
Frontiers in Public Health 01 frontiersin.org

Sarcopenia diagnosis using 
skeleton-based gait sequence 
and foot-pressure image datasets
Muhammad Tahir Naseem 1†, Na-Hyun Kim 1†, Haneol Seo 1, 
JaeMok Lee 1, Chul-Min Chung 2, Sunghoon Shin 2 and 
Chan-Su Lee 1*
1 Laboratory of Computer Vision and Human Visual Perception, Department of Electronic Engineering, 
Yeungnam University, Gyeongsan, Republic of Korea, 2 Sport Science Major, School of Kinesiology, 
Yeungnam University, Gyeongsan, Republic of Korea

Introduction: Sarcopenia is a common age-related disease, defined as a 
decrease in muscle strength and function owing to reduced skeletal muscle. 
One way to diagnose sarcopenia is through gait analysis and foot-pressure 
imaging.

Motivation and research gap: We collected our own multimodal dataset from 
100 subjects, consisting of both foot-pressure and skeleton data with real 
patients, which provides a unique resource for future studies aimed at more 
comprehensive analyses. While artificial intelligence has been employed 
for sarcopenia detection, previous studies have predominantly focused on 
skeleton-based datasets without exploring the combined potential of skeleton 
and foot pressure dataset. This study conducts separate experiments for foot-
pressure and skeleton datasets, it demonstrates the potential of each data type 
in sarcopenia classification.

Methods: This study had two components. First, we  collected skeleton and 
foot-pressure datasets and classified them into sarcopenia and non-sarcopenia 
groups based on grip strength, gait performance, and appendicular skeletal 
muscle mass. Second, we performed experiments on the foot-pressure dataset 
using the ResNet-18 and spatiotemporal graph convolutional network (ST-GCN) 
models on the skeleton dataset to classify normal and abnormal gaits due to 
sarcopenia. For an accurate diagnosis, real-time walking of 100 participants was 
recorded at 30 fps as RGB  +  D images. The skeleton dataset was constructed 
by extracting 3D skeleton information comprising 25 feature points from the 
image, whereas the foot-pressure dataset was constructed by exerting pressure 
on the foot-pressure plates.

Results: As a baseline evaluation, the accuracies of sarcopenia classification 
performance from foot-pressure image using Resnet-18 and skeleton sequences 
using ST-GCN were identified as 77.16 and 78.63%, respectively.

Discussion: The experimental results demonstrated the potential applications of 
sarcopenia and non-sarcopenia classifications based on foot-pressure images 
and skeleton sequences.
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1 Introduction

According to the 2021 population census data released by the 
National Statistical Office, people aged 65 years or older comprises 
16.5% of Korean population (1). They are classified as an aging society 
according to United Nations standards. Thus, the average life 
expectancy is high, and according to the ‘OECD Health Statistics 
2023’ published by the Ministry of Health and Welfare, the average life 
expectancy in Korea is 83.6 years, which is approximately 3 years 
greater than the OECD country average of 80.3 years. Therefore, 
health problems among the older adults have emerged as an important 
issue. In the 8th amendment to the Korean Standard Disease Sign 
Classification in 2021, sarcopenia was recognized as a disease, and the 
disease code (M62.5) was attributed to it.

Sarcopenia is a disorder in which skeletal mass, muscle mass, and 
function steadily decline owing to aging, inactivity, poor diet, and 
chronic illnesses (2, 3). The International Working Group on 
Sarcopenia (IWGS), the Asian Working Group for Sarcopenia 
(AWGS), and the European Working Group on Sarcopenia in Older 
People (EWGSOP) have varying definitions of sarcopenia. The official 
organization EWGSOP describes sarcopenia as a widespread skeletal 
muscle illness that progresses over time (3–5). Although the definition 
of sarcopenia varies slightly across institutions, a loss of muscle mass 
and physical performance is generally indicated along with the 
possibility for major health complications in the absence of proper 
treatment (6, 7). The combination of strength, endurance, power, and 
coordination determines physical function, which is crucial for 
maintaining musculoskeletal health. A wide range of musculoskeletal 
disorders (MSDs), ranging from acute injuries such as fractures and 
sprains to chronic illnesses such as rheumatoid arthritis and 
osteoarthritis, can result from aberrant muscle function in addition to 
sarcopenia (8).

Physical function, multiple sclerosis, and sarcopenia are intricately 
linked. Many tests are currently being conducted for physical function 
evaluation and early identification of possible problems with MSDs 
and sarcopenia. The chair stand exam, the timed up-and-go test, and 
the gait speed test are some of these assessments (9, 10). However, 
these techniques have some drawbacks as they can be affected by the 
subjectivity of the measurer and patient variability (11). Research to 
create smart gadgets that use pressure sensors, inertial measurement 
units (IMUs), and artificial intelligence (AI)-based measuring 
techniques are underway to extract pattern data from patients’ daily 
lives and overcome these restrictions (11–13). Smart insoles are 
commonly used to monitor patients with MSDs, including sarcopenia, 
by using pressure sensors and an IMU. They are particularly helpful 
for monitoring movement, detecting falls, and assessing balance. The 
pose estimation approach is also widely used in sports and gait 
analysis (14, 15).

Pose estimation is a cutting-edge computer vision technique that 
uses deep-learning models to estimate important human body parts 
instantly and reliably (16). Accurate 2D or 3D pose estimation enables 
the tracking and detection of body joints (17, 18). The efficacy and 
accuracy of pose estimation are being compared to those of the 
VICON motion system (Vicon Nexus; Vicon Motion Systems Ltd., 
Oxford, England), which uses numerous cameras to capture extremely 
accurate 3D motions (19, 20). Medical research aggressively 
investigates the assessment of physical functions, including the quest 
for precise body position tracking, while AI analytical tools continue 

to progress (11, 12). These developments have the potential to 
significantly improve both the diagnosis and treatment of a wide range 
of medical disorders, as well as our comprehension of 
human movement.

In this study, we first collected skeleton and foot-pressure datasets 
to effectively analyze gait for an accurate diagnosis of sarcopenia. 
Skeleton-based representation and foot-pressure exertion on the 
pressure plates is one of the methods that can effectively represent 
dynamic changes in human body movements and is widely used in 
human action recognition. Second, we  performed rotation and 
flipping augmentations on the foot-pressure dataset for enhanced 
sarcopenia classification performance.

Our contributions can be summarized as follows:

 • We collected foot-pressure and skeleton datasets from various 
populations and classified them into sarcopenia and 
non-sarcopenia groups based on grip strength, gait performance, 
and appendicular skeletal muscle mass (ASM) estimation, using 
the AWGS standard (Chen et al.).

 • We performed flipping and rotation augmentations on the foot-
pressure dataset using the ResNet-18 model to increase 
classification accuracy.

 • We performed experiments on a skeleton dataset using the 
spatiotemporal graph convolutional network (ST-GCN) and 
demonstrated the potential applicability of sarcopenia 
classification from video sequences.

The remainder of this paper is organized as follows. Related work 
is summarized in Section 2. The datasets used in this study and the 
proposed models are described in Sections 3. Section 4 presents the 
experimental results and discussion, and Section 5 presents  
the conclusion of the study.

2 Related works

Owing to the recent advancements in machine and deep learning, 
these technologies are at the forefront of healthcare innovation, 
garnering considerable attention for their transformative impact on 
the diagnosis of conditions, such as gait disorders. By harnessing the 
power of intricate algorithms and neural networks, machine and deep 
learning not only enhance the accuracy and efficiency of diagnostic 
processes but also hold the promise of uncovering nuanced patterns 
and correlations within complex medical data. This section discusses 
various aspects of machine-learning and deep-learning methods to 
detect sarcopenia.

In Asian countries, the AWGS, an expert group, initiated a study 
on sarcopenia diagnosis in 2014. They identified three key diagnostic 
factors: muscle mass, muscle strength, and physical activity (gait). 
These diagnostic standards were revised in 2019 to address the limited 
accessibility of medical equipment such as MRI, CT, DXA, and muscle 
mass measurement tools. As an alternative, they proposed the use of 
bioelectrical impedance analysis and introduced a new category called 
the ‘possibility of sarcopenia.’ This category is used when muscle 
strength is low despite normal physical activity. The criteria for 
diagnosing the ‘possibility of sarcopenia’ or sarcopenia include 
handgrip strength less than 28 kg for men or less than 18 kg for 
women, or a 5-time chair stand test taking longer than 12 s. Sarcopenia 
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is diagnosed when both ASM and muscle strength are low according 
to the aforementioned criteria. Severe cases where all three criteria 
were met were classified as severe sarcopenia (Chen et al.).

Logistic regression is a potent statistical method for predicting the 
risk and onset of sarcopenia in aging populations. Logistic models 
combine several factors, such as age, sex, physical activity, and body 
composition, to determine a person’s risk of developing sarcopenia 
(21–23). A noteworthy work by Kaur et al. (21) showed that logistic 
regression could be used to assess frailty and sarcopenia. Even with 
undefined variables, their model was remarkably accurate in 
predicting outcomes with a 97.69% prediction rate. To predict 
sarcopenia, Agnes et  al. (22) created a multi-logistic model that 
included important factors such as BMI and calf circumference. With 
80% sensitivity and 70% specificity, this model has the potential to be a 
useful screening tool. Yin et al. (23) combined logistic regression and 
nomogram visualization to accurately predict the risk of individual 
sarcopenia, highlighting its clinical utility.

Ko et al. (24) used the Support Vector Machine (SVM) analysis of 
data from inertial measurement devices during walking to achieve 
95% prediction accuracy. Similarly, Kim created prediction models for 
sarcopenia by utilizing a variety of algorithms, including SVM, with 
public health data. The SVM model outperformed the LightGBM 
approach (25), yielding an accuracy of 85.2% in this investigation. 
Seok and Kim (26) highlighted data limitations as one of the main 
constraints. Sufficient datasets are a prerequisite for model training. 
Further details on the sensitivity of SVM to feature selection are 
provided by Kang et al. (27). Choosing the right features is essential to 
obtain the best possible prediction accuracy for sarcopenia. Castillo 
et al. (28) identified an important interpretability issue by drawing 
attention to the fact that SVM models are usually viewed as 
“black-box” models, which makes it difficult to understand how the 
model arrives at its predictions.

To facilitate generalization, random forest (RF) employs a large 
number of decision trees, each trained on bootstrap samples 
containing random elements (26). Sarcopenia modeling appears to 
benefit from the application of machine learning. Using 17 risk 
indicators, Kang et al. (27) compared the performance of RF with 
those of other classifiers in a specific application. Although logistic 
regression outperformed the other models, the 2000-tree RF model 
found significant predictors. Yoon et al. (29) used RF to predict the 
risk of sarcopenia in patients with cancer, whereas Seok and Kim (26) 
estimated the likelihood of sarcopenia in the older population using 
RF and physical activity data. RF is generally well suited for 
incorporating several clinical and anthropometric sarcopenia 
predictions because it is suitable for handling large datasets and 
nonlinear connections (26). Nevertheless, drawbacks, including 
subpar results for small datasets, challenges with missing data, and 
overfitting, exist.

To predict sarcopenia, gradient-boosting machines (GBMs) (26) 
have become versatile machine-learning tools. By combining multiple 
weak decision-tree models into one robust classifier, the GBM employs 
an ensemble technique. GBM introduces unpredictability while 
optimizing based on error metrics by repeatedly training models on a 
variety of activity data and other variables (26, 27, 30). With an AUC 
of 0.78–0.85, GBM yielded a prediction accuracy comparable to that 
of RF and logistic regression (26). Numerous useful elements were 
included, such as demographics (age and sex) (27), dietary 

characteristics (BMI and protein intake), and physical activity 
variables (gait speed, strength, and muscle mass) (26). Radiomics 
muscle characteristics acquired from CT scans also have potential 
(30). These diverse data facilitate the detection of the risk factors for 
sarcopenia. GBM models now incorporate activity-related 
characteristics such as BMI, walking speed, strength, muscle mass, 
and CT radiomics features (26, 30). These data have greatly aided the 
development of predictive sarcopenia frameworks to identify hazards 
in aging populations.

Gu et al. (31) presented an artificial intelligence body component 
measurement system (AIBMS) that uses deep learning to automatically 
divide body parts from abdominal CT scans and quantify the body 
component volumes and regions. Three network models, SEG-NET, 
U-NET, and Attention U-NET, were used in the development, and 
plain abdominal CT scan data were used for training. The 
segmentation model showed a high degree of accuracy, with a 0.9 DSC 
score for segmented body parts when tested using multi-device 
development and independent test datasets. Bae et al. (32) discussed 
a deep-learning model for forecasting a reduction in physical fitness 
caused by sarcopenia in individuals who may develop sarcopenia. 
Data from the Korean National Physical Fitness Award (2010–2023) 
were used in the study. The data comprised physical fitness and body 
composition indicators as well as exercise- and health-related 
assessments in Koreans aged >65 years. To characterize normal and 
potentially sarcopenic conditions, ASM was computed as ASM/
height2 (33). The deep-learning model demonstrated 87.55% accuracy, 
85.57% precision, 90.34% recall, and an F1 score of 87.89% to 
differentiate sarcopenia.

A long short-term memory (LSTM)-autoencoder-based anomaly 
detection system for orthopedic illnesses and its capacity to 
differentiate between normal and pathological gaits were presented 
in (34). To determine the gait characteristics of the human body, the 
sensitivity of the anomaly detection based on five human body points 
was analyzed. The diagnostic method identified 92% (n = 35) of the 
38 individuals with sarcopenia. In addition to reduced physical 
functioning, a key factor in the diagnosis of sarcopenia is variations 
in gait disturbance performance among individuals who meet the 
criteria for sarcopenia (35). Physicians screen for sarcopenia by 
observing the patients’ habitual gait features without quantifying 
them. Such a subjective diagnosis has been considered problematic 
as different clinicians may arrive at different decisions because 
variables such as weariness may influence the diagnosis. A unique 
automated deep-learning model based on RF for real-time human 
body joint recognition was developed and paired with a modified 
LSTM to recognize gait parameters for additional clinical analysis 
and to enhance and facilitate the use of these data. The accuracy of 
the model was 90.9%. Wearable sensor data have also been used to 
predict various diseases. Chen et al. (36) presented a hardware- and 
software-based sarcopenia identification system, because alterations 
in human muscles mirror the symptoms of sarcopenia. The hardware 
consisted of multiple sensor modules (MSMs) and wearable devices 
used to gather electromyography (EMG) and gait signals. The 
software comprises a leg health classification net (LCNet) and a 
biomedical and inertial sensor algorithm.

A study that aimed to develop predictive and classification models 
for sarcopenia and discovered digital biomarkers is presented in (37). 
The method used plantar pressure data from 83 patients with smart 
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insole equipment and a smartphone to collect video data for pose 
estimation. The Mann–Whitney U test was used to compare the data 
from 23 patients with sarcopenia and 60 patients in the control group. 
The physical capacities of patients with sarcopenia were compared 
with those of a control group by using a smart insole and pose 
estimation. Significant differences were found in 12 out of the 15 joint 
point variables analyzed; however, the knee mean, ankle range, and 
hip range did not indicate any differences. Another study presented a 
smart insole device and pose estimation based on AI, along with three 
classification models–RF, SVM, and artificial neural network—to 
classify control and sarcopenia groups (38). Approximately 67% of the 
patient data from 83 individuals were chosen for training, whereas the 
remaining data were split into test sets.

Medical image-based body part analysis can be used to detect 
sarcopenia. Thus, the development of an effective computational 
technique for disease prediction and autonomous body part 
segmentation is imperative. The work reported in (31) relates to the 
AIBMS for the diagnosis of the sarcopenia, which uses deep learning 
to automate the segmentation of body parts from abdominal CT scans 
and the quantification of body part areas and volumes. The work 
showed a high degree of accuracy with above 0.9 DSC score in 
segment body sections when tested using multi-device developing and 
independent test datasets.

We had previously proposed a single-model ST-GCN using an 
attention technique to classify pathological gaits from a skeleton 
dataset (39). We experimented with our model on the NTU RGB + D, 
GIST, and multimodal-gait symmetry (MMGS) datasets and obtained 
excellent performance. We enhanced our work by proposing single 
and multiple models to classify one normal and five pathological gaits 
(antalgic, lurch, steppage, stiff-legged, and Trendelenburg) using early 
and late fusion with publicly available foot-pressure and skeleton 
datasets (40). Foot-pressure data were fed into the transformer-based 
models, and skeleton data were fed into the ST-GCN. An evaluation 
was also conducted on single models and multi-model fusions, which 
involved applying early fusion to the feature vector and late fusion by 
combining the outputs from both modalities with and without 
different weights. The proposed single and multimodal models 
demonstrated good performance compared with those of other state-
of-the-art methods.

Previous studies have focused on machine-and deep learning-
based methods for the classification of sarcopenia. However, only a 
few studies have used deep learning-based methods. In addition, 
either skeleton or plantar foot-pressure datasets are focused on but 
not both. We  have already proposed a single-as well as a multi-
model-based system using the fusion of skeleton and foot-pressure 
datasets; however, it was for the classification of pathological gaits. 
Moreover, the size of the dataset was small, as deep-learning-based 
models require an adequate amount of data to achieve good 
performance. In addition, the data were not captured from real 
patients. Briefly, we need to capture a sufficient real-time dataset from 
patients using skeleton- and foot-pressure-based sensors. 
Furthermore, deep-learning-based models that can use skeleton-
based and/or foot-pressure data are needed to classify sarcopenia. 
Table  1 contrasts various studies related to sarcopenia detection 
methods, highlighting the limitations of previous approaches and 
showcasing how our work, including the collection of a multimodal 
dataset (skeleton and foot-pressure), contributes to sarcopenia 
classification by experimenting on each modality separately.

3 Materials and methods: 
skeleton-foot pressure-physical 
performance datasets for sarcopenia 
diagnosis by Yeungnam University 
(SF3PDB-YU) and proposed baseline 
models

This section provides a detailed overview of the materials and 
methods used in this study, which focuses on the dataset and the 
baseline models for sarcopenia diagnosis. Sequential skeleton data 
were collected using three Azure Kinect depth cameras (Microsoft, 
United  States) to capture 3D skeletal information during gait 
sequences. Foot-pressure data were obtained using a pressure plate, 
allowing us to distinguish between normal and sarcopenic gaits. 
Additionally, physical performance metrics, such as grip strength and 
gait speed, were collected to assist in the diagnosis of sarcopenia. For 
the methods, we applied deep learning models, specifically ResNet-18 
for foot-pressure data classification and Spatiotemporal Graph 
Convolutional Networks (ST-GCN) for skeletal sequence classification. 
The ResNet-18 model was fine-tuned on foot-pressure data to extract 
key features indicative of abnormal gaits, while the ST-GCN model 
was used to capture spatiotemporal relationships in skeletal sequences. 
Both models were evaluated for their ability to classify sarcopenia 
versus normal gait, using the collected datasets as inputs.

One hundred men and women with an average age of 55 years 
participated in the experiment. The number of men among the 
participants was 23, and the number of women was 77. All the 
participants agreed to use their data for research purposes. Figure 1 
shows the age-wise distribution of participants. In the 30s age group, the 
number of patients was 18, whereas in the 40–50s, the number of patients 
was 21. Similarly, in the 60s age group, the number of patients was 28, 
while in the age group of 70 years and above, the number of patients was 
33. The number of participants above 70 years of age was higher than that 
in other age groups. Data collection was conducted under strict 
supervision, and when participants walked through a 6-meter walkway, 
sequential skeleton and foot-pressure data were collected. A few samples 
of normal and abnormal (sarcopenia) gaits from the skeleton and foot 
pressure data are shown in Figure 2. The skeletal data and foot-pressure 
data in Figure  2 illustrate clear distinctions between normal 
(non-sarcopenia) and sarcopenia gaits. In the skeleton data, the 
sarcopenia group demonstrates more restricted joint movement, 
particularly in the hips and knees, leading to shorter and uneven strides. 
The joint angles in sarcopenia subjects indicate a reduced range of 
motion, which affects their overall gait efficiency. In contrast, the 
non-sarcopenia group shows more extended joint movements, with fluid 
and coordinated strides, allowing for a more efficient walking pattern. In 
the foot-pressure data, the pressure distribution differs significantly 
between the two groups. Non-sarcopenia subjects exhibit a more even 
pressure distribution across the entire foot, especially in the heel and 
forefoot regions, which are critical for balanced walking and effective 
propulsion. On the other hand, sarcopenia subjects show reduced 
pressure on these key areas, particularly in the forefoot, indicating 
weaker muscle strength and a diminished ability to push off effectively 
during walking. This imbalance in pressure contributes to an unstable 
gait pattern and increases the risk of falls in sarcopenia subjects. 
Additionally, the foot-pressure data for sarcopenia subjects reveals a 
more staggered and irregular footprint pattern, further demonstrating 
instability and compensatory gait behaviors, such as reduced stride 
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length and slower gait speed. These combined observations in both 
skeletal and foot-pressure data highlight the biomechanical differences 
between normal and sarcopenic gaits, underscoring the impact of muscle 
weakness and joint stiffness in sarcopenia.

3.1 Skeleton data collection

The Azure Kinect is the latest released Kinect sensor. We obtained 
the skeleton data using the Azure Kinect sensor and the 
corresponding Microsoft software development kit (SDK). 
Figures 3A,B show our multimodal setup views for data collection 
from the front and side, respectively, where we collected the skeletal 
gait data of the walkers on a 6-meter walkway. We obtained the 3D 
xyz coordinates of 33 joints, i.e., pelvis, spine_naval, spine_chest, 
neck, clavicles, shoulders, elbows, wrists, hands, hand tips, thumbs, 
hips, knees, ankles, feet, head, nose, eyes, and ears. The x- and y-axes 
represent the width and height of the participant, respectively, and 
the z-axis represents the distance between the camera and participant. 
The participant walked 6 m back and forth 10 times using the gait 
performed in daily life, and the frontal view of the participant walking 
was recorded in an RGB + D video using an Azure Kinect camera.

3.1.1 Selection of 25 joints from 32 joints
We extracted the data for 25 joints from that of the 32 joints for 

each frame, as shown in Figure 4. The names of the selected 25 joints 
shown in Figure 4 are as follows: 0—sacrum, 1—center of the spine, 

TABLE 1 Comparison of related studies on sarcopenia prediction and classification with our contributions.

Reference Description Limitations Our contributions

(21–23) Studies on logistic regression models for 

predicting sarcopenia in aging adults.

Focus on traditional regression models 

and single predictive factors like muscle 

mass, lack of real-time data.

We collected a multimodal dataset (skeleton and foot-pressure), 

but experimented on each modality individually, applying deep 

learning models for sarcopenia detection.

(24, 25) Machine learning classifiers to predict 

sarcopenia based on physical activity and 

physical factors.

Limited datasets and physical activity 

focus, lacks multimodal integration.

We experimented individually on skeleton and foot-pressure 

data from our collected dataset, offering higher accuracy 

through deep learning approaches.

(26, 27, 30) Various machine learning approaches 

(SVM, RF, GBM) for sarcopenia prediction 

based on activity data.

Focus on specific datasets and machine 

learning techniques, lack of deep 

learning models or multimodal data.

We used deep learning (ResNet-18, ST-GCN) on skeleton and 

foot-pressure data individually, exploring their potential in 

sarcopenia classification.

(28, 29) Automatic sarcopenia classification systems 

in hospitals and cancer patients.

Specific to hospital and cancer patients, 

limited generalizability.

We focused on a general older adult population using individual 

experiments on skeleton and foot-pressure data for broader 

applicability.

(31) AI-based body part measurement system 

using CT scans for sarcopenia detection.

Relies on expensive CT imaging, which 

limits accessibility.

Our non-invasive approach analyzes skeleton and foot-pressure 

data independently, making it a more accessible option than 

CT-based methods.

(32, 33) Deep learning models for predicting 

physical fitness and sarcopenia using 

health-related metrics.

Focus on physical fitness only and 

specific population (Korean), lacks 

multimodal approach.

We explored real-time gait and foot-pressure data individually, 

providing insights for sarcopenia detection without relying on 

fitness metrics.

(34, 35) LSTM-Autoencoder anomaly detection for 

sarcopenia based on body joint 

composition.

Focus on anomaly detection and body 

joint analysis, no foot-pressure 

integration.

We separately experimented with foot-pressure and skeletal gait 

analysis to improve sarcopenia classification, without 

combining the data.

(36–38) Use of wearable sensors and smart insoles 

for gait analysis to detect sarcopenia.

Focused on insole or sensor data alone, 

limited to a single modality.

We used our collected skeleton and foot-pressure data 

individually for sarcopenia classification, rather than relying on 

wearable sensors alone.

(31) Deep learning system for body part 

segmentation using CT scans.

Focus solely on body part measures, 

lacking gait analysis.

Our study utilizes individual experiments on real-time gait and 

foot-pressure data for sarcopenia classification, offering a 

dynamic approach.

(39) Early-Proposed single-model ST-GCN with 

attention techniques for pathological gait 

classification.

Focused on skeleton-based data, lacking 

integration with foot-pressure data.

By collecting our own dataset (skeleton and foot-pressure), 

we proposed a method for sarcopenia classification, using 

individual deep learning models for each data type.

(40) Early-Proposed multimodal fusion models 

(early and late fusion) for gait classification.

Limited testing on publicly available 

datasets.

We collected our own dataset (skeleton and foot-pressure) and 

experimented on them separately for sarcopenia classification.

FIGURE 1

Age-wise distribution of participants for sarcopenia.
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2—neck, 3—head, 4—left shoulder, 5—left elbow, 6—left wrist, 7—
back of left hand, 8—right shoulder, 9—right elbow, 10—right wrist, 
11—back of right hand, 12—left hip, 13—left knee, 14—left ankle, 
15—left foot, 16—right hip, 17—right knee, 18—right ankle, 19—
right foot, 20—center of the shoulder, 21—left middle finger, 22—left 
thumb, 23— right middle finger, and 24—right thumb.

3.2 Foot-pressure data collection

A 6-meter walkway was set up, and a force plate was installed in the 
middle. Here, we used the average foot pressure, which was calculated 
by averaging the planar foot pressures for all time sequences. As shown 
in Figure 2, the average foot pressure can be expressed as a 1-channel 
image. We collected gait datasets for 100 people who moved back and 
forth 10 times; therefore, the expected total number of sequences was 
100 × 10 × 2 = 2,000. However, some of the collected sequences 
contained missing data and were excluded from the evaluation. 
Consequently, 1986 skeleton and foot-pressure instances were obtained.

To ensure the accuracy of measurements for both the left and right 
feet, as well as to accommodate different step lengths among 
participants, the foot-pressure data was processed in the following way:

Data Filtering and Cleaning: Foot-pressure sequences with 
significant measurement errors or missing data were excluded to 
maintain data quality. Only sequences with reliable foot-pressure data 
for both the left and right feet were included in the final dataset.

3.3 Physical performance tests for 
sarcopenia

Several performance tests for sarcopenia are used in the literature 
like hand-grip strength (HGS), short physical performance battery 
(SPPB), gait speed, timed up and go (TUG), and five times sit-to-stand 
tests (41). In this study, the HGS and gait speed were measured 
according to the AWGS criteria for sarcopenia. To assess the gait speed 

of individuals, researchers have utilized a 6-min walking test. This test 
is highly correlated with the functional performance of older adults 
and has been established as a valid and reliable measurement method. 
During the test, the participants engaged in self-paced walking within 
an enclosed gymnasium. To track gait speed, the participants wore 
two inertial measurement unit sensors specifically attached to the 
insteps of their shoes. In this study, only data from the right foot were 
analyzed to measure the gait speed. To demarcate the turning point, 
cones were placed at both the starting point and the 30-meter mark. 
Throughout the test, the participants continuously walked back and 
forth within a 30-meter distance for a total of 6 min. In addition, the 
power-grip strength of the participants was measured three times 
using a hand dynamometer (hydraulic pinch gauge, Jamar, 
United States). The average of the measured values was used as the 
final value. The power grip was measured in a sitting position, and the 
width was adjusted such that the second joints of the four fingers, 
excluding the thumb, were at right angles when the grip strength 
measurement sensor was held with the elbow joint bent at 90°.

3.3.1 Hand-grip strength
Traditionally, HGS has been quantified using measurement 

techniques and dynamometers. Recently, novel techniques for 
measuring grip strength have been proposed. To evaluate hand-grip 
strength, Jeong et al. (42) used the joint angles of the fingers from 
finger tracking. This method has an error rate of less than 15% and 
has the potential to be  converted into a mobile application. 
Additionally, Barrios et al. (43) presented a straightforward mobile 
application that measures the speed at which fingers tap, which is a 
measure of grip strength.

However, grip strength determined by these techniques varies, 
leading to a broad variety of cutoff positions for sarcopenia screening 
(44, 45). Moreover, grip strength varies across nations and is predicted 
to affect the prevalence of sarcopenia. The frequency of low HGS and 
sarcopenia, as well as their prognostic usefulness for physical 
performance, were thus strongly influenced by the choice of the HGS 
criterion (average vs. maximum) (46). Similarly, De et  al. (47) 

FIGURE 2

Representative samples of skeleton and foot-pressure data for normal and abnormal (sarcopenia) gait.
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contended that HGS, an independent predictor of sarcopenia, should 
be used as a screening instrument to divide the population for whom 
confirmatory CT-based evaluation of sarcopenia is necessary.

Sarcopenia diagnosis requires standardization of HGS measures 
and criteria to comprehend variations in grip strength by nation, age, 
and sex. As a result, numerous studies have attempted to establish 
cutoff points and standardize the measurement of grip strength. To 
standardize the measurement of grip strength (48), Roberts et al. (49) 
proposed the “Southampton protocol,” and Schaap et  al. (50) 
performed a systematic review. Notwithstanding these efforts, several 
variables can still affect grip strength and, thus, the cutoff points for 
diagnosing sarcopenia, including race, body size, lifestyle variations, 
and socioeconomic status (51).

The gaits of men and women were labeled as normal and 
abnormal, according to the AWGS 2019 sarcopenia diagnostic criteria 
for HGS (sarcopenia for men weighing less than 26 kg, sarcopenia for 
women weighing less than 18 kg) and others. Figures 5, 6 show the 
measured HGS values of female and male participants, respectively, 
with sarcopenia according to the AWGS 2019 diagnostic criteria.

3.4 Methods: proposed baseline models

In this section, we first present the single model ResNet-18 for our 
foot-pressure dataset, then present the ST-GCN for our skeleton 
dataset, and finally, discuss the normalization of the skeleton dataset. 
Both models were used to classify sarcopenia.

3.4.1 ResNet-18 for foot-pressure dataset
It is possible to train deep neural networks (NNs) with more than 

150 layers using residual neural networks (ResNet). By introducing 
residual blocks (RB) (52), ResNet can address the issues of vanishing 
gradients and deterioration (53) caused by the constant increase in 
CNN depth. Residual blocks create a “skip connection” that fast-
forwards to a deeper layer by adding the output from the previous 
layer to the layer above. In this study, we fine-tuned the pre-trained 
ResNet-18 model for the foot-pressure dataset, leveraging the benefits 
of residual connections to prevent vanishing gradients. A softmax 
layer was placed at the end of the ResNet-18 architecture to classify 
images into either “normal” or “sarcopenia,” as shown in Figure 7.

FIGURE 3

System setup for multimodal data collection system: (A) front view and (B) side view.
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FIGURE 5

HGS of female participants using the criteria for sarcopenia diagnosis.

The steps in the process are outlined below:

 1 Data Augmentation: Given the limited training data, 
we applied data augmentation to increase the dataset size and 
prevent overfitting. For each foot-pressure image, the following 
transformations were applied: flip/mirror the image with a 
probability of 0.5 and rotate the image at an angle of 45°.

 2 ResNet-18: After data augmentation, the images were passed 
through the pre-trained ResNet-18 model, which was fine-
tuned for our foot-pressure dataset. ResNet-18, with its residual 
blocks, helps manage the vanishing gradient problem and 
allows for efficient training, even with a deep network.

 3 Softmax Layer: At the end of the ResNet-18 architecture, the 
softmax layer provides a probability distribution across the two 

FIGURE 4

Selected 25 joints from 32 joints.
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classes, “normal” and “sarcopenia.” The final classification is 
based on the highest probability.

In this study, we chose ResNet-18 as the CNN model for foot-
pressure data classification for several reasons. First, ResNet-18 
employs a residual learning framework, which addresses the vanishing 
gradient problem commonly encountered in deeper networks. This is 
particularly beneficial for capturing the complex spatial patterns in 
foot-pressure data over time. Furthermore, ResNet-based models have 
shown strong generalization abilities in gait and action recognition 
tasks, closely related to our focus on sarcopenia classification. ResNet-
18’s lightweight architecture, compared to deeper variants like ResNet-
50, also ensures efficient training and inference, making it ideal for 
real-time classification. Additionally, its compatibility with transfer 
learning allows us to fine-tune the model on our relatively smaller 
dataset, leveraging pre-trained features to enhance performance while 
reducing the risk of overfitting.

3.4.2 ST-GCN for skeleton dataset
Data from successive time series comprise skeleton sequence data. 

The use of graph convolutional networks (GCNs) in skeleton-based 
action detection has significantly increased (54, 55). The ST-GCN-
based model displayed strong generalization abilities and increased 
expressive power. Pathological gait categorization has recently used 

the ST-GCN, combining 3D skeletal data with attention technique 
(56). This novel method enables focus on important joints in the 
current gait by introducing an attention mechanism for spatiotemporal 
GCNs. There are two types of edges: temporal edges, which link the 
same joints over successive time steps, and spatial edges, which follow 
the inherent connections of the joints. In addition, several ST-GCN 
layers were built, enabling information integration along the temporal 
and spatial dimensions. This is accomplished by first using joint angles 
to extract spatiotemporal information from 3D skeletal data and then 
applying these features to GCNs.

3.4.2.1 Normalization of skeleton dataset
The x-axis of the 3D skeleton data represents the left side direction 

of the participant, the y-axis represents the participant’s up side 
direction, and the z-axis represents the distance between the 
participant and camera. The range of the x-, y-, and z-axis coordinate 
values of the 3D skeletal data varies depending on the participant’s 
height, which may affect learning. To conduct efficient and accurate 
learning, it is necessary to reduce the height differences between 
participants. The 3D skeletal data coordinate values were normalized 
based on the distance from the 0-sacral vertebrae to the 20-shoulder 
center on the x-, y-, and z-axes of each frame. We used Equation 1 to 
determine the distance (d) from 0-sacral vertebrae to the 20-shoulder 
center in three-dimensional space. For each of the 25 joints, the x, y, 

FIGURE 6

HGS of male participants using the criteria for sarcopenia diagnosis.

FIGURE 7

Proposed single modal ResNet-18 for the foot-pressure dataset.
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and z-axis coordinate values were normalized by dividing the distance 
(d) using Equations 2–4, respectively.
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3.4.2.2 Sarcopenia classification by the normalized 
skeleton sequences

When classifying pathological gaits using skeletal data, the 
ST-GCN attention mechanism makes it easy to focus on important 
joints. A block diagram of the classification of the normal and 
sarcopenia classes is shown in Figure  8. Here, we  applied our 
previously suggested ST-GCN model (40), which uses an attention 
technique applied to pathological gait classification based on skeleton 
information. When implementing this model, we had two main goals. 
The process is outlines as,

 1 Spatiotemporal Feature Extraction: The first goal was to 
extract spatiotemporal features from the skeletal sequence data, 
which are represented as graphs. The nodes of the graph 
correspond to body joints, while the edges represent the joint 
connections (spatial edges) and the temporal relationships 
between joints across time steps (temporal edges). These 
features are crucial for capturing the dynamics of gait.

 2 Attention Mechanism: The second goal was to introduce an 
attention mechanism into the ST-GCN model, which allows 
the model to focus on the most important joints during the 
classification process. This mechanism helps the model learn 
which joints are most relevant to identifying sarcopenia-related 
gait abnormalities.

 3 Multi-Input Feature Integration: In addition to joint 
positions, we  integrated multi-input features such as joint 
velocity and bone orientation to improve classification 
accuracy. This multi-branch approach has been validated 
through ablation studies, which demonstrated the contribution 
of each component to the overall performance of the model.

4 Results: experimental results of the 
baseline models

To assess the performances of the proposed single- and 
multimodal classification models, a leave-one-subject-out cross-
validation approach was employed. We  used a four-fold cross-
validation to assess the performance and generalization ability of the 
model. The number of participants with sarcopenia was 20; therefore, 
we divided them into four folds (five participants in each fold), while 
the number of participants in the normal (without sarcopenia) class 
was 80; therefore, we divided them into four folds (20 participants in 
each fold). Thus, we created four folds, with 25 participants in each 
fold [5 participants in the sarcopenia class and 20 participants in the 
non-sarcopenia (normal) class]. During the training, each fold was 
used separately for each test. Consequently, the model was trained 
four times, and the accuracies were averaged for all folds. During 
training, we separated 20% of the training dataset (three participants 
in the sarcopenia class and 12 participants in the non-sarcopenia 
class) for validation.

For the foot-pressure dataset, a learning rate of 0.001 and the 
Adam optimizer were used. We  used cross-entropy as the loss 
function, and the entire experiment was conducted over 100 epochs. 
For the skeleton dataset, we used a learning rate of 0.1 and an SGD 
optimizer with a momentum of 0.9. We also used the learning rate of 
each parameter group using a cosine annealing schedule (57) with a 
weight decay of 0.001 and cross-entropy as a loss function. The 
experiment was conducted over 200 epochs. We used an Intel (Santa 
Clara, CA, United States) CPU with 32 GB of RAM and an NVIDIA 
(Santa Clara, CA, United States) GeForce RTX 3060 GPU for the 
evaluation. The models used in this study were implemented using the 
PyTorch software.

The selection of hyperparameters, such as the number of epochs, 
learning rate, and optimizers, was based on a combination of best 

FIGURE 8

Proposed single modal ST-GCN (39) for the skeleton dataset.
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practices from related studies and empirical tuning for our specific 
datasets. For the foot-pressure dataset, we  found that 100 epochs 
provided sufficient time for the model to converge, while for the 
skeleton dataset, 200 epochs were necessary due to the complexity of 
spatiotemporal data. The learning rates (0.001 for ResNet-18 and 0.1 
for ST-GCN) were chosen to ensure stable and efficient convergence. 
Additionally, we used the Adam optimizer for ResNet-18 due to its 
adaptive learning capabilities, and the SGD optimizer with momentum 
for ST-GCN, as it is known to perform well with spatiotemporal 
models. These settings, combined with weight decay and cross-
entropy loss, helped optimize the performance of both models.

Table 2 lists the accuracies of the foot-pressure dataset using the 
ResNet-18 model and the skeleton dataset using the ST-GCN model. 
For fold 1, the accuracies of ResNet-18 and ST-GCN were 77.22 and 
80.12%, respectively. For fold two, the accuracies of ResNet-18 and 
ST-GCN were 76.68 and 79.95%, respectively. For fold three, the 
accuracies of ResNet-18 and ST-GCN were 86.89 and 80.08%, 
respectively, whereas for fold four, the accuracies of ResNet-18 and 
ST-GCN were 67.87 and 74.39%, respectively. The average accuracies 
of the ResNet-18 and ST-GCN models were 77.16 and 78.63%, 
respectively.

5 Conclusion

In this study, we present our collected foot-pressure and skeleton 
datasets. Although the original skeleton dataset consisted of 32 joints, 
only 25 joints were used in each frame. To reduce the height 
differences between participants, the 3D skeletal data of each frame 
were normalized based on the distance from the sacral vertebrae to 
the shoulder center. The normalized 3D skeletal time-series data were 
labeled as sarcopenia and non-sarcopenia gait based on the 
participant’s physical performance, according to the AWGS 2019 
guidelines. Second, we experimented with the foot-pressure dataset 
for the ResNet-18 model and the skeleton dataset for the ST-GCN 
model using 4-fold cross validation; the presence or absence of 
sarcopenia was predicted with an average accuracy of 77.16% for the 
foot-pressure dataset and 78.63% for the skeleton dataset.

This study is highly relevant to public health and aging 
populations, as sarcopenia is a prevalent condition among older adults 
that leads to decreased muscle mass, strength, and physical 
performance. Early diagnosis and intervention can significantly 
improve quality of life and reduce healthcare burdens associated with 
falls, frailty, and disability in aging individuals. By developing a system 
that can classify sarcopenia based on foot-pressure and skeletal data, 
this study provides a foundation for accessible and effective diagnostic 

tools that can be  used in clinical and home settings, potentially 
contributing to better management of age-related diseases.

In future, we  plan to extend this research by increasing the 
number of participants and improving the accuracy of sarcopenia 
classification. Moreover, in the future, we can develop a real-time 
system for the quick and efficient diagnosis of sarcopenia using a 
camera. We will also attempt to improve the overall performance by 
improving the spatiotemporal attention mechanism. Because the 
model uses multiple inputs, lightening of the model is also an 
important concern; we plan to apply an appropriate lightweight deep 
learning techniques for practical application in an edge device, while 
maintaining its performance.
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