗

(

τ

RH

)

H⇒ SI RH
τ =

−β2d
(

π + d
) (

ξ2 + d2 + d
) < 0.

(5). SI RB
π =

(

∂ RB

∂π

)

∗

(

π

RB

)

H⇒ SI RB
π =

β1dπτ
(

π + d
) [

β1π + β1d (1− τ)
] > 0.

(6). SI RB
β1

=

(

∂ RB

∂σ

)

∗

(

β1

RB

)

H⇒ SI RB
β1

=
π + d [1− τ ]

(

d + π
) (

d + d1 + ξ1
)

(

β1

RB

)

= 1 > 0.

(7). SI RB
τ =

(

∂ RB

∂τ

)

∗

(

τ

RB

)

H⇒ SI RB
τ =

−β1dτ

β1π + β1d (1− τ)
< 0.

(8). SI RB
ξ1

=

(

∂ RB

∂ξ1

)

∗

(

ξ1

RB

)

H⇒ SI RB
ξ1

=
−
[

β1π + β1d (1− τ)
]

(

ξ1 + d1 + d
)2

< 0.

(9). SI RH
ξ2

=

(

∂ RH

∂ξ2

)

∗

(

ξ2

RH

)

= SI RH
ξ2

=
−[β2

(

π + d(1− τ
)

)+
(

1− p
)

ν(π + d)]
(

ξ2 + d2 + d
)2

< 0.

Based on the model parameter values described in Table 1,

we have determined the sensitivity index values represented in

Tables 2, 3.

Based on the sensitivity indices described in Tables 2, 3, we have

the following diagrams that show the graphical representations of

the values represented therein.

The diagrams shown in Figures 2A, B are carried out by

considering RHB > 1 mean that, when the HBV and HIV co-

infection disease spreads throughout the community. The results

reveal that the diseases transmission rates and portion of protection

have themost significant impact on the co-infectionmodel effective

reproduction number.

TABLE 2 Sensitivity indices wheneverRHB = max { RH, RB} = RH.

Parameters Sensitivity indices

β2 SIRH
β2

= +1

π SIRH
π = +0.21

ν SIRH
ν = +0.46

τ SIRH
τ = −0.82

ξ2 SIRH
ξ2

= −0.62

d SIRH

d = +0.19

d2 SIRH

d2
= +0.36

TABLE 3 Sensitivity indices wheneverRHB = max { RH, RB} = RB.

Parameters Sensitivity indices

β2 SIRB
β2

= +1

τ SIRB
τ = −0.78

π SIRB
π = +0.18

ε1 SIRB
ε1

= −0.65

d SIRB

d = +0.21

d1 SIRB

d1
= +0.09

Optimal control problem and its analysis

In this section, based on the HBV and HIV co-infection

spreading model (4) parameters sensitivity indices described in

Tables 2, 3 above and the associated sensitivity indices diagram

shown in Figures 2A, B above we re-constructed the optimal

control problem (12) by considering the bounded, Lebesgue

integrable control functions, denoted by c = (c1, c2, c3, c4, c5)

such that

• The control function c1 (t) represent efforts to protect

individuals against HIV infection by using education and

condom use,

• The control function c2 (t) represent efforts to protect

individuals against HBV infection by using education and

condom use,

• The control function c3 (t) is the control related to treatment

of HIV infected individuals to increase their recovery rate and

recovery period.

• The control function c4 (t) is the control related to treatment

of HBV infected individuals to increase their recovery rate and

recovery period ,

• The control function c5 (t) is the control related to treatment

of the HIV and HBV co-infected individuals to increase their

recovery rate and recovery period.

Thus, for this particular study the implementation of the right

protection and treatment strategies on the HBV and HIV co-

infected individuals, HBV and HIV single infected individuals

in a community is used to improve the recovery period and

increase the number of recovered individuals such that 0 ≤

c1, c2, c3, c4, c5 ≤ 1. After incorporating all these five control

strategies described above in to the dynamical system (4) the
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corresponding system of differential equation for the HBV andHIV

co-infection transmission model (4) can be re-written as follows:

dS

dt
=

(

1− q
)

5 + πP −
(

(1− c1(t))λH + (1− c2 (t))λB + d
)

S,

dP

dt
= q5 −

(

π + d
)

P,

dIH

dt
= (1− c1(t))λHS+ (1− π) νIH −

(

η2λH + c3 (t) ξ2 + d2 + d
)

IH ,

dIB

dt
= (1− c2(t))λBS+ κT −

(

η1λH + c4 (t) ξ1 + d1 + d
)

IB,

dC

dt
= η1λBIH + η1λH IB + ρT −

(

c5 (t) ξ3 + d3 + d
)

C,

dT

dt
= c3 (t) ξ2IH + c5(t)ξ3C −

(

θ + d
)

T,

dTB

dt
= c4 (t) ξ1IB −

(

κ + d
)

TB, (12)

subject to the initial conditions S (0) = S0 ≥ 0, P (0) = P0 ≥ 0,

IH (0) = IH
0 ≥ 0, IB (0) = IB

0 ≥ 0, C (0) = C0 ≥ 0,

T (0) = T0 ≥ 0, and TB (0) = TB
0 ≥ 0.

The objective functional is represented by

J(c1, c2, c3, c4, c5) =

∫ Tf

0

(

ϕ1IH + ϕ2IB + ϕ3C +
1

2

5
∑

i=1

φic
2
i

)

dt,

(13)

where Tf is the final time ϕ1, ϕ2 and ϕ3 are weight constants of

the HIV infected individuals, the HBV infected and the HIV and

HBV co-infected individuals respectively while φi for i = 1, ..., 5,

are weight constants for each individual time-dependent control

strategy. We choose a nonlinear cost on the control strategies based

on the assumption that the costs take nonlinear form as applied in

references (34, 36, 37).

The main objective in this section is to find the optimal control

strategies c∗1 , c
∗
2 , c

∗
3 , c

∗
4 , c

∗
5 subjected to Equation 12 such that

J
(

c∗1 , c
∗
2 , c

∗
3 , c

∗
4 , c

∗
5

)

= min {J (c1, c2, c3, c4, c5) : c1, c2, c3, c4, c5 ∈ c} , (14)

where c =
{

c1 (t) , c2 (t) , c3 (t) , c4 (t) , c5 (t) ∈ R
5
}

such that

c1 (t) , c2 (t) , c3 (t) , c4 (t) , c5 (t) are Lebesgue measurable

functions and 0 ≤ c1 (t) , c2 (t) , c3 (t) , c4 (t) , c5 (t) ≤ 1 for 0 ≤

t ≤ Tf is the control set. (15)

Theorem 4: Given the cost functional illustrated by

J (c1, c2, c3, c4, c5) subject to the system of Equation 13, then

there exist an optimal control function c∗ =
(

c∗1 , c
∗
2 , c

∗
3 , c

∗
4 , c

∗
5

)

and corresponding optimal solutions to the initial value

problem (Equations 12–15) with the model optimal solution
(

S∗, P∗, I∗H , I
∗
B, C

∗, T∗
B, T

∗
)

, that minimizes J (c1, c2, c3, c4, c5)

over c.

Proof: To verify the following four basic conditions required

for the set of admissible controls c we can use the Fleming and

Rishel’s theorem stated in (40).

I : The set of the model state variables to the system

(Equations 12–15) that correspond to the control functions in c

is non-empty.

II : The control set c is closed and convex.

III : Each right-hand side of the state system is continuous, is

bounded above by a sum of the bounded control and the state, and

can be written as a linear function of c = (c1, c2, c3, c4, c5) with

coefficients depending on time and the state.

IV : The integrand of the objective functional given in

Equation 13 is convex.

The first required condition (I) can be verified by using Picard-

Lindelöf ’s theorem. If the solutions to the co-infection dynamical

system equations solutions are bounded, continuous and satisfies

Lipschitz conditions in the model state variables, then there is a

unique model solution corresponding to each admissible control

function (strategy) in the control set c. We have proved that the

total number of human population at time t is bounded as 0 ≤

N(t) ≤ 5
d
also each of the model state variables is bounded. Hence

the model state variables are continuous and bounded. Similarly we

can prove the boundedness of the partial derivatives with respect to

the state variables in the model, which establishes that the model

is Lipschitz with respect to the co-infection model state variables.

This completes the verification that condition I holds.

By applying the definition stated in references (41–43),

the control set c is convex and closed, this proved the

required condition II. Condition III is verified by observing

the linear dependence of the model equations on the control

variables c1, c2, c3, c4, c5.

Eventually, to justify the required condition IV use definition

stated in (40, 43) that says any constant, linear and quadratic

functions are convex. Hence, since the integrand of the objective

functional given by T (x, c, t) = ϕ1IH + ϕ2IB + ϕ3C + 1
2φ1c

2
1 +

1
2φ2c

2
2 + 1

2φ3c
2
3 + 1

2φ4c
2
4 + 1

2φ5c
2
5 is a quadratic function that is

convex on c. To show the bound on T (x, c, t) use definition of the

control function c as: then we have 1
2φ5c

2
5 ≤ 1

2φ5 since 0 ≤ c5 ≤ 1

and hence 1
2ωϕ5c

2
5 −

1
2φ5 ≤ 0.

H⇒ T (x, c, t) = ϕ1IH + ϕ2IB + ϕ3C +
1

2
φ1c

2
1 +

1

2
φ2c

2
2

+
1

2
φ3c

2
3 +

1

2
φ4c

2
4 +

1

2
φ5c

2
5 ≥

1

2
φ1c

2
1 +

1

2
φ2c

2
2

+
1

2
φ3c

2
3 +

1

2
φ4c

2
4 +

1

2
φ5c

2
5 −

1

2
φ5.

H⇒ T (x, c, t) ≥ min{
1

2
φ1,

1

2
φ2,

1

2
φ3,

1

2
φ4,

1

2
φ5}

(c21 + c22 + c23 + c24 + c25)−
1

2
φ5.

H⇒ T (x, c, t) ≥ min{
1

2
φ1,

1

2
φ2,

1

2
φ3,

1

2
φ4,

1

2
φ5}

(
∣

∣c1, c2, c3, c4, c5)
∣

∣

2
)−

1

2
φ5.

H⇒ T (x, c, t) ≥ M1 |c|
β −M2, whereM1

= min{
1

2
φ1,

1

2
φ2,

1

2
φ3,

1

2
φ4,

1

2
φ5},M2 =

1

2
φ5,

c = (c1, c2, c3, c4, c5), and β = 2. This completes the proof of

Theorem 8 stated above.

The necessary conditions that an optimal solution must satisfy

come from Pontryagin’s minimum principle (PMP). This principle

converts (Equation 12–14) in to a problem of minimizing a

Hamiltonian, H with respect to c1, c2, c3, c4, c5 together with the

state equation and the adjoint condition.
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The Hamiltonian function is illustrated by

H = ϕ1IH + ϕ2IB + ϕ3C +
1

2
φ1c

2
1 +

1

2
φ2c

2
2 +

1

2
φ3c

2
3 +

1

2
φ4c

2
4

+
1

2
φ5c

2
5

+δ1((1− τ) 5 + πP
(

(1− c1(t))λH

+(1− c2 (t))λB + d
)

S)

+δ2(τ5 −
(

π + d
)

P)

+δ3((1− c1(t))λHS+ (1− π) νIH

−
(

η2λH + c3 (t) ξ2 + d2 + d
)

IH)

+δ4((1− c2(t))λBS+ κT −
(

η2λH + c4 (t) ξ 1 + d1 + d
)

IB)

+δ5(η1λBIH + η2λHIB + ρT
(

c5(t)φ3 + d3 + d
)

C)

+δ6(c3 (t) ξ 2IH + c5(t)ξ3C −
(

θ + d
)

T) (16)

+ δ7(c4 (t) φ1IB −
(

κ + d
)

T),

where δi, i = 1, . . . , 7 are the adjoint variables.

Theorem 5: For an optimal control set c1, c2, c3, c4, c5 that

minimizes J over c, there is an adjoint variables, δ1, ..., δ7 such that:

dδ1

dt
= (δ1 − δ3) (1− c1 (t))

(

β2 (IH (t) + ϑ2C (t))N − β1 (IH (t) + ϑ2C (t)) S

N2

)

+ (δ1 − δ4) (1− c2 (t))

(

β1 (IB (t) + ϑ1C (t))N − β1 (IB (t) + ϑ1C (t)) S

N2

)

+ δ1d + (δ5 − δ4)η1β1

(

IH (t) + ϑ2C (t)

N2

)

IB

+ (δ5 − δ3)η2 β1

(

IB (t) + ϑ1C (t)

N2

)

IH + δ1d,

dδ2

dt
= (δ2 − δ1) π + δ2d,

dδ3

dt
= (δ1 − δ3) (1− c1 (t))

(

β2SN − α1 (IH (t) + ϑ2C (t)) S

N2

)

+(δ4 − δ1)β1 (1− c2 (t)) (
(IB (t) + ϑ1C (t) ) S

N2
)+

+(δ4 − δ5)β2η1

(

N − (IH (t) + ϑ2C (t)) IB

N2

)

+ (2δ3 − δ5)β1η2

(

(IB (t) + ϑ1C (t))N − (IB (t) + ϑ1C (t)) IH

N2

)

+ (δ3 − δ6)c3(t)ξ2 + δ3(d2 + d − (1− π) ν)− ϕ1,

dδ4

dt
= (δ3 − δ1) (1− u1 (t)) β2

(IH (t) + ϑ2C (t)) S

N2

+ (δ1 − δ4) (1− u2 (t)) β1

(

NS− (IB (t) + ϑ1C (t)) S

N2

)

+ (δ4−δ5)η1β2

(

(IH (t) + ϑ2C (t))N − (IB (t) + ϑ2C (t)) IB

N2

)

+ (δ3 − δ5)η2β1

(

NIH − (IB (t) + ϑ1C (t)) IH

N2

)

+ (δ4 − δ7)c4 (t) ξ 1 + δ4(d1 + d)− ϕ2,

dδ5

dt
= (δ1 − δ3) (1− c1 (t)) β2

(

ϑ2NS− (IH (t) + ϑ2C (t)) S

N2

)

+ (δ1 − δ4) (1− c2 (t)) β1

(

ϑ1NS− (IB (t) + ϑ1C (t)) S

N2

)

+ (δ4 − δ5)η1β2

(

ϑ2NP − (IH (t) + ϑ2C (t)) IB

N2

)

+ (δ3 − δ5) η2β1

(

ϑ1NIH − (IB (t) + ϑ1C (t)) IH

N2

)

+ +(δ5 − δ6) c5(t)ξ3 + δ5(d3 + d)− ϕ3,

dδ6

dt
= (δ3 − δ1) (1− c1 (t)) β2

(IH (t) + ϑ2C (t)) S

N2

+ +(δ4 − δ1) (1− c2 (t)) β1
(IB (t) + ϑ1C (t)) S

N2

+ (δ5 − δ4)η1β2
(IH (t) + ϑ2C (t)) IB

N2

+ (δ5 − δ3) η2β1
(IB (t) + ϑ1C (t)) IH

N2

+ (δ6 − δ5)ρ + δ6d,

dδ7

dt
= [(δ3 − δ1)]β2

(IH (t) + ϑ2C (t)) S

N2

+ (δ4 − δ1) (1− c2 (t)) β1
(IB (t) + ϑ1C (t)) S

N2

+ (δ5 − δ4)η1β2
(IH (t) + ϑ2C (t)) IB

N2

+ (δ5 − δ3) η2β1
(IB (t) + ϑ1C (t)) IH

N2
+ (δ7 − δ4)σ + δ7d, (17)

with the final conditions δi(Tf ) = 0, for i = 1, . . . , 7.

Proof: Let us use the necessary and sufficient conditions

stated as

dδ1

dt
= −

∂H

∂S
,
dδ4

dt
= −

∂H

∂ IB
, (18)

dδ2

dt
= −

∂H

∂P
,
dδ

dt
= −

∂H

∂C
,

dδ3

dt
= −

∂H

∂IH
,
dδ6

dt
= −

∂H

∂T
, and

dδ7

dt
= −

∂H

∂ T
.

Then solving the results of Equation 18 the full expression

of the adjoint functions dδi
dt

for i = 1, 2, 3, 4, 5, 6, 7 of the

optimal control system (Equation 12) based on Equations 15, 16

are given by the system (Equation 17). This completes the proof of

the theorem.

Optimality Conditions: The first conditions that we will

consider from the Pontryagin’s Maximum/Minimum principle

applied in (44) are the minimization of the Hamiltonian H

with respect to the control functions c1, c2, c3, c4, c5. Since the

cost function is convex, if the optimal control occurs in the

interior region we must have the following basic necessary and

sufficient optimality conditions for the optimal control problem

(Equation 12) as:

∂H

∂c∗1
= 0,

∂H

∂c∗2
= 0,

∂H

∂c∗3
= 0,

∂H

∂c∗4
= 0, and

∂H

∂c∗5
= 0.

(19)

After solving and simplifying the results computed from

Equation 19 we have determined the final optimal control strategies

results given by:

c∗1 = max {0, min {1,
(δ3 − δ1)λHS

φ1
}},

c∗2 = max {0, min {1,
(δ4 − δ1)λBS

φ2
}},

c∗3 = max {0, min {1,
(δ3 − δ6)ξ 2IH

φ3
}}, (20)

c∗4 = max {0, min{1,
(δ4 − δ7)ξ 1IB

φ4
}},

c∗5 = max {0, min {1,
(δ5 − δ6)ξ 3IBC

φ5
}}.

Theorem 6: For any t ∈ [0, Tf ], the bounded solutions

(Equation 20) to the optimality system are unique, and we can refer

to (42), for the proof of the theorem.

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1444911
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Teklu and Workie 10.3389/fpubh.2024.1444911

Results and discussions

In this subsection, we simulate the optimal control system

(Equation 12) using the Runge–Kutta fourth order forward-

backward sweep method with MATLAB, whose accuracy,

convergence, and stability have been proved by Lenhart and

Worksman (47) and taking into consideration seven possible

combination control strategies presented below. The RK4

technique evaluates the derivative function at several intermediate

points within the step interval in order to determine the values

of the dependent variables at each step. To obtain an estimation

of the derivative at the currrent stage, it then weights averages

these intermediate evaluations. The dependent variable values

are updated using this estimate, and the process is repeated

iteratively until the intended endpoint is reached. By considering

multiple intermediate evaluations, the RK4 method provides

a more accurate approximation compared to other simple

numerical methods, making it a popular choice for numerical

ODE integration. Numerical simulations of the optimal control

problem (Equation 12), a critical aspect of this manuscript,

offering a computational approach to solve complex systems

where analytical solutions are often impractical. Optimal control

requires determining the best control inputs over time to achieve

a desired objective while adhering to constraints. Moreover,

numerical simulations of the optimal control problem enhance

the manuscript by providing insights into the system dynamics,

performance optimization, and the robustness of control strategies

across various applications. The inclusion of an optimal control

framework in the research is of paramount significance, as it

introduces five controls designed to manage the dynamics of

HBV and HIV co-infection. These controls include strategies

to prevent HBV and HIV infections, improve recovery from

infection, and provide treatment for co-infected individuals.

The section focuses on the critical importance of these control

strategies, both collectively and individually, underscoring their

role in shaping effective approaches to address the complexities

of HBV and HIV co-infection dynamics. To verify the effect of

the proposed control strategies and verify the analytical results

of the optimal control problem (Equation 12), we carried out a

numerical simulation by considering the following equal weight

factors, with the assumptions of different initial population for

the state variables along with the parameter values described in

Table 2, such that ϕ1 = ϕ2 = ϕ3 = 10, φ1 = φ2 = φ3 = 15.

We proposed the following control strategies with five different

scenarios by:

(i). Scenario A (using one control measure only):

Strategy 1: Applying c1 6= 0, c2 = c3 = c4 = c5 = 0,

Strategy 2: Applying c2 6= 0, c1 = c3 = c4 = c5 = 0,

Strategy 3: Applying c3 6= 0, c1 = c2 = c4 = c5 = 0,

Strategy 4: Applying c4 6= 0, c1 = c2 = c3 = c5 = 0,

Strategy 5: Applying c5 6= 0, c1 = c2 = c3 = c4 = 0.

(ii). Scenario B (using two control measures):

Strategy 6: Applying c1 6= 0, c2 6= 0, c3 = c4 = c5 = 0,

Strategy 7: Applying c1 6= 0, c3 6= 0, c2 = c4 = c5 = 0,

Strategy 8: Applying c1 6= 0, c4 6= 0, c2 = c3 = c5 = 0,

Strategy 9: Applying c1 6= 0, c5 6= 0, c2 = c3 = c4 = 0,

Strategy 10: Applying c2 6= 0, c3 6= 0, c1 = c4 = c5 = 0,

Strategy 11: Applying c2 6= 0, c4 6= 0, c1 = c3 = c5 = 0,

Strategy 12: Applying c2 6= 0, c5 6= 0, c1 = c3 = c4 = 0,

Strategy 13: Applying c3 6= 0, c4 6= 0, c1 = c2 = c5 = 0,

Strategy 14: Applying c3 6= 0, c5 6= 0, c1 = c2 = c4 = 0,

Strategy 15: Applying c4 6= 0, c5 6= 0, c1 = c2 = c3 = 0.

(iii). Scenario C (using three control measures):

Strategy 16: Applying c1 6= 0, c2 6= 0, c3 6= 0, c4 = c5 = 0,

Strategy 17: Applying c1 6= 0, c2 6= 0, c4 6= 0, c3 = c5 = 0,

Strategy 18: Applying c1 6= 0, c2 6= 0, c5 6= 0, c3 = c4 = 0,

Strategy 19: Applying c1 6= 0, c3 6= 0, c4 6= 0, c2 = c5 = 0,

Strategy 20: Applying c1 6= 0, c3 6= 0, c5 6= 0, c2 = c4 = 0,

Strategy 21: Applying c1 6= 0, c4 6= 0, c5 6= 0, c1 = c3 = 0,

Strategy 22: Applying c2 6= 0, c3 6= 0, c4 6= 0, c1 = c5 = 0,

Strategy 23: Applying c2 6= 0, c3 6= 0, c5 6= 0, c2 = c4 = 0,

Strategy 24: Applying c2 6= 0, c4 6= 0, c5 6= 0, c1 = c3 = 0,

Strategy 25: Applying c3 6= 0, c4 6= 0, c5 6= 0, c1 = c2 = 0.

(iv). Scenario D (using four control measures):

Strategy 26: Applying c1 6= 0, c2 6= 0, c3 6= 0, c4 6= 0, c5 = 0,

Strategy 27: Applying c1 6= 0, c2 6= 0, c3 6= 0, c5 6= 0, c4 = 0,

Strategy 28: Applying c1 6= 0, c3 6= 0, c4 6= 0, c5 6= 0, c2 = 0,

Strategy 29: Applying c1 6= 0, c2 6= 0, c4 6= 0, c5 6= 0, c3 = 0,

Strategy 30: Applying, c2 6= 0, c3 6= 0, c4 6= 0, c5 = 0, c1 = 0.

(v). Scenario E (using five control measures):

Strategy 31: Applying c1 6= 0, c2 6= 0, c3 6= 0, c4 6= 0, c5 6= 0.

Simulations for Scenario A

The simulation curve shown in Figure 3A suggests the impact

of the control measure c1 (i.e., the potential impact of implementing

the HIV protection control mechanism), emphasizing a significant

reduction of the HBV andHIV co-infected population as compared

to a scenario where there is no control mechanism implemented.

The simulation curve illustrated in Figure 3B shows the impact of

the control measure c2 (i.e., the possible impact of implementing

the HBV protection control mechanism) emphasizing a significant

reduction of the HBV andHIV co-infected population as compared

to a scenario where there is no control mechanism implemented.

The simulation curve illustrated in Figure 3C shows the impact of

the control measure c3 (i.e., the possible impact of implementing

the HIV treatment control mechanism), emphasizing a significant

reduction in the HBV andHIV co-infected population as compared

to a scenario where there is no control mechanism implemented.

The simulation curve illustrated in Figure 3D shows the impact

of the control strategy c4 (i.e., impact of implementing the HBV

treatment control mechanism), emphasizing a significant reduction

in the HBV and HIV co-infected population as compared to a

scenario where there is no control mechanism implemented. The

simulation curve illustrated in Figure 3E shows the impact of the

control measure c5 (i.e., the possible impact of implementing the

HBV and HIV treatments control mechanisms) emphasizing a

significant reduction of the HBV and HIV co-infected population

as compared to a scenario where there is no control mechanism

implemented. When comparing the simulation results of the

implementation of single control strategies, it has been observed

that Strategies 1 (i.e., implementing protection against HBV

infection) and 5 (i.e., implementing the treatment strategy for the

HBV and HIV co-infection) poses high potential impact to reduce
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FIGURE 3

Potential impact of single strategies on the HBV and HIV co-infection disease. (A) Impact of HIV protection on the co-infection. (B) Impact of HBV

protection on the co-infection. (C) Impact of HIV treatment on the co-infection. (D) Impact of HBV treatment on the co-infection. (E) Impact of

simultaneous HBV and HIV treatments on the co-infection.

and control the spread of the HBV and HIV co-infection disease

spreading in the community.

Simulations of Scenario B

The simulation curve illustrated in Figures 4A–J show the

possible impacts of implementing double control strategies

from Strategy 6-Strategy 15 (i.e., the possible impact of

implementing both the HBV and HIV protections control

mechanisms c1 and c2 simultaneously, the HIV protection and

HIV treatment control mechanisms c1 and c3 simultaneously,

the HIV protection and HBV treatment control mechanisms

c1 and c4 simultaneously, the HIV protection and co-infection

treatment control mechanisms c1 and c5 simultaneously, the

HBV protection and HIV treatment control mechanisms c2
and c3 simultaneously, the HBV protection and HBV treatment

control mechanisms c2 and c4 simultaneously, the HBV protection

and co-infection treatment control mechanisms c2 and c5
simultaneously, the HIV treatment and HBV treatment control

mechanisms c3 and c4 simultaneously, the HIV treatment

and co-infection treatment control mechanisms c3 and c5
simultaneously, and the HBV treatment and co-infection

treatment control mechanisms c4 and c5 simultaneously,

respectively) emphasizing a significant reduction of the HBV

and HIV co-infected population as compared to a scenario

implemented in Figures 3A–E and where there is no control

mechanism implemented.
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FIGURE 4

Impacts of double control strategies on the HBV and HIV co-infection spreading. (A) Impact of both HBV and HIV protections on the co-infection.

(B) Impact of HIV protection and HIV treatment on the co-infection. (C) Impact of HIV protection and HBV treatment on the co-infection. (D) Impact

of HIV protection and co-infection treatment on the co-infection. (E) Impact of HBV protection and HIV treatment on the co-infection. (F) Impact of

HBV protection and HBV treatment on the co-infection. (G) Impact of HBV protection and co-infection treatment on the co-infection. (H) Impact of

both HIV and HBV treatments on the co-infection. (I) Impact of HIV and co-infection treatment on the co-infection. (J) Impact of HBV treatment and

co-infection treatment on the co-infection.

Simulations for Scenario C

The simulation curve illustrated in Figures 5A–J shows the

possible impacts of implementing triple control strategies from

Strategy 16–Strategy 25 (i.e., the possible impact of implementing

c1 6= 0, c2 6= 0, c3 6= 0, c4 = c5 = 0 simultaneously, c1 6= 0,

c2 6= 0, c4 6= 0, c3 = c5 = 0 simultaneously, c1 6= 0,

c2 6= 0, c5 6= 0, c3 = c4 = 0 simultaneously, c1 6= 0, c3 6=

0, c4 6= 0, c2 = c5 = 0 simultaneously, c1 6= 0, c3 6= 0, c5 6=

0, c2 = c4 = 0 simultaneously, c1 6= 0, c4 6= 0, c5 6= 0, c1 =
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c3 = 0 simultaneously, c2 6= 0, c3 6= 0, c4 6= 0, c1 = c5 =

0 simultaneously, c2 6= 0, c3 6= 0, c5 6= 0, c2 = c4 = 0

simultaneously, c2 6= 0, c4 6= 0, c5 6= 0, c1 = c3 = 0 simultaneously,

and c3 6= 0, c4 6= 0, c5 6= 0, c1 = c2 = 0 simultaneously),

respectively suggests and emphasizing a significant reduction of the

HBV and HIV co-infected population as compared to a scenario

implemented in Figures 3A–E, 4A–J, and where there is no control

mechanism implemented. By comparing the simulation results

of the implementation of each proposed triple control strategies

simultaneously, we observed and suggested that Strategies 18, 21,

and 24 have more potential to reduce and control the HBV and

HIV co-infection disease spreading in the community.

Simulations for Scenario D

The simulation curve illustrated in Figures 6A–E shows the

impact of implementing quintuple control strategies from Strategy

26 to Strategy 30 (i.e., impact of implementing c1 6= 0, c2 6= 0, c3 6=

0, c4 6= 0, c5 = 0 simultaneously, the HIV protection and HIV

treatment control mechanisms c1 and c3 simultaneously, c1 6= 0,

c2 6= 0, c3 6= 0, c5 6= 0, c4 = 0 simultaneously, c1 6= 0, c3 6= 0, c4 6=

0, c5 6= 0, c2 = 0 simultaneously, c1 6= 0, c2 6= 0, c4 6= 0, c5 6= 0,

c3 = 0 simultaneously, and c2 6= 0, c3 6= 0, c4 6= 0, c5 6= 0, c1 =

0 simultaneously, respectively) shows a significant reduction of the

HBV and HIV co-infected population as compared to a scenario

implemented in Figures 3A–E, 4A–J, 5A–J, and where there is

no control mechanism implemented. Comparing the simulation

results of the implementation of quintuple control strategies

simultaneously we observed that Strategies 1 (i.e., implementing

protection against HBV infection) and 30 (i.e., implementing all

the treatment strategies and the HBV protection measure) have

great potential impact to reduce and control the HBV and HIV

co-infection disease spreading in the community.

Simulations for Scenario E

The simulation curve illustrated in Figure 7 shows the potential

impact of Control Strategy 31 (i.e., the impact of implementing all

five proposed control mechanisms simultaneously), emphasizing a

significant reduction of the HBV and HIV co-infected populations

as compared to the control strategies illustrated in scenarios A,

B, C, and D and given in Figures 3–6, respectively, where there is

no control mechanism implemented. Therefore, we observed that

Strategy 31 has more potential to reduce and control the HBV and

HIV co-infection disease spreading in the community.

Cost-e�ectiveness analysis of the optimal
control problem

In this part, we carried out an analysis of the optimal control

strategies cost-effectiveness, investigate, and compare the potential

cost benefits for the control strategies that are incorporated in

the optimal control problem of the study. The cost-effectiveness

analysis of the implemented control strategies is performed by

using the same approach outlined in reference (39), namely the

incremental cost-effectiveness ratio (ICER). The mathematical

formula to compute this result is defined by

ICER =
Change in total costs in strategies A and B

Change in control benefits in strategies A and B
,

where ICER numerator includes the differences in addiction

averted costs, costs of protected cases, treatment costs, among

others.While the denominator of ICER accounts for the differences

in health outcomes, including the total number of infected cases

averted or the total number of susceptibility cases protected. The

criteria used to evaluate the cost-effectiveness of different infection

control measures are analyzed the cost-effectiveness by ranking the

control strategies in increasing order of effectiveness in terms of

the number of infected averted and leaving the strategy with the

dominant ICER value. Therefore, in this section of the study, we

performed the cost-effectiveness analysis based on the numerical

simulations of the optimal control problem (Equation 12). Thus,

similar approach used in several previous studies like (39, 46),

the incremental cost-effectiveness ratio (ICER) is calculated to

determine the potential cost-effectiveness of all the different control

intervention strategies considered in this study. According to

the numerical simulation results of the optimal control problem

(Equation 12), from the 31 control strategies grouped by five

scenarios, namely, Scenario A, Scenario B, Scenario C, Scenario D,

and Scenario E, respectively implementing each of the strategies in

a given scenario are possibly ranked in ascending order with respect

to the total number of infections averted, as shown in Table 4.

Cost-e�ectiveness for Scenario A

Here, ICER is computed for the controlling strategies 4 and 3

in order to compare the two comparative strategies incrementally

determined as:

ICER (Strategy 4) =
0.041× 103

6.0015× 107
= 6.8163× 10− 7,

ICER (Strategy 3) =
0.069× 103 − 0.041× 103

6.0329× 107 − 6.0015× 107
= 8.9172× 10− 5,

ICER (Strategy 5) =
0.33× 103 − 0.069× 103

6.1242× 107 − 6.0329× 107
= 2.8587× 10− 4,

ICER (Strategy 2) =
1.12× 103 − 0.33× 103

2.0309× 108 − 6.1242× 107
= 5. 5693× 10− 6,

ICER (Strategy 1) =
0.74× 103 − 1.12× 103

2.1712× 108 − 2.0309× 108
= −2.7084× 10− 5,

The analysis in Table 4 revealed that the ICER of Strategy 3

is higher than the ICER of Strategy 4, showing that Strategy 3

is more costly and has lower effectiveness compared with other

strategies. Because the strategy was too expensive and less effective,

we excluded other alternative strategies that were competing for

limited resources, resulting in the re-computed ICER for Strategies

4 and 5.

Based on the data presented in Table 5, we determined that

Strategy 5 should be eliminated as its ICER value was higher than

that of Strategy 4. Table 6 shows the results of the computation we

performed to compare Strategies 4 and 2.
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FIGURE 5

Impacts implementing triple of control Strategies on the HIV and HBV co-infection spreading. (A) Impact of Strategy 16 on the co-infection

spreading. (B) Impact of Strategy 17 on the co-infection spreading. (C) Impact of Strategy 18 on the co-infection spreading. (D) Impact of Strategy 19

on the co-infection spreading. (E) Impact of Strategy 20 on the co-infection spreading. (F) Impact of Strategy 21 on the co-infection spreading. (G)

Impact of Strategy 22 on the co-infection spreading. (H) Impact of Strategy 23 on the co-infection spreading. (I) Impact of Strategy 24 on the

co-infection spreading. (J) Impact of Strategy 25 on the co-infection spreading.

We have eliminated Strategy 2 and proceeded with the

procedures to compare Strategies 4 and 1, as shown in Table 7.

The results shown in Table 6 indicate that Strategy 2 is more

cost-effective than Strategy 4.

Since Strategy 1 exceeds Strategy 4 in terms of cost,

as indicated by the result shown in Table 7, we eliminated

Strategies 1 and 4, which have high potential cost-effectiveness in

scenario A.
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FIGURE 6

Impact of implementing quadruple strategies simultaneously on the co-infection. (A) Impact of Strategy 26 on the co-infection. (B) Impact of

Strategy 27 on the co-infection. (C) Impact of Strategy 28 on the co-infection. (D) Impact of Strategy 29 on the co-infection. (E) Impact of Strategy

30 on the co-infection.

FIGURE 7

Impact of all the proposed control measures on the co-infection.

Cost-e�ectiveness for Scenario B

After the detailed computations of ICER by using the same

criteria applied in Scenario A above for all the ten possible

TABLE 4 Number of infections averted for Strategies 1–5 in an increasing

order.

Strategy Total number of
infections
averted

Total cost
(in USD $)

ICER

Strategy 4 6.0015×107 0.041×103 6.8163× 10−7

Strategy 3 6.0329×107 0.069×103 8.9172× 10−5

Strategy 5 6.1242×107 0.33×103 2.8587× 10−4

Strategy 2 2.0309×108 1.12×103 5. 5693× 10−6

Strategy 1 2.1712×108 0.74×103 −2.7084× 10−5

control strategies described in Scenario B at the last step of the

computations we obtained the result given in Table 8.

From the result given in Table 8, we eliminated Strategy 8 since

the ICER (Strategy 8) is bigger than the ICER (Strategy 15), and

we found that Strategy 15 has the highest cost-effectiveness of

all the proposed control strategies described in scenario B above.

After the detailed computations of ICER by using the same criteria

applied in Scenario A above for all the ten possible control strategies

described in Scenario B, and after the last step of the computations,

we obtained the result given in Table 9.
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TABLE 5 Comparison of Strategies 4 and 5.

Strategy Total number of
infections
averted

Total cost
(in USD $)

ICER

Strategy 4 6.0015×107 0.041×103 6.8163× 10−7

Strategy 5 6.1242×107 0.33×103 2.3635× 10−4

Strategy 2 2.0309×108 1.12×103 5. 6211× 10−6

Strategy 1 2.1712×108 0.74×103 −2.7084× 10−5

TABLE 6 Comparison of Strategies 4 and 2.

Strategy Total number of
infections
averted

Total cost
(in USD $)

ICER

Strategy 4 6.0015×107 0.041×103 −7.5248× 10−5

Strategy 2 2.0309×108 1.12×103 5. 5693× 10−6

Strategy 1 2.1712×108 0.74×103 −2.7084× 10−5

TABLE 7 Comparison of Strategies 4 and 1.

Strategy Total Number of
infections
averted

Total cost
(in USD $)

ICER

Strategy 4 6.0015×107 0.041×103 −7.5248× 10−5

Strategy 1 2.1712×108 0.74×103 4.4493× 10−5

TABLE 8 Comparison of Strategies 15 and 8.

Strategy Total number of
infections
averted

Total cost
(in USD $)

ICER

Strategy 15 6.3354×108 0.235×103 3.709× 10−7

Strategy 8 7.6120×108 0.570×103 2.6241× 10−6

TABLE 9 Comparison of Strategies 24 and 21.

Strategy Total number of
infections
averted

Total cost
(in USD $)

ICER

Strategy 24 4.3354×108 0.3110×103 7.11735× 10−7

Strategy 21 5.6120×108 0.4230×103 28.7733× 10−7

From the result given in Table 9 we eliminated Strategy 21 since

the ICER (Strategy 21) is bigger than the ICER (Strategy 24), and

we found that Strategy 24 is the most cost-effective strategy of all

the proposed control strategies described in scenario C above.

Cost-e�ectiveness for Scenario D

In Table 10, the ICER is computed for the controlling Strategies

29 and 30 in order to compare the two comparative strategies,

and the analysis in Table 10 revealed that the ICER of Strategy

30 is higher than the ICER of Strategy 29, showing that Strategy

30 is more costly and less effective. Because the strategy was too

TABLE 10 Number of infections averted for Strategies 26–30 in an

increasing order.

Strategy Total number of
infections
averted

Total cost
(in USD $)

ICER

Strategy 29 6.0039×107 0.045×103 6.8316× 10−8

Strategy 30 6.0329×107 0.072×103 9.8726× 10−6

Strategy 28 6.1242×107 0.45×103 4.1402× 10−4

Strategy 27 2.0309×108 1.34×103 6.2760× 10−7

Strategy 26 2.1712×108 1.87×103 3.776× 10−4

TABLE 11 Comparison of Strategies 29 and 28.

Strategy Total number of
infections
averted

Total cost
(in USD $)

ICER

Strategy 29 6.0039×107 0.045×103 6.8316× 10−8

Strategy 28 6.1242×107 0.45×103 4.1402× 10−4

Strategy 27 2.0309×108 1.34×103 6.2760× 10−7

Strategy 26 2.1712×108 0.87×103 −3.3499× 10−5

TABLE 12 Comparison of Strategies 29 and 27.

Strategy Total number of
Infections
Averted

Total cost
(in USD $)

ICER

Strategy 29 6.0039×107 0.045×103 6.8316× 10−8

Strategy 27 2.0309×108 1.34×103 9.0791× 10−6

Strategy 26 2.1712×108 0.87×103 −3.3499× 10−5

expensive and less effective, we excluded other alternative strategies

that were competing for limited resources, resulting in the re-

computed ICER for Strategies 29 and 28.

We employed a similar methodology, and based on the data

presented in Table 11, we determined that Strategy 28 should be

removed because its ICER value was higher than that of Strategy

29. Table 12 shows the results of the computation we conducted to

compare Strategies 29 and 27.

As shown in Table 12, we have eliminated Strategy 27 and

proceeded with the procedures to compare Strategies 29 and

26. Strategy 29 is more cost-effective than Strategy 27. Table 13

shows the outcomes of the computation we conducted to compare

Strategies 29 and 26.

Since Strategy 26 exceeds Strategy 28 in terms of cost, as

indicated by the result shown in Table 13, we eliminated Strategies

26 and 29 as the most cost-effective strategies in scenario D.

Cost-e�ectiveness for Scenario E

From Table 14, it has been observed that Strategy 31 is the only

control strategy given in Scenario E, and it is the most cost-effective

strategy in Scenario E described above.
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TABLE 13 Comparison of Strategies 29 and 26.

Strategy Total number of
infections
averted

Total cost
(in USD $)

ICER

Strategy 29 6.0039×107 0.045×103 6.8316× 10−8

Strategy 26 2.1712×108 0.87×103 5.2772× 10−6

TABLE 14 Strategy 31.

Strategy Total number of
infections
averted

Total cost
(in USD $)

ICER

Strategy 31 5.1732×107 2.5273×103 4.8853× 10−6

TABLE 15 Comparison between control intervention Strategies 31 and 4.

Strategy Total number of
infections
averted

Total cost
(in USD $)

ICER

Strategy 31 5.1732×107 2.5273×103 4.8853×10−5

Strategy 4 6.0015×107 0.041×103 −3.0013×10−4

Strategy 29 6.0039×107 0.045×103 1.6667×10−4

Strategy 24 4.3354×108 0.3110×103 7.1218×10−7

Strategy 15 6.3354×108 0.235×103 −3.800×10−7

In Table 15, we have collected each of the control strategies

having high potential from Scenario A, Scenario B, Scenario C,

Scenario D, and Scenario E, respectively, described above, and

computed the control strategy having great potential as compared

with other possible strategies used to reduce and control the HIV

and HBV co-infection spreading in the community.

Cost-e�ectiveness for the collected
cost-e�ective strategies from each
scenario

From the ICER values computed in Table 15, it is observed that

Strategy 31 exceeded the Strategy 4 in terms of cost, as indicated by

the result shown in Table 15. This implies that the implementation

of Strategy 31 will be more costly and less effective than the

implementation of Strategy 4. Hence, Strategy 31 is eliminated

from the list of alternative control intervention strategies that are

competing for the same limited resources. Next, the ICER is finally

recalculated for Strategies 4 and 29, as shown in Table 16.

From the ICER values computed in Table 16, we observed that

Strategy 29 exceeds Strategy 4 in terms of cost, as indicated by

the result shown in Table 16. This implies that the implementation

of Strategy 29 is more costly and less effective than the

implementation of Strategy 4. Hence, Strategy 29 is eliminated from

the list of alternative control intervention strategies competing for

the same limited resources. Next, the ICER is finally recalculated

for Strategies 4 and 24, as shown in Table 17.

From the ICER values computed in Table 17, we observed that

Strategy 24 exceeds Strategy 4 in terms of cost, as indicated by

TABLE 16 Comparison between control intervention Strategies 4 and 29.

Strategy Total number of
infections
averted

Total cost
(in USD $)

ICER

Strategy 4 6.0015×107 0.041×103 6.8316×10−7

Strategy 29 6.0039×107 0.045×103 1.6667×10−4

Strategy 24 4.3354×108 0.3110×103 7.1218×10−7

Strategy 15 6.3354×108 0.235×103 −3.800×10−7

TABLE 17 Comparison between control intervention Strategies 4 and 24.

Strategy Total number of
infections
averted

Total cost
(in USD $)

ICER

Strategy 4 6.0015×107 0.041×103 6.8316×10−7

Strategy 24 4.3354×108 0.3110×103 7.2284×10−7

Strategy 15 6.3354×108 0.235×103 −3.800×10−7

TABLE 18 Comparison between control intervention Strategies 4 and 24.

Strategy Total number of
infections
averted

Total cost
(in USD $)

ICER

Strategy 4 6.0015×107 0.041×103 6.8316×10−7

Strategy 15 6.3354×108 0.235×103 3.3826×10−7

the result shown in Table 17. This implies that the implementation

of Strategy 24 is more costly and less effective than the

implementation of Strategy 4. Hence, Strategy 24 is eliminated from

the list of alternative control intervention strategies competing

for the same limited resources. Next, the ICER is then finally

recalculated for Strategies 4 and 15, as shown in Table 18.

From the ICER values computed in Table 18, it is observed

that Strategy 4 exceeds the Strategy 15 in terms of cost, as

evidenced by the result shown in Table 18. This implies that the

implementation of Strategy 4 is more costly and less effective than

the implementation of Strategy 15. Hence, Strategy 4 has removed

from the list of alternative control intervention strategies that

are competing for the same limited resources. We observed that

Strategy 15 [i.e., implementing HBV treatment and the HIV and

HBV co-infection treatment measures (c4 6= 0, c5 6= 0, c1 = c2 =

c3 = 0) simultaneously] has a high potential for cost-effectiveness

among all the 30 proposed control strategies that shall be used to

reduce and control the HIV and HBV co-infection spreading in the

community under consideration.

Conclusions and future directions

In this study, we formulated and rigorously analyzed a

compartmental model of the HBV and HIV co-infection disease

spreading with optimal control theory and cost-effectiveness.

In the methods section of the study, the qualitative analyses

of the HBV and HIV co-infection model were formulated to

investigate the positivity and boundedness of the model solutions,
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the stability and bifurcation analyses of model equilibrium points,

the sensitivity analyses of the co-infection model parameters, and

the optimal control problem with time-dependent optimal control.

The HBV and HIV co-infection model effective reproduction

number (RHB) of the model was obtained based on the method of

the next-generation matrix. The proposed model has two unique

equilibrium points: one is the co-infection model disease-free

equilibrium point denoted by E0BH , and the other is the disease

endemic equilibrium point denoted by (E∗BH). The local asymptotic

stability of the disease-free equilibrium point is investigated by

applying the Routh-Hurwiz local stability conditions. The global

asymptotic stability of the model’s equilibrium is examined using

Castillo-Chavez and Song conditions wheneverRHB < 1. The

possibility of backward bifurcation has been verified using Castillo-

Chavez and Song conditions wheneverRHB < 1, and the result

shows the co-infection dynamical system (4) does not exhibit

bifurcation in the backward direction. This result suggests that

the co-infection disease can be eradicated from the population

wheneverRHB < 1. The sensitivity analyses of the co-infection

model parameters have been carried out. By proposing five

time-dependent controlling strategies and applying Pontryagin’s

Maximum Principle, we formulated and analyzed an optimal

control problem of the co-infection dynamical system (4). In

the results and discussion section, we conducted a numerical

simulation of the optimal control problem, verified its qualitative

properties, and carried out the cost-effectiveness analysis of

different combinations of the proposed controlling strategies.

For the numerical simulation of the model, we used a well-

known and more efficacious numerical scheme known as the

classical Runge–Kutta fourth order (RK4) methods. The numerical

outcomes are discussed in the results and discussion section.

From the findings of the study we can suggest that implementing

all the proposed controlling strategies simultaneously has a

great potential to reduce and control the HBV and HIV

co-infection spreading in the community. However, a cost-

effectiveness analysis found that Strategy 15 [i.e., implementing

HBV treatment and the HIV and HBV co-infection treatment

measures (c4 6= 0, c5 6= 0, c1 = c2 = c3 = 0

simultaneously)] has the highest potential of cost-effectiveness

among all other 30 proposed control strategies to reduce and

control the HIV andHBV co-infection spreading in the community

under consideration.

Since formulating a mathematical model is not exhaustive by

itself, therefore there are several limitations in the proposed HIV

and HBV co-infection model construction process. Some of the

limitations of this study are: the model did not consider the well-

known infection stages of both the HIV andHBV diseases, the HBV

vaccination did not consider, and the study did not incorporate

real data. Therefore, potential researchers could modify this study

by incorporating the stochastic approach, the fractional order

approach, the age structure of individuals, theHBV infection stages,

and the environmental factors, and validate the model with real

data collected from the study area.
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