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This retrospective study used 10 machine learning algorithms to predict the risk 
of healthcare-associated infections (HAIs) in patients admitted to intensive care 
units (ICUs). A total of 2,517 patients treated in the ICU of a tertiary hospital 
in China from January 2019 to December 2023 were included, of whom 455 
(18.1%) developed an HAI. Data on 32 potential risk factors for infection were 
considered, of which 18 factors that were statistically significant on single-
factor analysis were used to develop a machine learning prediction model 
using the synthetic minority oversampling technique (SMOTE). The main HAIs 
were respiratory tract infections (28.7%) and ventilator-associated pneumonia 
(25.0%), and were predominantly caused by gram-negative bacteria (78.8%). The 
CatBoost model showed good predictive performance (area under the curve: 
0.944, and sensitivity 0.872). The 10 most important predictors of HAIs in this 
model were the Penetration Aspiration Scale score, Braden score, high total 
bilirubin level, female, high white blood cell count, Caprini Risk Score, Nutritional 
Risk Screening 2002 score, low eosinophil count, medium white blood cell 
count, and the Glasgow Coma Scale score. The CatBoost model accurately 
predicted the occurrence of HAIs and could be used in clinical practice.
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1 Introduction

The prevalence of healthcare-associated infections (HAIs) in intensive care units (ICUs) 
remains high owing to the use of invasive procedures (1), prolonged antibiotic use, and critical 
patient conditions, having a negative impact on quality of life and healthcare costs (2–5). Early 
identification and quantification of the risk of HAIs, coupled with timely interventions, are 
critical for reducing the incidence of HAIs and improving patient outcomes (6). Machine 
learning (ML) technology has emerged as a useful tool among healthcare professionals for 
predicting prognosis and making treatment decisions. Use of ML applications in ICU research 
has shown a 22.2% improvement in predicting complications (7). Although existing research 
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often relies on hospitalization data for infection prediction, early 
initiation of infection control measures is important to improving 
patient outcomes (8–10). This study aimed to use indicators collected 
within 24 h of admission to the ICU using ML technology to develop 
infection prediction models with an earlier predictive window. 
Notably, the enhanced predictability of ML models, albeit at the 
expense of interpretability, makes it a reliable tool for predicting 
specific medical conditions.

Previous studies have used ML techniques to refine risk prediction 
in the healthcare context. Within ICUs, the Simplified Acute 
Physiology Score (SAPS) II has shown moderate accuracy for 
predicting HAIs and 7-day mortality (11). However, combining SAPS 
II with additional patient characteristics using support vector machine 
algorithms increased the predictive accuracy for both outcomes (12). 
In the neonatal ICU, a generalized mixed-effects regression tree with 
random intercept (GMERT-RI) model identified key predictors of 
HAIs, highlighting the importance of healthcare-associated factors in 
addition to neonate-specific factors (13). These findings highlight the 
potential of ML models to refine risk prognostication in critical care 
environments and facilitate targeted interventions to improve 
patient outcomes.

Early identification of HAI risk, enables early intervention; 
however, relatively few studies have focused on predicting HAIs using 
data collected within 24 h of ICU admission. This retrospective study 
used data from patients admitted to the ICU, focusing on the clinical 
characteristics of patients who developed infections during 
hospitalization. Multiple ML techniques were used to develop 
infection prediction models, leading to the development of a 
comprehensive model for training. These models identified significant 
predictors and key determinants which can be used the help healthcare 
professionals in the early identification of infection risk among 
patients admitted to ICUs, facilitating timely intervention.

2 Methods

2.1 Study participants

The study participants were patients admitted to the ICU of a 
tertiary grade A comprehensive hospital in China between January 2019 
and December 2023, with a total of 3,173 patients. We retrospectively 
analyzed the patients’ demographic characteristics, blood test results, 
nursing scores, and invasive clinical procedures within 24 h of 
admission. The data on patient demographics and invasive clinical 
procedures were extracted from the infection information monitoring 
system of Xinglin Hospital, blood markers were extracted from the 
Ruimei laboratory management system, and nursing scores were 
extracted from the intensive care information system.

The inclusion criteria were: 1. ICU admissions between January 
2019 and December 2023; 2. Hospital stays exceeding 48 h; 3. The data 
within 24 h of ICU admission; 4. Infection-related data including 
occurrence, site, and pathogens throughout the hospitalization period. 
According to the “HAIs Diagnosis Criteria (Trial)” (14) in China, HAIs 
that occur in the hospital without a clear incubation period are 
classified as HAIs if they manifest 48 h or more after admission. 
Consequently, the 48-h timeframe serves as a critical criterion for 
identifying hospital infections. This study focused on patients who were 
admitted to the ICU for more than 48 h, in adherence to this guideline.

The exclusion criteria were: 1. Exclusion of colonization, community-
acquired infections, and contamination in infection diagnoses (N = 21); 
2. Exclusion of patients with disputed infection diagnoses (N = 5); 3. 
Exclusion of patients not discharged by December 31, 2023 (N = 25); 4. 
Data incompleteness within 24 h of ICU admission exceeds 5.0% 
(N = 23). Infection diagnosis adhered to the “HAIs Diagnosis Criteria 
(Trial)” (14) standard, considering the detection of the same pathogen at 
the same site in the same patient during hospitalization as one infection.

Following screening, the study encompassed a total of 2,517 cases, 
including 455 instances of HAIs.

2.2 Data collection

The data included 32 factors though to be relevant to predicting the 
infection risk among ICU patients. The patient characteristics included 
gender, age, and diabetes status. Blood test results included white blood 
cell (WBC) count, neutrophil count, monocyte count, lymphocyte 
count, eosinophil count, basophil count, red blood cell (RBC) count, 
hemoglobin level, RBC distribution width, hematocrit, mean corpuscular 
hemoglobin, mean corpuscular hemoglobin concentration, mean 
corpuscular volume, platelet count, C-reactive protein level, glucose 
level, albumin level, and total bilirubin level. The nursing scores consisted 
of the Braden score, Nutritional Risk Screening (NRS) 2002 score, 
Glasgow Coma Scale (GCS) score, Critical Care Pain Observation Tool 
(CPOT), Penetration Aspiration Scale (PAS), enteral feeding tolerance, 
Caprini Risk Score (CRS), and unplanned extubation assessment (2, 15, 
16). Invasive procedures included mechanical ventilation, intravascular 
catheterization, and urinary catheterization. The value of each indicator 
was determined based on the first test or assessment conducted within 
24 h of ICU admission. The primary outcome was the occurrence of 
HAIs among patients admitted to the ICU.

2.3 Ethical approval

To respect and protect the legitimate rights and interests of the 
subjects, this research has been approved by the Ethics Committee of 
Qingdao Municipal Hospital (approval no: 2024-KY-020). The 
individual patient consent requirement is waived because the project 
does not affect clinical treatment of patients, poses no greater than 
minimal risk, and all protected health-sensitive information has been 
removed from the limited dataset used in this study.

2.4 Identification of pathogens on culture

In compliance with the specifications outlined in the WS/T 
640—2018 Clinical Microbiology Examination: Sample Collection 
and Transportation (17), clinical specimens were collected for culture 
from patients with suspected HAIs. Bacteria were identified using 
fully automated microbial identification and drug sensitivity analysis 
systems such as VITEK 2 (bioMérieux, Marcy-L’Étoile, France) or 
matrix-assisted laser desorption ionization time-of-flight mass 
spectrometry (MALDI-TOF MS; Bruker Daltonics, GmbH, Bremen, 
Germany). In patients with more than one bacterial strain isolated 
from various specimen types during their ICU admission, only the 
first pathogen identified was included in the analysis.
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2.5 Statistical analysis

During the data processing phase, the researchers performed data 
anonymization to ensure that evaluators could not access background 
information related to the sample results. The data for Neutrophil Count, 
glucose levels, albumin levels, total bilirubin levels, and C-Reactive 
Protein have some missing values; however, the missing data for each is 
below 5.0%. The researchers filled in these missing values using the mean 
of the respective columns. This study used chi-square tests and t-tests to 
assess the statistical significance of differences in categorical and 
continuous variables, respectively, to identify predictors of infection in 
patients with and without HAIs (18, 19), to mitigate the risk of overfitting 
and enhance the interpretability of the model. As hypothesis testing 
using chi-square tests and t-tests only assessed the statistical significance 
of differences between groups, and did not necessarily identify the best 
predictors, variable selection algorithms and cross-validation techniques 
were used for variable selection (20). Multiple methodologies were used 
to construct a prediction model that was both accurate and robust.

2.6 Model building and evaluation

Data processing and analysis were performed using Python pandas, 
and Python Scikit-learn was used for model construction. 
OneHotEncoder was used to transform categorical variables into 
one-hot encoding (21), and StandardScaler was used to standardize 
numerical variables and enhance model performance and convergence 
speed (22). This study used ColumnTransformer to combine two 
distinct variable-processing methods in ML. The dataset is divided into 
training and testing sets with an 80–20 split. This means 80.0% of the 
data is used for training the model, and 20.0% is reserved for testing the 
model. This study used 10 commonly used machine learning models: 
Random Forest (23), eXtreme Gradient Boosting (XGBoost) (24), 
Multilayer Perceptron (MLP), Adaptive Boosting (AdaBoost), Logistic 
Regression (25), Light Gradient Boosting Machine (LightGBM) (26), 
Decision Tree (27), Naive Bayes, Neural Networks (28), and Categorical 
Boosting (CatBoost) (29). The least absolute shrinkage and selection 
operator (LASSO) was used for variable selection (23). The predictive 
performance of each model was assessed using the area under the 
receiver operating characteristic (ROC) curve (AUC), sensitivity, 
specificity, and Youden’s index (30, 31). In this study, the optimal 
thresholds for the best model were determined using Youden’s J statistic 
in the test dataset. Additionally, all model output results were generated 
by an automated system, which further minimized the potential for 
human intervention, thereby enhancing the reliability of the evaluation 
results. The code has been shared on GitHub, please visit https://github.
com/aarontroy/HAIs-prediction-model.git.

3 Results

3.1 Patient characteristics

A total of 2,517 patients, including 1,544 male and 973 female 
patients with a mean age of 66.191 ± 19.067 years, met the eligibility 
criteria and were included in the analysis. Of the patients, 706 had 
been diagnosed with diabetes. In this cohort, 455 patients (18.1%, 309 
male and 146 female patients; mean age 70.160 ± 18.403 years) 

developed HAIs (Table  1). Comparison of the characteristics of 
patients with and without HAIs using chi-square tests and t-tests, 
identified 18 statistically significant variables including gender, WBC 
count, RBC count, lymphocyte count, hemoglobin level, total bilirubin 
level, RBC distribution width, hematocrit, mean corpuscular 
hemoglobin concentration, mean corpuscular volume, eosinophil 
count, age, Braden score, NRS 2002 score, GCS score, PAS, enteral 
feeding tolerance, and the CRS.

3.2 Characteristics of 
healthcare-associated infections

3.2.1 Infection sites
Of the patients included in the analysis, 585 HAIs were identified 

in 455 patients, including 91 patients who experienced multiple 
episodes of HAI. HAIs were identified at 14 different sites. The top 5 
infected sites were lower respiratory tract (28.7%, 168 cases), ventilator-
associated pneumonia (25.0%, 146 cases), Bacteremia (19.3%, 113 
cases), Catheter-associated urinary tract infection (9.6%, 56 cases) and 
Central line-associated bloodstream infection (5.5%, 32 cases) (Table 2).

3.2.2 Bacterial pathogens identified
Among the 455 patients with HAIs, 396 bacterial pathogens were 

grown on culture, an 87.0% detection rate. A total of 640 strains were 
identified, comprising 504 (78.8%) gram-negative bacteria, 94 (14.7%) 
gram-positive bacteria, and 42 (6.6%) fungi. Of the patients, 217 had 
a single pathogen identified, and 179 were infected with multiple 
pathogens. The top five pathogens identified were Acinetobacter 
baumannii (25.5%, 163 cases), Klebsiella pneumoniae (17.0%, 109 
cases), Pseudomonas aeruginosa (14.1%, 90 cases), Enterobacter 
cloacae (5.2%, 33 cases), and Escherichia coli (4.8%, 31 cases) (Table 3).

3.3 Synthetic minority oversampling 
technique

The synthetic minority oversampling technique (SMOTE) 
algorithm was used to inflate the number of patients with HAIs from 
445 to 2062, to align the size of the HAI cohort with that of the non- 
HAI cohort, thereby effectively mitigating class imbalance. This study 
categorized the model predictions into two groups based on whether 
oversampling was conducted, thus facilitating a comparative 
evaluation of the predictive performance.

3.4 Variable selection and dimensionality 
reduction

The LASSO algorithm is a classic linear regression technique that 
is widely used for variable selection and dimensionality reduction. 
Compared with traditional linear regression methods, LASSO is 
capable of automatically selecting variables that have a marked effect 
on the target variable while preserving predictive accuracy (23). 
Consequently, this leads to a reduction in model complexity and an 
enhancement in generalization performance. In the analysis without 
SMOTE oversampling, the LASSO algorithm excluded the following 
variables: C-reactive protein, mean corpuscular hemoglobin 
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TABLE 1 Baseline characteristics of patients.

Dependent variable Group HAIs Non-HAIs Chi-square 
value/t-test

p-value

Gender
Male 309 (67.9)a 1,235 (59.9)

9.772 0.002
Female 146 (32.1) 827 (40.1)

Diabetes status
Yes 117 (25.7) 589 (28.6)

1.363 0.240
No 338 (74.3) 1,473 (71.4)

WBC count (10^9/L)

<3.5 18 (4.0) 92 (4.5)

8.514 0.0143.5–9.5 194 (42.6) 729 (35.3)

>9.5 243 (53.4) 1,241 (60.2)

Neutrophil count (10^9/L)

<1.8 38 (8.3) 192 (9.3)

2.392 0.3021.8–6.3 161 (35.4) 654 (31.7)

>6.3 256 (56.3) 1,216 (59.0)

Monocyte count (10^9/L)

<0.1 16 (3.5) 88 (4.3)

0.855 0.6520.1–0.6 264 (58.0) 1,158 (56.2)

>0.6 175 (38.5) 816 (39.5)

Lymphocyte Count (10^9/L)

<1.1 266 (58.5) 1,345 (65.2)

7.559 0.0231.1–3.2 179 (39.3) 674 (32.7)

>3.2 10 (2.2) 43 (2.1)

Eosinophil count (10^9/L)
0–0.06 444 (97.6) 1991 (96.6)

0.940 0.332
>0.06 11 (2.4) 71 (3.4)

Basophil count (10^9/L)

<0.02 175 (38.4) 1,080 (52.4)

36.689 <0.0010.02–0.52 256 (56.3) 937 (45.4)

>0.52 24 (5.3) 45 (2.2)

RBC Count (10^12/L)

Male<4.3/Female<3.8 331 (72.7) 1,322 (64.1)

13.725 0.001Male4.3–5.8/Female3.8–5.1 117 (25.7) 672 (32.6)

Male>5.8/Female>5.1 7 (1.6) 68 (3.3)

Hemoglobin level (g/L)

Male<130/Female<115 332 (72.9) 1,362 (66.1)

8.524 0.014Male130-175/Female115-150 114 (25.1) 635 (30.8)

Male>175/Female>150 9 (2.0) 65 (3.1)

RBC distribution width (fl)

<37 7 (1.5) 20 (1.0)

29.190 <0.00137–54 323 (71.0) 1,694 (82.1)

>54 125 (27.5) 348 (16.9)

Hematocrit (%)

Male<40/Female<35 340 (74.7) 1,426 (69.2)

6.167 0.046Male40-50/Female35-45 102 (22.4) 545 (26.4)

Male>50/Female>45 13 (2.9) 91 (4.4)

Mean corpuscular hemoglobin 

(pg)

<27 56 (12.3) 235 (11.4)

0.220 0.63927–34 399 (87.7) 1827 (88.6)

>34 0 (0.0) 0 (0.0)

Mean corpuscular hemoglobin 

concentration (g/L)

<316 139 (30.5) 545 (26.4)

6.374 0.041316–354 302 (66.4) 1,407 (68.2)

>354 14 (3.1) 110 (5.4)

Mean corpuscular volume (fl)

<82 19 (4.2) 149 (7.2)

15.733 <0.00182–100 368 (80.9) 1716 (83.2)

>100 68 (14.9) 197 (9.6)

Platelet count (10^9/L)

<125 97 (21.3) 491 (23.8)

1.376 0.503125–350 323 (71.0) 1,425 (69.1)

>350 35 (7.7) 146 (7.1)

(Continued)
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concentration, GCS score, CPOT score, gastrointestinal tolerance to 
nutrition, and CRS. Conversely, in the analysis with SMOTE 
oversampling, the LASSO algorithm excluded gender, CRS, 
unplanned extubation assessment, CPOT score, diabetes, aspiration/
asphyxia score, GCS score, and gastrointestinal tolerance to nutrition.

Typically, AUC is used as the primary metric for evaluating model 
performance owing to its comprehensive consideration of both true-
positive and false-positive rates (Figure  1). According to the data 
provided, the Random Forest model demonstrated the best 
performance in terms of the AUC (0.958). However, given the 18.1% 
incidence of infection in the study hospital, sensitivity was considered 
the most important metric of model performance. Notably, the 
CatBoost model outperformed the others in terms of sensitivity 
(0.872) at detecting HAIs. In this context, the CatBoost model was 
considered the best choice (Table 4).

We conducted ten-fold cross-validation using the CatBoost 
classifier, training the model using preprocessed data (X_processed). In 
each fold of cross-validation, data splitting was performed using the 
StratifiedKFold method with 10 folds (n_splits = 10), ensuring data 

shuffling (shuffle = True) and maintaining consistency by setting a 
random seed (random_state = 42). Subsequently, the model was fitted 
to each training set (train) and the probability values were predicted 
using the corresponding test set (test). The mean AUC was 0.947 ± 0.008. 
These results highlight the excellent predictive performance and 
stability of the CatBoost model after SMOTE oversampling. In this 
study, the optimal thresholds for the CatBoost model were determined 
using Youden’s J statistic in the test dataset. For the NO_SMOTE group, 
the optimal threshold was calculated to be 0.558. This threshold allows 
the model to achieve the best balance between sensitivity and specificity. 
In the SMOTE group, which addresses class imbalance issues, the 
optimal threshold was found to be 0.581. This higher threshold helps to 
further enhance the model’s performance on imbalanced datasets.

A model was developed to identify factors contributing to HAIs in 
ICU patients using the CatBoost method. Eighteen independent 
variables identified through single-factor analysis were used as inputs, 
and the occurrence of HAIs events was the dependent (outcome) 
variable. The SHapley Additive exPlanation (SHAP) values were used 
as a technique to elucidate model predictions, to assist with 

TABLE 1 (Continued)

Dependent variable Group HAIs Non-HAIs Chi-square 
value/t-test

p-value

Glucose level (mmol/L)

<3.9 9 (2.0) 71 (3.4)

3.062 0.2163.9–6.1 104 (22.8) 435 (21.1)

>6.1 342 (75.2) 1,556 (75.5)

Albumin level (g/L)

<40 440 (96.7) 1995 (96.8)

0.000 1.00040–55 15 (3.3) 67 (3.2)

>55 0 (0.0) 0 (0.0)

Total bilirubin level (umol/L)

<3.4 5 (1.1) 11 (0.5)

21.690 <0.0013.4–17.1 329 (72.3) 1,271 (61.7)

>17.1 121 (26.6) 780 (37.8)

C-reactive protein (mg/L)
0–6 60 (13.2) 324 (15.7)

1.650 0.199
>6 395 (86.8) 1738 (84.3)

Mechanical ventilation
Yes 273 (60.0) 903 (43.8)

38.687 4.975
No 182 (40.0) 1,159 (56.2)

Intravascular catheterization
Yes 173 (38.0) 757 (36.7)

0.221 0.638
No 282 (62.0) 1,305 (63.3)

Urinary catheterization
Yes 358 (78.7) 1,559 (75.6)

1.776 0.183
No 97 (21.3) 503 (24.4)

Age (years) – 73 (60-86)b 68 (54–81) 4.927 <0.001

Braden score – 10 (10–11) 11 (10–12) −8.218 <0.001

NRS 2002 score – 4 (3–5) 4 (3–4) 4.869 <0.001

GCS score – 3 (3–4) 3 (3–4) 3.793 <0.001

CPOT score – 1 (0–1) 1 (0–1) 0.348 0.728

PAS – 8 (6–11) 6 (3–9) 9.034 <0.001

Enteral feeding tolerance – 1 (0–1) 0 (0–1) 4.361 <0.001

CRS – 8 (6–10) 7 (5–9) 7.142 <0.001

Unplanned extubation 

assessment
– 6 (4–8) 6 (4–8) −0.526 0.599

aThe description of continuous variables is expressed as N (%).
bDescriptive statistics for categorical variables are presented using median (interquartile range).
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understanding of individual variable contributions to model 
predictions. The SHAP values of each selected variable was visualized 
using violin plots, to reveal the distribution of the impact of variable on 
the model output. The width of the violin shape denotes the distribution 
of the SHAP values for the variable; a broader shape signifies a wider 
range of effects and potentially more diverse effects of the selected 
predictor variables. In the CatBoost model, the top 10 predictors of 
HAIs and their SHAP values were PAS (0.470), Braden score (0.470), 
high total bilirubin level (0.465), female (0.414), high WBC count 
(0.387), CRS (0.345), NRS 2002 score (0.321), low eosinophil count 
(0.318), medium WBC count (0.284), and GCS score (0.269) (Figure 2).

4 Discussion

This study devised an algorithmic model for predicting the 
occurrence of HAIs in patients admitted to the ICU. CatBoost was 
used as the ML model and trained on the full dataset containing 32 
variables and a dataset containing 18 selected variables. Subsequent 
enhancement of model performance was achieved by preprocessing 
the data using SMOTE oversampling. By using the SHAP method to 
interpret the findings, this study attained interpretability and 
transparency in the HAI outcomes predicted using ML at both the 
population and individual level. The use of ML to predict the 
occurrence of HAIs has potential application for early alerts and 
preemptive strategies, facilitating personalized treatment regimens 
and resource distribution, streamlining the clinical decision-making 
process and management protocols, and promoting advancements in 
the quality and safety of medical care.

Machine learning has gradually been applied to clinical sample 
analysis to handle variable data related to patient infection status (6). 
AI and ML technologies are expected to develop hospital infection 
monitoring algorithms to identify risk factors, improve patient risk 

stratification, track transmission pathways, and achieve real-time 
infection detection. Electronic health data plays a critical role in this 
process and is increasingly accessible. Advanced data management 
systems support real-time decision-making, aiding in automated 
hospital infection monitoring (32, 33). In the ICU, ML-supported 
clinical decision research focuses on monitoring, diagnosing, early 
identification of clinical events, outcome prediction, and prognosis 
assessment, to assist doctors, researchers, and policymakers in making 
treatment decisions. Currently, numerous ML models are used to 
predict risks of VAP, CLABSI, SSI, and hospital-acquired MDR 
pathogens, with particular emphasis on predicting sepsis and septic 
shock (6). In hospital infection risk prediction, clinical oversight is 
crucial to prevent applying machine learning systems to new data that 

TABLE 2 Distribution of infected sites in patients in the hospital.

Infection site Quantity 
(cases)

Composition 
ratio (%)

Lower respiratory tract infection 168 28.7%

Ventilator-associated pneumonia 146 25.0%

Bacteremia 113 19.3%

Catheter-associated urinary tract infection 56 9.6%

Central line-associated bloodstream 

infection
32 5.5%

Urinary tract infection 21 3.5%

Intra-abdominal (pelvic) tissue infection 20 3.4%

Skin and soft tissue infection 9 1.5%

Surgical site infection 5 0.9%

Pleural cavity infection 5 0.9%

Burn infection 4 0.7%

Gastrointestinal infection 3 0.5%

Central nervous system infection 2 0.3%

Arterial catheter-related bloodstream 

infection
1 0.2%

Total 585 100.0%

TABLE 3 Distribution of pathogenic microorganisms in infected patients.

Pathogen Strain (cases) Composition Ratio 
(%)

Acinetobacter baumannii 163 25.5%

Klebsiella pneumoniae 109 17.0%

Pseudomonas aeruginosa 90 14.1%

Proteus mirabilis 33 5.2%

Escherichia coli 31 4.8%

Staphylococcus aureus 22 3.4%

Enterococcus faecalis 20 3.1%

Enterobacter cloacae 17 2.6%

Brevibacterium brevis 14 2.2%

Burkholderia cepacia 13 2.0%

Staphylococcus aureus 

hemolyticus
11 1.7%

Acinetobacter lwoffii 11 1.7%

Candida albicans 11 1.7%

Candida glabrata 11 1.7%

Serratia marcescens 11 1.7%

Staphylococcus epidermidis 10 1.6%

Enterococcus faecium 9 1.4%

Bacillus cereus 9 1.4%

Candida tropicalis 8 1.3%

Staphylococcus hominis 8 1.3%

Klebsiella oxytoca 7 1.1%

Morganella morganii 4 0.6%

Staphylococcus capitis 4 0.6%

Aspergillus flavus 4 0.6%

Klebsiella oxytoca 4 0.6%

Aspergillus fumigatus 3 0.5%

Streptococcus pneumoniae 1 0.2%

Flavobacterium 

meningosepticum
1 0.2%

Corynebacterium 

amycolatum
1 0.2%

Total 640 100.0%

https://doi.org/10.3389/fpubh.2024.1444176
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2024.1444176

Frontiers in Public Health 07 frontiersin.org

differs from the training data (34), thus minimizing discrepancies 
between prediction results and actual clinical assessments (35).

The incidence rate of HAIs in ICUs is generally high, which may 
lead to a prolonged hospital stay and increased disease burden for 
patients. In this study, the incidence of infection in the ICU was 18.1%. 
Other studies have reported an incidence of HAIs in ICUs ranging 
from 8.0 to 60.0% (2, 36). The incidence of HAIs related to invasive 
procedures ranges from 25.0 to 50.0%, with patients in the ICU having 
a risk of HAIs 5 to 10 times higher than that in patients in general 
wards (37). Urinary tract infections related to catheterization in the 
ICU can increase the mortality rate by approximately 10.0% and 
prolong the length of hospital stay by an average of 10 days (38). 
Among the pathogens detected in this study, gram-negative bacteria 
were predominant, accounting for 78.8% of the cases. This finding is 
slightly higher than the 75.3% reported by Wang et al. (2) and 
substantially higher than the 67.4% reported by Li et al. (3) and the 
57.4% reported by Cabrera-Tejada et al. (39). HAIs present a 
significant challenge in the management of ICU patients, often 
resulting in serious complications. HAIs can significantly affect patient 

outcomes, leading to increased complexity of treatment, prolonged 
hospital stays, an increased risk of bacterial resistance, increased 
mortality rates, an increased risk of disability, and higher healthcare 
costs (4, 6). In a study conducted by Cabrera-Tejada et  al. (4), of 
patients admitted to the ICU and undergoing invasive mechanical 
ventilation for over 48 h, the mean length of hospital stay increased by 
13.6 days, with an additional treatment cost of 20,965 Euros in patients 
with HAIs. These findings highlight the substantial burden HAIs pose 
on healthcare systems and patient outcomes, and the importance of 
effective prevention and management strategies in ICU setting (4).

Refining unbalanced datasets can enhance the accuracy of 
classification models used in scientific research. Cleaning unbalanced 
datasets can enhance the accuracy of classification models (40). The 
study revealed that compared with random under-sampling and 
oversampling techniques, predictions using the clustered under-
sampling method led to more precise predictions of mortality rates 
(40). There are three common methods for addressing imbalanced 
ML data: data-level, algorithm-level, and hybrid approaches (41). In 
data-level methods, researchers modify the training dataset to suit the 

FIGURE 1

(A) The receiver-operating characteristic curves for ten ML models without undergoing SMOTE oversampling processing. (B) The ten-fold cross-
validation results of the CatBoost model without SMOTE oversampling. (C) The receiver-operating characteristic curves for ten ML models with 
undergoing SMOTE oversampling processing. (D) The ten-fold cross-validation results of the CatBoost model with SMOTE oversampling.
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classifier algorithms, such as oversampling or under-sampling. 
Algorithm-level methods involve adjusting existing learners to reduce 
the bias toward the majority of the population, such as using cost-
sensitive methods (41). This study aimed to predict HAIs by applying 
various balancing methods to the baseline data of ICU patients 
collected within 24 h of admission. In medical datasets, the records in 
the minority class are often more crucial than those in the control 
class. Therefore, addressing imbalanced data is essential to enhance 
the HAI identification rate. In addition to using SMOTE for 
oversampling, this study incorporated the LASSO operator for 

variable selection to reduce model complexity and enhance 
generalization capabilities.

The optimal model for predicting HAIs risk varies depending on the 
research context. Zhang et al. (18) found that the Naive Bayes model 
performed best in predicting surgical site infections after spinal surgery, 
with a mean AUC of 0.95, a sensitivity of 0.78, a specificity of 0.88, and 
an accuracy of 0.87. Cho et al. (42) have developed an ML model to 
monitor site infections during colon surgery. Their study revealed that 
neural networks using recursive variable elimination with 29 variables 
showed the best performance, achieving an AUC of 0.963. Previous 

TABLE 4 Evaluation metrics computation of machine learning models without or with undergoing SMOTE oversampling.

Model AUC Sensitivity Specificity Youden’s J

NO_
SMOTE

SMOTE NO_
SMOTE

SMOTE NO_
SMOTE

SMOTE NO_
SMOTE

SMOTE

CatBoost 0.752 0.944 0.558 0.872 0.704 0.737 0.262 0.609

Random forest 0.746 0.958 0.547 0.784 0.669 0.772 0.217 0.556

LightGBM 0.734 0.942 0.587 0.842 0.664 0.753 0.251 0.595

Logistic 

regression
0.733 0.726 0.583 0.564 0.673 0.675 0.256 0.238

Neural 

networks
0.721 0.904 0.540 0.707 0.688 0.795 0.227 0.501

XGBoost 0.718 0.937 0.558 0.833 0.670 0.724 0.228 0.557

MLP 0.718 0.908 0.522 0.721 0.699 0.795 0.220 0.515

AdaBoost 0.705 0.918 0.568 0.756 0.658 0.735 0.226 0.491

Naive Bayes 0.695 0.696 0.575 0.610 0.626 0.600 0.201 0.210

Decision tree 0.548 0.809 0.433 0.657 0.599 0.651 0.032 0.308

FIGURE 2

SHapley Additive exPlanation summary plots.
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studies have identified age, hemoglobin level, WBC count, and 
neutrophil count as predictors of catheter-related bloodstream infections 
using the XGBoost model (6), consistent with the findings of this study.

Owing to the increased risk of aspiration in ICU patients, inhalation 
of oropharyngeal secretions or vomitus can easily contaminate 
respiratory tract hygiene, leading to an increased risk of lower 
respiratory tract infections (43). Therefore, in patients with high PAS 
scores, the head of the bed should be elevated by 30° to 45° to reduce 
the risk of aspiration (43). In this study, the Braden score was identified 
as another predictor of HAI occurrence. Ding et al. (44) found that a 
low Braden score was an independent risk factor for stroke-associated 
pneumonia (SAP) after spontaneous intracerebral hemorrhage, showing 
moderate effectiveness in predicting SAP. In a study of chemotherapy-
related bacterial infections, Jin et  al. (45) found that an NRS 2002 
score ≥ 3 was an independent risk factor; therefore, improving 
nutritional status could reduce the occurrence of bacterial infections. 
The findings of the studies by Ding et al. and Jin et al. were similar to the 
results of this study. It is crucial to monitor the scores of patients within 
24 h of ICU admission and to intervene effectively if indicated.

This study has some limitations. The data were from a single 
center; therefore, the generalizability of the results may be limited. 
Multicenter studies should be conducted to enable a more thorough 
examination of variations according to region, demographics, and 
clinical practice. The research subjects for hospital infection 
monitoring using machine learning methods can be tens of thousands 
of people, which makes it more convenient for training and testing AI 
algorithms (46). Moreover, using the predictive model in real-world 
clinical settings, accompanied by real-time performance monitoring, 
is essential. Furthermore, strategies need to be devised for seamlessly 
integrating the model into existing medical information systems to 
facilitate easy access to and use of the predicted outcomes by clinicians. 
Further research could include additional variables associated with 
HAIs, such as demographic information (e.g., height and weight), vital 
sign (e.g., pulse, respiration, blood pressure, and temperature), and 
laboratory measurements (e.g., arterial blood gases) (47). The only 
pre-existing medical condition considered in this study was a history 
of diabetes. Future research should explore additional pre-existing 
medical conditions as potential predictors of HAIs.

5 Conclusion

This study presents the development and analysis of an ML 
algorithm aimed at predicting the risk of HAIs using data on patients 
admitted to an ICU collected within 24 h of admission, as predictors. 
Through a meticulous examination of the ranking of predictors 
derived from the ML model, this study identified key risk factors 
associated with HAIs, facilitating the identification of at-risk patients 
and the formulation of personalized treatment strategies. Future 
studies should include additional potential predictor variables, 
multicenter data, and a larger sample size to enhance the accuracy of 
prediction outcomes.
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