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Background: China exited strict Zero-COVID policy with a surge in Omicron 
variant infections in December 2022. Given China’s pandemic policy and 
population immunity, employing Baidu Index (BDI) to analyze the evolving 
disease landscape and estimate the nationwide pneumonia hospitalizations 
in the post Zero COVID period, validated by hospital data, holds informative 
potential for future outbreaks.

Methods: Retrospective observational analyses were conducted at the 
conclusion of the Zero-COVID policy, integrating internet search data alongside 
offline records. Methodologies employed were multidimensional, encompassing 
lagged Spearman correlation analysis, growth rate assessments, independent 
sample T-tests, Granger causality examinations, and Bayesian structural time 
series (BSTS) models for comprehensive data scrutiny.

Results: Various diseases exhibited a notable upsurge in the BDI after the policy 
change, consistent with the broader trajectory of the COVID-19 pandemic. 
Robust connections emerged between COVID-19 and diverse health conditions, 
predominantly impacting the respiratory, circulatory, ophthalmological, and 
neurological domains. Notably, 34 diseases displayed a relatively high correlation 
(r  >  0.5) with COVID-19. Among these, 12 exhibited a growth rate exceeding 50% 
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post-policy transition, with myocarditis escalating by 1,708% and pneumonia by 
1,332%. In these 34 diseases, causal relationships have been confirmed for 23 
of them, while 28 garnered validation from hospital-based evidence. Notably, 
19 diseases obtained concurrent validation from both Granger causality and 
hospital-based data. Finally, the BSTS models approximated approximately 
4,332,655 inpatients diagnosed with pneumonia nationwide during the 2 
months subsequent to the policy relaxation.

Conclusion: This investigation elucidated substantial associations between 
COVID-19 and respiratory, circulatory, ophthalmological, and neurological 
disorders. The outcomes from comprehensive multi-dimensional cross-over 
studies notably augmented the robustness of our comprehension of COVID-
19’s disease spectrum, advocating for the prospective utility of internet-derived 
data. Our research highlights the potential of Internet behavior in predicting 
pandemic-related syndromes, emphasizing its importance for public health 
strategies, resource allocation, and preparedness for future outbreaks.

KEYWORDS

COVID-19, zero-COVID policy, Baidu search index, Granger causality test, Bayesian 
structural time series

1 Introduction

The global COVID-19 pandemic has posed an unprecedented 
challenge, registering over 700 million confirmed cases and an 
estimated 7 million fatalities globally by July 2023 (1). Conversely, as 
of December 23, 2022, China had reported 397,195 confirmed cases 
and 5,241 deaths (2). Employing stringent quarantine measures under 
the “Zero-COVID Strategy” from 2020 to late 2022 served as a pivotal 
approach in curtailing viral transmission and preserving the 
healthcare infrastructure in China (3). However, the end of this 
strategy on December 7, 2022, precipitated a significant upsurge in 
Omicron variant prevalence, a dominant strain in China. China’s 
distinctive demographic dynamics and policy framework present 
unique epidemiological complexities. As the most populous nation, 
it grapples with an aging populace, surpassing 267.36 million 
individuals aged 60 and above in 2019, where 75% endure chronic 
conditions like cardiovascular diseases, diabetes, and hypertension, 
posing intricate public health challenges. Remarkably, China has 
achieved an impressive vaccination coverage of 90.47%, with 88.01% 
completing the primary vaccination regimen and 47.61% receiving 
booster doses (4). Prior investigations in China primarily 
concentrated on clinical presentations among infected individuals 
within specific locales and medical facilities. However, a holistic 
comprehension of the diverse disease patterns emerging from 
theOmicron-COVID-19 surge subsequent to the Zero-COVID Policy 
remains elusive.

To address this disparity, we employed Baidu, China’s predominant 
search engine, commanding a market share of 78.4% as of December 
2021 (5). Leveraging disease-specific keywords from the Baidu Index 
(BDI) for a comprehensive nationwide evaluation. Our exhaustive 
multidimensional scrutiny, corroborated through Granger causality 
examinations and hospital-derived data, endeavors to shed light on 
the evolving landscape of COVID-19 ailments post the Zero-COVID 
Policy. This comprehensive elucidation endeavors to guide pandemic 
associated public health strategies and resource allocation.

2 Methods

2.1 Study design

Utilizing BDI, a comprehensive search for diseases was conducted. 
Lagged Spearman correlation analysis between “COVID-19 (Xin guan)” 
and other diseases was employed to investigate which diseases were 
likely to be  secondary to COVID-19 infection. Subsequently, 
we calculated the growth rate of diseases. If the p-value of the growth rate 
was less than 0.05, the peak of disease search data after the quarantine 
policy change was considered significant compared with the entire year.

Then Granger causality examinations and offline data were used to 
enhance the evidence grade of diseases with r > 0.5, because that the 
results derived solely from the internet, which were influenced by various 
factors, may not comprehensively represent the true scenario. Last, BSTS 
were deployed to predict the cumulative number of pneumonia 
inpatients nationwide within the 2 months following the policy change, 
because “Pneumonia” was included in the Chinese Statistics Yearbook 
(2021) (6). No patients or the public participation in this study (Figure 1).

2.2 Data collection

2.2.1 Internet data
We derived search data from BDI covering the period from 

January 1, 2021, to June 30, 2023, using a “PC + Mobile” type scope.

2.2.2 Offline data

2.2.2.1 COVID-19 nucleic acid reverse 
transcription-polymerase chain reaction (RT-PCR) test 
data

The data were obtained from two facilities, representative of both 
southern and northern regions in China from January 1, 2021, to June 
30, 2023.
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2.2.2.2 Hospital-confirmed diseases data
The data were collated from diverse hospitals across six regions in 

China, covering both outpatient and inpatient data from January 1, 
2021, to June 30, 2023.

2.3 Statistical analysis

2.3.1 Internet data addition (reducing information 
bias)

We aggregated search indices of standardized and colloquial 
expressions for each disease in the BDI to maximize the integrity of 
the search and obtain a comprehensive dataset. Studying all datasets 
for each disease as time series and visualizing their search curves using 
time series plots.

2.3.2 Lagged spearman correlation analysis of 
internet data (correlations between “COVID-19” 
and other diseases)

The time series plot revealed a significant peak in the nationwide 
search curve for “COVID-19” after the lifting of quarantine policies, with 
the intersection of the peak and the annual mean value line occurring on 
November 13, 2022, and January 7, 2023. These two intersections 
represented the start and end dates of the search peak for “COVID-19,” 
totaling 56 days. Lagged correlation analysis was performed between 
“COVID-19” and other diseases, grouping data in 56-day intervals. Each 
disease group commenced on November 13, 2022, shifting daily for 
maximally statistically significant r (p < 0.05, two-tailed).

2.3.3 Growth rate of diseases from internet data 
(degree of increase in diseases search data)

The maximum value for each disease occurred between December 
7, 2022, and February 7, 2023. We calculated the average of the 15 days 
before and after these values, defining it as the monthly average covering 
a total of 31 days. Equation 1 is then used to calculate the growth rate.

Growth rate Monthly average Annual average
Annual average
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Monthly average, centered around max value; Annual average, the 
mean value of the whole year preceding December 7th 2022.

The independent sample T-test was used to compare the monthly 
average and the annual average (p < 0.05, single-tailed).

2.3.4 Granger causality examinations of internet 
data (enhancing the evidence grade of results)

The time series for “COVID-19” and other diseases were selected 
from the 4 months before and 2 months after the lifting of quarantine 
policies (August 10, 2022, to January 4, 2023), totaling 180 days. The 
Augmented Dickey-Fuller test (ADF test) was used to test the 
stationarity of time series. This study employed ARIMA models with 
a lagged parameter (p) greater than 0 for Granger causality 
examinations, with a p-value <0.05.

2.3.5 Growth rate assessments of diseases from 
offline data (enhancing the evidence grade of 
results)

Two peaks of concentrated COVID-19 infections occurred in China 
after the quarantine policy change, within 2 months after the policy 

change (COVID-19 I wave) and from April to June 2023 (COVID-19 II 
wave). Using the same methods as previously described to calculate the 
growth rate of diseases from offline data for the two periods.

2.3.6 Bayesian structural time-series (BSTS) 
models (to predict the cumulative number of 
pneumonia inpatients)

The “CausalImpact” package in RStudio was used to fit the BSTS 
models by selecting the observed data of “Pneumonia” from January 
1, 2021 to December 6, 2022 on a weekly basis, and to predict the 
counterfactual situation for 2 months after December 7, 2022. 
Equations 2, 3 were used to calculate the cumulative number of 
pneumonia inpatients in China within 2 months after the quarantine 
change, defining it as ΔYt.
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ΔRD−BDI: Relative increase in Shantou city search data; ΔRW−BDI: 
Relative increase in nationwide search data; ΔRD−R: Relative increase 
in the number of inpatients at Hospital B; ΔRW−R: Relative increase in 
the number of inpatients in China; D: The proportion of cumulative 
search data for the term “pneumonia” in the BDI from December 7, 
2021, to February 4, 2022, compared with the entire year 2021; S: The 
number of pneumonia inpatients nationwide for the entire year 2021, 
as reported by the Chinese Statistics Yearbook (2021).

3 Results

3.1 Longitudinal BDI of “COVID-19” 
correlates with nucleic acid test of 
COVID-19

A distinct peak was evident in the time series plot of COVID-19, 
and a comparable pattern was observed in the instances of 
“Pneumonia” and “Myocarditis,” both recognized as associated with 
COVID-19 infection (Figure  2). We  calculated the RT-PCR test 
positivity rate from Beijing (with a monthly average testing capacity 
of 1,243,305 cases) and Shantou (with a monthly average testing 
capacity of 35,131 cases) (Supplementary Table S1). The positivity rate 
curve exhibited consistency with the internet data. This reinforced the 
reliability of utilizing internet data for disease spectrum analysis.

3.2 Correlation between “COVID-19” and 
diseases, as well as the growth rate of 
diseases from internet data

In this study, searches were conducted for a total of 198 diseases, 
of which 141 diseases yielded BDI search results. A total of 142 search 
terms including “COVID-19” and 141 diseases were analyzed 
(Supplementary Table S2).

Our analysis showed significant positive correlations between 
COVID-19 and a broad range of diseases, indicating that during the 
outbreak of the COVID-19 pandemic, the search index related to 
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specific diseases tended to increase. Among the 141 diseases, 127 
exhibited r greater than 0.5, and 16 diseases exhibited r exceeding 0.8, 
signifying a strong degree of association, with all associated p-values 
falling below the significance threshold of 0.05. Specifically, the top 
three diseases with the highest r were “Bronchiectasis” (r = 0.94), 
“Respiratory failure” (r = 0.93), and “Heart failure” (r = 0.92) (Figure 3).

As for the growth rate assessments of diseases from internet data, 
only 34 diseases passed the independent sample T-tests, including 
“Pneumonia,” “Myocarditis,” “Meibomian gland dysfunction (MGD) “, 
“Otitis media,” etc. (Figure 3). These diseases were distributed across 
systems: respiratory (13/34), circulatory (6/34), ophthalmic (6/34), 
neurological (4/34), gastrointestinal (2/34), endocrine (2/34), and 
otologic (1/34). The results show 12 diseases demonstrating growth rates 
exceeding 50%, including “Myocarditis,” “Pneumonia,” “Meibomian 
gland dysfunction,” “Acute upper respiratory infection,” “Bronchitis,” 
“Acute laryngitis,” “Chronic obstructive pulmonary disease,” “Tracheitis,” 
“Pericarditis,” “Acute respiratory distress syndrome”, “Hydropericardium,” 
and “Meningitis.” Two diseases exhibited the highest growth rate: 
“Myocarditis” at 1,708% and “Pneumonia” at 1,332%. This suggests that 
diseases secondary to COVID-19 were mainly concentrated in the 
respiratory and circulatory systems.

3.3 Granger causal test of “COVID-19” and 
diseases from internet data

The causality test results indicated statistically significant causal 
relationships among 23 out of the 34 diseases tested (Figure  3), 
showing high consistency (23/34), which prove most diseases with 
r > 0.5 secondary to COVID-19 infection.

The pulmonary embolism did not pass the ADF test, indicating 
potential non-stationarity in the time series of this disease (Table 1). 
The F-value was used to measure the strongest of causality. Notably, 
the top three diseases with the strength causal relationship were: 
“Pneumonia” (F = 18.00), “Acute upper respiratory tract infection” 
(F = 16.77), “Pleural effusion” (F = 12.02).

3.4 Growth rate of diseases from offline 
data

We gathered outpatient and inpatient data from a cohort of 
seven hospitals across diverse regions in China, as detailed in 
Table 2.

FIGURE 1

Schematic diagram of the methodology.
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3.4.1 COVID-19 wave I
The results from offline data analysis confirmed that 28 diseases 

showed meaningful growth during the first wave of COVID-19, which 

was highly consistent with the results from internet data (28/34) 
(Supplementary Table S5). The 28 diseases were similarly concentrated 
in the respiratory and circulatory systems. The other 6 

FIGURE 2

Time series plot of BDI search terms “COVID-19 (Xin guan)”, “Pneumonia” and “Myocarditis,” as well as Nucleic acid positivity rates calculated from 
RT-PCR test data. This time series graph was drawn with BDI data using the y axis on the left, and positive rate of RT-PCR data using y axis on the right.

FIGURE 3

Distribution of positive results from internet data by human body systems in lagged Spearman correlation analysis, growth rate assessments and 
Granger causality examinations. The red triangle represents the positive results in Granger test of BDI data. The red circle indicates that the disease 
existed growth rate with statistical significance in analysis of hospital data. “r,” correlation coefficient; “G,” Granger test; “H,” hospital data. MGD, 
meibomian gland dysfunction; AURI, acute upper respiratory infection; ARDS, acute respiratory distress syndrome; COPD, chronic obstructive 
pulmonary disease; IPF, idiopathic pulmonary fibrosis; DKA, diabetic ketoacidosis; CAC, coronary atherosclerotic cardiopathy; DN, diabetic 
nephropathy.
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diseases—“Meibomian gland dysfunction,” “Astigmatism,” “Asthma,” 
“Pericarditis,” “Liver injury,” and “Erectile dysfunction”—lacked 
positive findings from offline data.

3.4.2 COVID-19 wave II
The 28 diseases also showed a meaningful rise during the second 

wave across various hospitals (Figure 4). Longitudinally, the growth 

TABLE 1 Granger causality test of diseases from internet data.

Diseases ADF-test p-
values

Best fitted 
model

AIC RMSE F Granger 
causality p-

values

Asthma 0.66 ARIMA(1,0,0) 2463.15 221.76 2.98 0.0328

Parkinson disease 0.80 ARIMA(1,0,0) 2185.44 102.78 3.06 0.0296

Hepatic injury 0.16 ARIMA(3,0,2) 1890.80 44.16 3.07 0.0294

Pericarditis 0.31 ARIMA(1,0,3) 1923.02 48.59 3.46 0.0176

Cardiac failure 0.62 ARIMA(1,0,2) 2380.52 174.15 5.08 0.0022

Bronchitis 0.80 ARIMA(2,0,2) 2675.96 391.00 6.46 0.0004

Arrhythmia 0.42 ARIMA(1,0,1) 2233.04 116.49 6.51 0.0003

Conjunctivitis 0.55 ARIMA(1,0,0) 2592.13 316.98 6.76 0.0002

Respiratory failure 0.67 ARIMA(1,0,2) 2209.78 108.43 7.26 0.0001

Trachitis 0.82 ARIMA(1,0,1) 2035.43 66.80 7.97 0.0001

Chronic obstructive 

pulmonary disease
0.15 ARIMA(2,0,1) 2878.29 696.09 8.39 <0.0001

Diabetic ketoacidosis 0.63 ARIMA(3,0,2) 2300.13 137.32 8.94 <0.0001

Bronchiectasis 0.76 ARIMA(1,0,0) 2120.58 85.49 9.09 <0.0001

Acute laryngitis 0.46 ARIMA(2,0,1) 2475.64 225.98 10.33 <0.0001

Hydropericardium 0.71 ARIMA(3,0,0) 2192.64 103.25 10.88 <0.0001

Acute respiratory distress 

syndrome
0.85 ARIMA(1,0,0) 2011.78 63.25 11.14 <0.0001

Myocarditis 0.36 ARIMA(3,0,3) 3618.55 5314.31 11.56 <0.0001

Pleural effusion 0.55 ARIMA(1,0,0) 2091.29 79.07 12.02 <0.0001

Acute upper respiratory 

infection
0.28 ARIMA(2,0,1) 2891.57 715.83 16.77 <0.0001

Pneumonia 0.37 ARIMA(2,0,2) 3945.46 13410.76 18.00 <0.0001

Asynodia 0.30 ARIMA(1,0,1) 2722.48 453.68 2.62 0.0528

Coronary atherosclerotic 

cardiopathy
0.38 ARIMA(2,0,3) 3080.77 1203.89 2.29 0.0797

Astigmatism 0.53 ARIMA(3,0,4) 2388.33 172.47 2.14 0.0965

Otitis media 0.54 ARIMA(1,0,1) 2506.88 248.23 2.01 0.1140

Liver failure 0.12 ARIMA(1,0,0) 2076.66 75.88 2.01 0.1149

Migraine 0.81 ARIMA(1,0,0) 2551.88 283.31 1.67 0.1752

Meibomian gland 

dysfunction
0.61 ARIMA(2,0,1) 1787.05 33.42 1.42 0.2378

Cataract 0.97 ARIMA(1,0,0) 2365.80 169.03 1.30 0.2776

Pterygium 0.93 ARIMA(1,0,2) 2061.66 71.89 1.03 0.3824

Encephalitis 0.25 ARIMA(1,0,2) 2233.87 115.94 1.00 0.3940

Pharyngitis 0.56 ARIMA(2,0,1) 2632.79 349.38 0.98 0.4015

Keratitis 0.32 ARIMA(1,0,1) 2520.56 259.28 0.61 0.6102

Meningitis 0.52 ARIMA(1,0,0) 2371.58 171.83 0.31 0.8161

Pulmonary embolism 0.02
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rate of most diseases during the second wave was lower than in the 
first wave, indicating a potential decline in disease incidence. However, 
arrhythmia and COPD stood out with a higher growth rate during this 
period. When comparing internet searches and actual disease cases 
between the two waves, both showed distinct peaks during the first 
wave. However, there was a mild increase in actual cases during the 
second wave, but it was not mirrored in internet searches.

3.5 To predict the cumulative number of 
pneumonia inpatients

While our investigation utilizing both internet and offline data has 
elucidated which diseases are impacted by COVID-19 and to what 
extent, the exact nationwide incidence for specific diseases 
remains unknown.

According to the Chinese Statistics Yearbook (2021), public 
hospitals across China admitted a total of 3,251,958 pneumonia 
patients. Using the BSTS models, we predict that within 2 months after 
the implementation of unrestricted policies, the cumulative number 
of hospitalized pneumonia inpatients nationwide reached 4,332,655.

4 Discussion

This study amalgamated data from BDI, employing a multi-
faceted analysis encompassing lagged Spearman correlation analysis, 
growth rate assessments, independent sample T-tests, Granger 
causality, and BSTS models. The research aimed to delineate the 
disease spectrum of COVID-19 and prognosticate the cumulative 
count of pneumonia inpatients in China post the end of Zero-COVID 
Policy, substantiated by hospital-derived data. Adopting a macroscopic 

TABLE 2 Overview of offline data from various hospitals and Healthcare Security Administration of Shantou.

Organization Locate City level City population 
(thousands of people)

Cases (person-time)

Hospital A Shantou City, Guangdong Province (South China) Prefecture-level city 554.2 2,228,440

Hospital B Shantou City, Guangdong Province (South China) District/County 77.7 Inpatient: 19,448

Outpatient: 87,613

Hospital C Jining City, Shandong Province (East China) District/County 115.2 Inpatient: 548,336

Hospital D Yulin City, Shanxi Province (Northwest China) Prefecture-level city 361.6 Inpatient: 539,129

Outpatient: 611,516

Hospital E Zhengzhou City, Henan Province (Central China) Prefecture-level city 1282.8 Inpatient: 654,215

Outpatient: 1,899,789

Hospital F Enping City, Jiangmen City, Guangdong Province 

(South China)

County-level city 48.4 Inpatient: 826,702

Hospital G Huining County, Baiyin City, Gansu Province 

(Northwest China)

District/County 58 Inpatient: 45,703

Outpatient: 62,877

Sum 2420.2 7,638,165

FIGURE 4

Time series plot of “Pneumonia” from internet data and Hospital D inpatient data. (This time series plot was drawn with BDI data using the y axis on the 
left, and hospital data using y axis on the right.) (A) Displays three time series plot for pneumonia inpatient data of Hospital D, “Pneumonia” and 
“COVID-19 (Xin guan)” data in the BDI during the first peak period (November 2022 to February 2023). In (B), displays three time series plot for 
pneumonia inpatient data of Hospital D, “Pneumonia” and “Reinfection (Er yang)” data in the BDI during the second peak period (April 2023 to June 
2023).
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viewpoint across the national populace, our study offers insights into 
the far-reaching impact of COVID-19 on various diseases. This 
broader perspective contributes significantly to understanding the 
intricacies of pandemic dynamics, potentially aiding in the judicious 
allocation of healthcare resources for effective mitigation efforts.

The comprehensive analysis of 34 diseases linked to COVID-19 
reveals a predilection for impacts within the respiratory and circulatory 
systems. Among these, 15 diseases lacked Granger causality or hospital-
based data support, while 19 exhibited substantial and corroborative 
evidence across multiple fronts—including internet data, causal 
relationship tests, and offline data validation—signifying a more 
definitive association with COVID-19 infection. This disease spectrum 
reaffirms the predominant influence of COVID-19 on the respiratory 
and circulatory systems, aligning with established research patterns 
(7–9). The established correlation underscores the importance of 
recognizing the broader ramifications of the pandemic on systemic 
health, urging a comprehensive approach to public health considerations.

Our investigation notably identified “Otitis media” within the 
spectrum of diseases, substantiated by a convergence of internet and 
offline data. This finding contrasts with prior research indicating a 
reduced incidence during the pandemic (10, 11). The intricate 
pathophysiological mechanisms implicated encompass viral infections, 
immune responses, and inflammatory processes (9, 12). This discrepancy 
may be attributed to factors such as race, viral strains, and other variables 
that warranting further in-depth examination.

Employing multidimensional analytical methodologies 
significantly enhances the integrity and precision of findings. Among 
the 34 diseases showing moderate to strong correlations (r > 0.5) in 
lagged Spearman correlation analysis based on BDI, 23 demonstrated 
correlations substantiated by Granger causality examinations, while 28 
revealed correlations supported by offline hospital data. Notably, 19 
diseases exhibited concurrent support from both Granger causality 
examinations and hospital data, signifying a heightened level of 
evidence reinforcing the association between COVID-19 and these 
diseases. This convergence of evidence from diverse methodologies 
bolsters the validity of the observed associations between COVID-19 
and the spectrum of illnesses studied, elucidating the intricate network 
of connections between COVID-19 and various diseases. For instance, 
analysis of internet data suggested potential associations between 
diseases like “Pterygium” and “Cataracts” with COVID-19, although 
causality tests were inconclusive. A thorough review of the respective 
time series plots indicated search curve trends of initial decline 
followed by an increase post-policy change, hinting at potential 
inaccuracies due to rebound medical-seeking behavior (13). 
Furthermore, the appearance of the search term “MGD” on BDI on 
October 20, 2022, lacking historical data for pre-pandemic annual 
averages, resulted in false-positive outcomes.

This discovery emphasizes the necessity for meticulous scrutiny 
and cautious interpretation of web-based data while examining the 
disease landscape. It accentuates the pivotal role of cross-referencing 
with clinical archives. Employing multifaceted analytical approaches 
becomes imperative to expedite the identification of such misleading 
outcomes. This comprehensive strategy aids in delineating a more 
exhaustive portrayal of disease dynamics post-policy modification.

Employing the BSTS model, our projection suggests a nationwide 
total of 4,332,655 hospitalized pneumonia cases within 2 months 
following the discontinuation of the Zero-COVID policy. This estimation, 
exceeding the 2021 Chinese Statistical Yearbook’s recorded pneumonia 
inpatients by approximately one million, likely presents a conservative 

figure. Notably, our forecast encapsulates solely hospitalized instances, 
excluding a multitude of mild pneumonia cases managed in outpatient 
settings. Additionally, resource limitations during outbreaks may 
potentially skew the representation of severe pneumonia cases, implying 
an inherent underestimation in our projected count with the genuine 
incidence Diverse hospital specialties and competencies serve as magnets 
for patients inclined toward specific disease profiles, resulting in disparate 
disease propagation rates. Hospitals dedicated to particular medical 
realms often observe elevated disease incidences pertinent to their 
expertise. Thus, amalgamating both the Baidu search engine and hospital-
derived data becomes imperative to craft a more encompassing narrative 
that closely mirrors real-world scenarios.

Throughout the secondary surge of COVID-19, several ailments 
manifested a subsequent rise in offline data. This latter peak 
demonstrated a marked reduction compared to its antecedent, 
potentially attributed to diminished possibilities of reinfection or 
attenuated symptomatology observed in individuals possessing 
inherent or hybrid immunity against SARS-CoV-2. Furthermore, the 
dispersed distribution of cases during the second wave extended its 
duration and augmented the pinnacle of the surge. A prior investigation 
(14) projected a surge in mortality, approximating 1.87 million deaths 
within the initial two months subsequent to the cessation of China’s 
Zero-COVID Policy. These deaths, prevalent among the older adult 
and vulnerable cohorts during the initial outbreak, likely contributed 
to the downturn observed in the secondary peak.

Notably, the absence of the second peak in online data, contrary 
to offline data, prompts consideration. This divergence potentially 
signifies reduced public engagement during the secondary surge, 
indicating the potential suitability of internet-derived data for 
studying abrupt occurrences.

The study’s reliance on BDI for internet data implies potential 
limitations. The integration of diverse platforms such as WeChat Index 
and Weibo Index appears as a promising approach to bolster the 
robustness of our findings. The hospital data’s focal point within 
specific Chinese provinces—Shandong, Shaanxi, Gansu, Henan, and 
Guangdong—poses a restriction. Future investigations should aim for 
a comprehensive national scope, encompassing data from all provinces. 
This strategic expansion accounts for regional disparities attributed to 
geographic, climatic, and socioeconomic variations, crucial for a more 
accurate depiction of the nationwide disease spectrum.

The present study, however, is subject to certain limitations. There are 
concerns about sampling bias, because BDI is related to internet access 
and search behavior. In addition, this study does not encompass all 
significant diseases. To obtain a more comprehensive understanding of 
the situation, it is imperative to expand the research scope in future studies.

5 Conclusion

Our investigation delved into the impact of COVID-19 on post-
Zero-COVID Policy disease patterns. Following the termination of 
China’s Zero-COVID policy, our study unveiled BDI indicators 
linking Omicron variant infections to a spectrum encompassing 
respiratory, circulatory, ophthalmological, and neurological disorders. 
These findings, backed by Granger causality examinations and 
hospital data, carry substantial implications. Leveraging the BSTS 
model, our estimation surpassed 4.3 million nationwide pneumonia 
inpatients within 2 months of policy relaxation. The potential of 
search engines in forecasting pandemic-related syndromes offers 
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crucial insights for public health strategies, resource allocation, and 
future outbreak preparedness.
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