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Introduction: Diabetic retinopathy grading plays a vital role in the diagnosis and

treatment of patients. In practice, this task mainly relies on manual inspection

using human visual system. However, the human visual system-based screening

process is labor-intensive, time-consuming, and error-prone. Therefore, plenty

of automated screening technique have been developed to address this task.

Methods: Among these techniques, the deep learning models have

demonstrated promising outcomes in various types of machine vision

tasks. However, most of the medical image analysis-oriented deep learning

approaches are built upon the convolutional operations, which might neglect

the global dependencies between long-range pixels in the medical images.

Therefore, the vision transformer models, which can unveil the associations

between global pixels, have been gradually employed in medical image analysis.

However, the quadratic computation complexity of attention mechanism has

hindered the deployment of vision transformer in clinical practices. Bearing

the analysis above in mind, this study introduces an integrated self-attention

mechanism with both softmax and linear modules to guarantee e�ciency

and expressiveness, simultaneously. To be specific, a portion of query and key

tokens, which are much less than the original query and key tokens, are adopted

in the attention module by adding a set of proxy tokens. Note that the proxy

tokens can fully utilize both the advantages of softmax and linear attention.

Results: To evaluate the performance of the presented approach, the

comparison experiments between state-of-the-art algorithms and the proposed

approach are conducted. Experimental results demonstrate that the proposed

approach achieves superior outcome over the state-of-the-art algorithms on

the publicly available datasets.

Discussion: Accordingly, the proposed approach can be taken as a potentially

valuable instrument in clinical practices.
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1 Introduction

As a chronic disease, diabetes occurs either when the body cannot produce enough

insulin or cannot effectively use the insulin (1). Diabetes has an influence on millions of

people around the world in every year. In the past decades, there have been more than 450

million people considered to suffer from either Type 1 or Type 2 diabetes (2). Diabetes

can cause damage to multiple human organs, including eyes, heart, kidneys, and nerves.

Diabetic retinopathy (DR) is extensively considered as long-term complication caused by

diabetes. DR, which is accepted as a significant causes of blindness globally, can adversely
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affect the blood vessels in the retina and even result in total vision

loss (3). About 30 percents of the patients with diabetes will develop

DR, which usually remains undiscovered until DR has reached a

certain stage when the effective treatment is unable to receive.

The development of DR can be roughly categorized into

different stages, which are determined by a variety of structural

lesions appearing in fundus images. Typically, the lesions consists

of the followings: hard exudate, soft exudate, hemorrhage,

microaneurysm, and neovascularization. These lesions usually

manifest as minute objects in retinal images and make a huge

contribution to DR grading in clinical practices. Accordingly,

accurate detection of these lesions and accompanying DR grading

pose a great challenge to the medical diagnosis (4, 5). Meanwhile,

tiny DR lesions at early stage can also be difficult to recognize since

they are hard to to distinguish from blood vessels. Currently, the

treatments for DR rely on accurate DR grading to slow down the

development of vision impairment. However, manual identification

of DR lesions in retinal images is time-consuming, error-prone,

and labor-tedious. In addition, the underdeveloped areas usually

lack of ophthalmologists and advanced equipment to implement

DR grading manually. Therefore, automatic DR grading in retinal

images has attracted considerable attention in the field of both

machine vision and ophthalmology. DR lesion detection includes

the recognition of various types of lesions, and DR grading aims at

evaluating the severity of DR in a retinal image. Both tasks play a

vital role for early diagnosis of DR.

In recent years, the deep learning models have shown their

promising outcomes in a great deal of areas, including machine

vision and natural language processing. In addition, numerous

endeavors have been made to DR lesion detection and DR grading.

After the early work of Google in 2016 for classification of DR in

fundus images, Hunt et al. (6) presented a low-shot, self-supervised

deep learning method for classification of retinal fundus images.

The low-shot mechanism of learning in this work resolved the

problem of insufficient image samples. To implement the detection

of DR at its early stage, the study of (7) proposed an investigation

of the applications of deep learning models for retinal image

classification. In general, the deep learning architectures, including

the conventional convolutional neural network (CNN) and other

deep CNNs, were incorporated in this survey. In the work of Tak

et al. (8), a deep CNNmodel was trained to classify diseased retinal

images. Accordingly, 420 wide-field retinal images were included

in the training process for discriminating the exudate and non-

exudate cases. Umamageswari et al. (9) proposed an approach

to identify exudates and veins with retinal images for diagnosing

diabetics. Specifically, a CNN was proposed for retinal image

recognition. Recently, to segment and classify the retinal images in

a unified way, Kumari et al. (10) proposed an efficient CNNmodel.

The input images for the proposed model were pre-processed

using the green channel images, histogram-based algorithms, and

noise elimination techniques. The features were extracted from

the segmented images using the watershed algorithm as well as

principal component analysis (PCA) technique. Meanwhile, the

publicly available datasets used in this study are DRIVE (11),

STARE (12), and CHASE DB1 (13). Moreover, Ilesanmi et al.

(14) systematically reviewed the applications of CNN in both

segmentation and classification of fundus images.

Different from the CNN-based models, a great deal of vision

transformer-based models have been proposed to deal with retinal

image classification tasks. Note that the vision transformer models

can eliminate the disadvantages of convolutional modules, such as

local receptive fields. For instance, Wang et al. (15) presented a

vision transformer model called retinal ViT, which incorporates the

self-attention mechanism into the field of medical image analysis

and has outperformed the state-of-the-art algorithms in terms of

various evaluation metrics. Yang et al. (16) attempted to classify

referable DR based on large-size retinal images using a vision

transformer. A vision transformer with masked autoencoders

(MAE) was applied to improve the classification performance.

Karn and Abdulla (17) presented a model called the dual-scale

twin vision transformer for retinal disease classification using

OCT images. This model combines the advantages of dual-scale

representation learning and the twin transformer architecture to

improve disease classification accuracy.

Bearing the above-mentioned analysis in mind, this study

proposes a novel vision transformer model to implement lesion

detection and DR grading in an end-to-end fashion. Note that

the attention mechanism in the proposed model can reveal the

global associations between long-range pixels in the images. On the

other hand, the proposed attention module can significantly reduce

its consumption of computing resources during the calculations

of global associations between distant pixels. In general, a novel

attention mechanism is introduced into the conventional vision

transformer model (18). It is notable that the proposed attention

module is inspired by the work of Han et al. (19), which provides

the agent attention module. Then, the proposed attention module

integrates both the softmax and pooling operations. In addition,

the presented approach exploits the idea of agent attention (19)

while adding a different type of agent token. To be specific, the

proposed vision transformermodel first generates the query tokens,

key tokens, and value tokens. Then, the agent tokens are down-

sampled from the query tokens to represent the global information

of the images. Meanwhile, in addition to the agent tokens for query

tokens, the agent tokens for key tokens are also leveraged to capture

the local features from the images. In the following process, both

the query agent tokens and key agent tokens are integrated and

broadcasted to the query tokens, which can further enhance the

expressiveness of the proposed vision transformer. Note that the

positional token can be incorporated into the proposed architecture

to provide position information for the features. To evaluate

the proposed approach, we conducted comparison experiments

between state-of-the-art methods and our method on the publicly

available datasets for both lesion classification and DR grading.

Experimental results of the proposed method demonstrate the

superiority of this work over the state-of-the-art in terms of a set

of evaluation metrics. The main contributions of this study can be

summarized as follows:

In general, the main contributions of this study can be

summarized as:

• A novel vision transformer-based pipeline for retinal image

classification is proposed.

• Due to the characteristics of retinal images, an integration of

softmax and linear attention was presented.
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• Experimental results demonstrate the value of the proposed

model in clinical practice.

The rest of this article is summarized as follows: The specifics

of the proposed pipeline are outlined in Section 2. Section 3

outlines the experimental details employed to evaluate the efficacy

of the suggested technique. In addition, Section 3 also provides the

discussion of this study. Finally, the study’s conclusion is presented

in Section 4.

2 Methodology

In this section, we mainly describe the details about the

proposed approach based on vision transformer. To be specific, to

address lesion classification and DR grading in retinal images, we

introduce a novel attention mechanism, inspired by the work of

agent attention (19), into the vision transformer (18) architecture.

As depicted in the following content, the original agent attention

(19) is an attention paradigm that integrates the strengths of both

Softmax and linear attention mechanisms, as shown in Figure 1.

It is designed to balance computational efficiency with

representational power, particularly useful for vision tasks

involving transformers. Mathematically, the agent attention can be

described as a two-step process involving agent aggregation and

agent broadcasting, denoted as a quadruple (Q, A, K, V), where Q

represents the query tokens, A are the agent tokens, K are the key

tokens, and V are the value tokens, as shown in Figure 2.

Agent aggregation: In its first step, the agent tokens A

aggregate information from the key-value pairs (K, V). This is

achieved through a self-attention mechanism with A acting as

queries, and (K, V) as key-value pairs. The output of this step is

denoted as VA, which is calculated as Equation 1:

VA = softmax

(

AKT

√
d

)

V (1)

As shown in Equation 1, the softmax denotes the softmax

function, d is the dimensionality of the embeddings, and the

operation aggregates the values associated with each agent token

based on the softmax attention over the keys.

Agent broadcasting: The second step involves broadcasting

the aggregated information back to the original query tokens Q.

This is done by treating Q as queries and VA as key-value pairs.

The mathematical expression of the final output O is provided in

Equation 2:

O = softmax

(

QAT

√
d

)

VA (2)

In this procedure, each query token receives a weighted sum

of the aggregated agent features, with weights determined by the

softmax attention between Q and the agent tokens. The power

of agent attention lies in its ability to leverage a smaller number

of agent tokens compared to the number of query tokens, which

results in reduced computational complexity while maintaining the

global context modeling capability.

To implement agent attention, the projection matrices need to

be defined to transform the input tokens into query, key, and value

representations, respectively. The agent tokens A are then obtained

through a pooling operation on the query tokens Q. The two-

step attention process is then applied as described above, with the

softmax function computing the attention weights and the resulting

outputs being passed through a feed-forward network to produce

the final output.

2.1 Proxy attention: the improved agent
attention

To further improve the performance of the proposed approach,

we introduce proxy token, which is based on the key token used

in the original agent attention (19) module. This would require

subtle adjustments and innovations to the original agent attention

framework. The purpose of doing this is to further enhance

the model’s ability to capture local features and to enhance the

performance of the proposed vision transformer (as shown in

Figure 3) model by adding different types of agent tokens.

The proxy attention mechanism is designed to leverage the

strengths of both global and local attention. To be specific, the

first set of proxy tokens, derived from the query tokens, is effective

for capturing the global context of the image. However, for tasks

like retinal image analysis, where fine-grained details are crucial,

the local features are just as important. Retinal images contain a

wealth of local features that are indicative of specific pathologies.

For instance, microaneurysms in diabetic retinopathy appear as

small, localized bright spots, and exudates can manifest as small,

yellowish deposits. Traditional global attention mechanisms might

overlook these subtle local features due to their focus on the overall

image context. The key tokens in the transformer architecture

can be used to capture the presence and relationships of features

across the entire image. By generating a second set of agent tokens

directly from the key tokens, the proposed model can afford a more

nuanced exploration of these features. To note that the second set of

agent tokens acts as a spotlight, directing the model’s focus toward

the intricate local patterns and textures that are indicative of specific

retinal pathologies.

As demonstrated in Figure 3, the multi-encoders are composed

of the proposed encoder, as provided in Figure 4.

In addition, each encoder contains the proposed proxy

attention module, as shown in Figure 5.

To incorporate the Key-based agent tokens, the following

steps need to be incorporated: First, retain the original agent

tokens generated from the query tokens. These agent tokens are

responsible for aggregating global information; Secondly, a new

mechanism can be designed to generate a second set of agent

tokens from key tokens. This set of agent tokens can focus on

capturing local or specific types of feature information; Then,

during the attention computation process, these two sets of agent

tokens can be combined, in order to utilize both global and

local information, simultaneously. In this process, the model we

propose initially extracts features from the input image through a

feature extraction layer, and then generates query tokens (Q), key

tokens (K), and value tokens (V). Subsequently, we aggregate Q
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FIGURE 1

The structures of Softmax attention and linear attention (Q represents the query tokens, K denotes the key tokens, V are the value tokens, T denotes

matrix transpose operation, and Softmax denotes the the softmax function).

FIGURE 2

The details of the introduced agent attention (Q represents the query tokens, A are the agent tokens, K denotes the key tokens, V are the value

tokens, T denotes matrix transpose operation, and softmax denotes the the softmax function).

to generate the original proxy tokens (A1), which represent the

global information of the image. In parallel, we also generate proxy

tokens based on Keys (A2) from K, which may focus on capturing

local features or specific types of information within the image.

In addition, the algorithm flowchart of this process is provided in

Algorithm 1.

To note that the traditional attention mechanisms, including

those used in vision transformers, have a quadratic complexity

with respect to the sequence length due to the need to compute

pairwise interactions between all tokens. The proposed attention

mechanism mitigates this by reducing the number of tokens

through pooling operations before computing attention, thus

transforming the quadratic complexity into a more manageable

linear complexity. It should be noted that this improvement

may increase the complexity and computational burden of

the model because it introduces additional agent tokens and
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FIGURE 3

The architecture of the proposed vision transformer with the improved encoder with the proxy attention. MLP denotes multilayer perceptron.

corresponding computational processes. Therefore, in practical

applications, it is necessary to weigh the relationship between

the performance gains brought about by this improvement

and the additional costs, and to decide whether to adopt

this hybrid agent token approach based on specific tasks and

resource constraints.

3 Experiments

3.1 Dataset

In this section, we sequentially provide the experimental

settings, ablation studies, and the experimental results using the

proposed approach and the competing algorithms. The proposed

vision transformer-based model was deliberately crafted using

renowned public datasets for Diabetic Retinopathy (DR) grading,

specifically the APTOS2019 database (21) and the Messidor

dataset (22). The APTOS2019 database encompasses a collection

of 3,662 fundus images, each annotated with one of the five

grades of DR, as detailed in Table 1. In alignment with prevailing

benchmarks (23–27), we employed a rigorous 10-fold cross-

validation framework to assess the performance of our model on

the APTOS2019 dataset.

Conversely, the Messidor dataset comprises 1,200 fundus

images, complete with DR grading and diabetic macular edema

(DME) annotations, as outlined in Table 1. For a fair comparison

with existing literature (25, 28), we focused on images classified

as DR grades 0 and 1 from the Messidor dataset, utilizing a 10-

fold cross-validation approach for this binary classification task.

Moreover, we harnessed the complete Messidor dataset to refine

our model for the DR grading task, thereby enhancing its clinical

applicability and robustness.

3.2 Implementation details

For the pre-training of our proposed vision transformer model,

we utilized the expansive ImageNet ISLVRC20121 dataset, which

serves as a rich repository of natural images. This dataset comprises

over 120 million images spanning 1,000 distinct classes. To align

with the requirements of the vision transformer architecture, we

resized the images from the ImageNet ISLVRC2012 dataset to a

uniform resolution of 256 × 256 pixels for the duration of the

pre-training phase. Our model’s initialization diverges from that

of the original vision transformer as presented in (18), in that we

did not employ pre-trained weight parameters. Instead, we chose

to initialize our model’s weight parameters based on a specific

iteration of the ImageNet dataset (29), eschewing the traditional

random initialization strategy.

The pre-training phase of our model is structured as a multi-

classification task, with the objective function defined by the binary

cross-entropy loss. This loss function is integral to the training

process and is depicted in Equation 3 for clarity and reference.

This approach ensures that our model is finely tuned to the

characteristics and distribution of the natural image data present in

the ImageNet ISLVRC2012 dataset, providing a robust foundation

for subsequent fine-tuning and task-specific training.

Loss(y, y′) =
C
∑

i=1

yilog(y
′

i), (3)

where y and y′ denote the ground-truth label and prediction of the

label, respectively.

1 https://www.image-net.org/challenges/LSVRC/index.php
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FIGURE 4

The improved encoder module in the proposed vision transformer

model. MLP denotes multilayer perceptron and Norm represents

normalization operator.

The hyper-parameters employed in our proposed vision

transformer model are meticulously detailed in Table 2. We utilize

both grid search and random search techniques to explore a

comprehensive hyperparameter space. This included the learning

rate, batch size, number of layers, and epochs. To address the

varying sizes of image patches, we interpolate the corresponding

position embeddings for each patch. This interpolation technique

ensures that the model can effectively handle a diverse set of

image patches by providing appropriate positional context, which

is essential for the transformer’s attention mechanism to function

optimally. In the context of retinal image classification, our

model is trained using the cross-entropy loss function, which

serves as the supervisory signal for both the feature extractor

and the classification module, as depicted in Equation 3. This

loss function is instrumental in guiding the model to learn

discriminative features that are critical for accurate classification of

retinal conditions.

During the training phase, a comprehensive suite of data

augmentation techniques is implemented to enhance the

robustness and generalizability of the model. Data augmentation

techniques are applied more aggressively to the minority class

to artificially increase its representation in the training set. This

includes transformations such as rotations, flips, and zooms,

which help the model generalize better to new, unseen data. The

development and training of the model are facilitated by the

PyTorch framework (30), which is renowned for its flexibility and

efficiency in deep learning applications. Our training infrastructure

is bolstered by 4 NVIDIA Tesla V100 GPUs, which provide

the computational prowess necessary for handling the complex

operations involved in neural network training. On average, the

model processes each image in 420 milliseconds, ensuring that the

training pipeline is conducted in a timely and efficient manner.

In our experimental evaluation, we adopt a comprehensive set

of metrics to thoroughly assess the performance of the model.

These metrics include the Area Under the Curve (AUC), which

measures the model’s ability to distinguish between different

classes; Accuracy (Acc), which quantifies the proportion of correct

predictions; Sensitivity, which evaluates the model’s ability to

correctly identify positive instances; Specificity, whichmeasures the

model’s ability to correctly identify negative instances; Precision,

which assesses the proportion of correctly identified positive

instances among all instances classified as positive; and the F1 score,

which is the harmonic mean of Precision and Sensitivity, providing

a single metric that balances. In addition, we have also exploited the

G-Meanmetric to better illustrate the geometric mean of Sensitivity

and Specificity, which is particularly useful for evaluating models in

imbalanced datasets.

Acc =
TP + TN

TP + TN + FP + FN
, (4)

Sensitivity =
TP

TP + FN
, (5)

Specificity =
TN

TN + FP
. (6)

Precision =
TP

TP + FP
, (7)

F1 score = 2 ∗
Precision× Sensitivity

Precision+ Sensitivity
, (8)

G−Mean =
√

Precision× Sensitivity, (9)

where the terms TP (True Positive), TN (True Negative), FP

(False Positive), and FN (False Negative) have specific meanings:

TP denotes the number of instances where the model correctly

predicted the positive class; TN represents number of instances

where the model correctly predicted the negative class; FP describes

the number of instances where the model incorrectly predicted the
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FIGURE 5

The details of the improved agent attention module, dubbed proxy attention [Q represents the query tokens, K denotes the key tokens, and V are the

value tokens. WQ, WK , and WV denote the weighting matrices for queries, keys, and values. In addition, the Bias denotes the bias component inspired

by the work of (20). To note that the pooling operations are both max-pooling].

positive class when it was actually negative; FN is the number of

instances where the model incorrectly predicted the negative class

when it was actually positive.

1: procedure ProxyAttention(Q, K, V)

2: A1 ← Downsample(Q) ⊲ Generate proxy tokens for

global information

3: A2 ← Downsample(K) ⊲ Generate proxy tokens for

local features

4: VA ← SelfAttention(A1,K,V) ⊲ Agent

aggregation

5: O← SelfAttention(Q,A1,VA) ⊲ Agent

broadcasting

6: O← O+ SelfAttention(Q,A2,V) ⊲ Incorporating

local features

7: return O

8: end procedure

Algorithm 1. Proxy attention mechanism.

In addition, two more metrics are introduced to provide a

deeper understanding of the model’s performance: Weighted F1

Score (wF1), which is a variant of the F1 score that takes into

account the distribution of the classes. It calculates the F1 score

for each class and then averages them, weighted by the number

of instances in each class. This is particularly useful when dealing

with imbalanced datasets, as it ensures that the performance on the

minority class is not overshadowed by the majority class; Weighted

Kappa (wKappa), which is a measure of inter-rater agreement that

accounts for the agreement occurring by chance. The weighted

Kappa extends this concept to the classification task, where it

measures the agreement between the predicted labels and the true

labels, considering the distribution of the classes. It is particularly

valuable in medical image analysis, where it can provide insights

into the consistency and reliability of the model’s predictions.

3.3 Ablation study

To meticulously assess the efficacy of the various components

within the proposed model, we executed a series of ablation

studies. These studies were designed to measure the performance

impact of different inner modules when integrated into the vision

transformer architecture. To note that the number of encoders

(E) denotes the quantity of encoders used in the proposed vision

transformer model. And the number of heads (H) represents the

quantity of attention heads in the proposed encoder module. The

results of the ablation studies, which detail the performance of

the model with various architectural configurations, are compiled

in Table 3 for the APTOS2019 dataset and Table 4 for the

Messidor dataset. These tables provide invaluable insights into

the contribution of each module and serve as a foundation for

understanding the architectural decisions that lead to the most

effective model performance in the context of DR grading.

Tables 3, 4 demonstrate the performance sensitivity of the

proposed model to the number of attention heads and layers.

The results reveal that optimizing these parameters can lead

to significant improvements in the model’s performance across

both the APTOS2019 and Messidor datasets. In the context of

the DR grading task, the model’s proficiency, as gauged by the

AUC, Accuracy, wF1, and wKappa metrics, is observed to increase

with the incorporation of a greater number of datasets and
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TABLE 1 The detailed distribution of APTOS2019 and Messidor datasets.

Class No. of images in
APTOS2019

No. of images in
Messidor

DR 0 1,805 546

DR 1 370 153

DR 2 999 247

DR 3 193 254

DR 4 295 -

Total 3,662 1,200

TABLE 2 The leveraged hyper-parameters values of the proposed

approach.

Parameter Setting

Batch size 8

Classes 5 (DR grading) or 2 (Binary)

Image resolution 256× 256

Optimizer Adam

Learning rate 1e-5

Patch size 16

Depth 12

Epochs 500

attention heads. This trend underscores the benefits of an expanded

representational capacity, which allows the model to capture more

nuanced patterns and relationships within the medical images.

Similarly, for the lesion detection task, there is a discernible

enhancement in the AUC, Accuracy, F1 Score, Sensitivity, and

Precision when the model is configured with an increased number

of layers and attention heads. This suggests that a more complex

model structure is better equipped to handle the intricacies of the

detection task, leading to more accurate predictions and a more

robust classification performance.

The findings from the ablation studies point toward the

potential for further performance gains through the introduction

of additional training samples and the practice of fine-tuning. By

expanding the model’s exposure to a broader range of data, and by

adjusting the model’s parameters to better align with the specific

characteristics of the task at hand, it becomes possible to achieve

a more refined and effective prediction pipeline. This insight is

crucial for guiding future research and development efforts aimed

at enhancing the capabilities of the vision transformer for medical

image analysis.

3.4 Comparison experiments

3.4.1 Lesion detection
Furthermore, to assess the efficacy of our proposed approach

in the context of lesion detection, we conducted comparative

experiments with state-of-the-art methods on the binary

classification task using the entire Messidor dataset. The

TABLE 3 Outcome of the ablation study on 30% APTOS2019 of the

proposed approach with di�erent combinations of E and H.

Model Number of
encoders

(E)

Number of
heads (H)

AUC (%)

E_2_H_2 2 2 94.3

E_2_H_4 2 4 94.8

E_4_H_2 4 2 95.1

E_4_H_4 4 4 95.3

E_8_H_4 8 4 95.2

E_8_H_8 8 8 95.8

TABLE 4 Outcome of the ablation study on 30%Messidor of the proposed

approach with di�erent combinations of E and H.

Model Number of
encoders

(E)

Number of
heads (H)

AUC (%)

E_2_H_2 2 2 94.6

E_2_H_4 2 4 93.9

E_4_H_2 4 2 94.7

E_4_H_4 4 4 95.2

E_8_H_4 8 4 95.8

E_8_H_8 8 8 95.5

comparing techniques consist of the followings, Pires et al.

(31), CKML Net/LGI (32), CANet (25), Comprehensive CAD (33),

DSF-RFcara (34), Expert (33), Multi-task Net (35), MTMR-Net

(36), Zoom-in-Net (37), CANet + MultiTask (25), SKD (28), and

CNN+Vision Transformer (38). The comparison encompassed

a range of performance metrics to ensure a comprehensive

evaluation. As indicated by the results, our proposed method

exhibited a superior performance across multiple evaluation

metrics. Specifically, it outperformed existing state-of-the-art

methods in terms of AUC (97.3%), Acc (96.9%), F1 Score

(94.7%), Sensitivity (94.1%), and Precision (95.4%), as shown

in Table 5. These metrics can reflect the specific models’ ability

while providing a more subtle understanding of its classification

capabilities. To note that we calculated 95% confidence intervals

for the performance metrics of our model and the other models.

Confidence intervals provide a range within which we can expect

the true population parameter to lie with a certain level of

confidence, offering a measure of precision for our estimates.

The performance in AUC indicates that our model has a better

ability to rank correctly classified instances higher than incorrectly

classified ones. The enhanced F1 Score and Sensitivity suggest that

our model is more effective in capturing the presence of lesions

without overlooking instances that are actually positive. Similarly,

the improved Precision reflects themodel’s capability to confidently

predict positive instances with a lower likelihood of false positives.

To ensure an equitable comparison with contemporary

algorithms, we also conducted binary classification experiments

on a subset of the Messidor dataset. This subset comprised

500 healthy images (DR grade 0) and 500 images with varying
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TABLE 5 Comparison between the state-of-the-art techniques and the proposed method on entire Messidor dataset (%).

Model AUC Acc F1 score Sensitivity Precision G-Mean

Pires et al. (31) 86.3 - - - - -

CKML Net/LGI (32) 89.1 89.7 - - - -

CANet (25) 89.5 81.0 - - - -

Comprehensive CAD

(33)

91.0 - - - - -

DSF-RFcara (34) 91.6 - - - - -

Expert (33) 94.0 - - - - -

Multi-task Net (35) 94.8 89.9 87.7 85.7 89.7 87.7

MTMR-Net (36) 94.9 90.3 88.3 86.7 90.0 88.3

Zoom-in-Net (37) 95.7 91.1 - - - -

CANet + MultiTask (25) 96.3 92.6 91.3 92.0 90.6 91.3

SKD (28) 96.8 96.9 93.0 93.3 92.7 93.0

CNN+Vision

Transformer (38)

97.1 96.5 94.5 93.8 95.2 94.5

Our proposed model 97.3 96.9 94.7 94.1 95.4 94.7

Acc. denotes accuracy.

degrees of DR (DR grades 1, 2, and 3). The results of these

comparative experiments are summarized in Table 6, where the

proposed method demonstrates exceptional performance across

several metrics, including Acc and Specificity. Overall, the strong

performance in Acc and Specificity positions the proposed method

as a formidable contender among state-of-the-art algorithms for

the task of binary classification in retinal image analysis.

3.4.2 DR grading
For DR grading, we also conducted a series of comparison

experiments on the APTOS2019 dataset, pitting our approach

against a variety of state-of-the-art algorithms. The algorithms

selected for comparison include ResNet34 (23), DLI (24), CANET

(25), GREEN (26), MIL-VT (27), and CNN+Vision Transformer

(38). Notably, the ResNet34model from (23) comes in two variants:

one trained on the ImageNet dataset and another specialized on a

dataset of retinal fundus images. Similarly, the GREEN model (26)

is available in two distinct architectural forms–GREEN-ResNet50

and GREEN-SE-ResNext50. The results of these comparative

experiments, as detailed in Table 7, reveal that the proposed

approach outperforms the existing state-of-the-art techniques

across a set of evaluation metrics. It is noteworthy that the

CNN+Vision Transformer (38) surpasses our approach in terms

of AUC (98.3%). However, our framework demonstrates a clear

advantage in the critical metrics, including Acc, wF1, and wKappa

scores. These results underscore the robustness and effectiveness

of our proposed framework in the context of DR grading. By

outperforming a diverse set of state-of-the-art algorithms, this work

establishes itself as a leading approach for the task of DR grading,

offering potential benefits for the early detection and management

of this prevalent eye condition.

The proposed model achieves an overall Acc of 89.7%, wF1 of

88.1%, and a wKappa of 92.3%. The high values of Acc, wF1, and

wKappa indicate that our model is highly effective in grading DR,

even in the presence of class imbalance. Class imbalance can often

lead to a model that is biased toward the majority class, resulting in

poor performance for the minority classes. However, our model’s

performance suggests that it is capable of accurately grading both

common and rare DR grades, which is crucial for early detection

and appropriate treatment. The ability of our proposed approach

to handle imbalanced classification tasks is a significant advantage,

as many real-world applications, including medical image analysis,

often deal with such challenges. By providing accurate and reliable

predictions across all DR grades, our model demonstrates its

potential value in practical applications, contributing to better-

informed clinical decisions and improved patient outcomes.

In addition, to demonstrate the generality of the proposed

approach, we further conducted comparison experiments between

the state-of-the-art deep learning methods and ours on the mini-

ImageNet dataset (44), which contains 100 categories of 60,000

color images with 600 images per category. The experimental

results are provided in Table 8.

These comparative results reveal that the proposed approach

is superior over the state-of-the-art methods on mini-ImageNet in

terms of Precision, Sensitivity, F1-score, and AUC.

Furthermore, we have leveraged the visual technique Grad-

CAM to highlight the regions of the retinal images that the model

focuses on when making its predictions, as shown in Figure 6.

3.4.3 Discussion
In this study, we propose that vision transformer focuses

predominantly on features associated with the class token,

potentially overlooking valuable information extracted from

individual image patches. Each patch carries significant relative

information that, when utilized, can enhance classification

accuracy. The class token’s feature representation in the traditional
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TABLE 6 Comparison between the state-of-the-art techniques and the proposed method on 50% Messidor for classifying DR and healthy images (%).

Model AUC Acc Sensitivity Specificity G-Mean

Expert A (33) 92.2 87.8 - - -

Expert B (33) 86.5 76.4 - - -

Vo and Verma (39) 87.0 87.1 88.2 85.7 86.9

S2MTS2 (40) 86.3 86.7 88.7 84.8 86.7

SRC-MT (41) 84.8 85.8 86.4 85.2 85.8

ACCN (42) 96.0 89.8 93.0 86.7 89.8

Odena et al. (43) 96.7 94.7 95.4 95.1 95.2

CNN+Vision

Transformer (38)

97.1 95.3 96.6 94.2 95.4

Our proposed model 96.9 95.6 96.2 95.2 95.7

Acc. denotes accuracy.

TABLE 7 Comparison between the state-of-the-art techniques and the proposed method on the entire APTOS2019 dataset (%).

Model AUC Acc wF1 wKappa

ResNet34 (23) 97.0 85.0 84.7 90.2

DLI (24) - 82.5 80.3 89.5

CANeT (25) - 83.2 81.3 90.0

GREEN-ResNet50 (26) - 84.4 83.6 90.8

GREEN-ResNetNext50 (26) - 85.7 85.2 91.2

MIL-VT (27) 97.9 85.5 85.3 92.0

CNN+Vision Transformer

(38)

98.3 89.1 87.8 91.8

Our proposed method 98.2 89.7 88.1 92.3

Acc represents accuracy, wF1 denotes weighted F1 score, and wKappa denotes Weighted Kappa.

TABLE 8 The comparative results of the state-of-the-art deep learning models and the proposed method on the mini-ImageNet dataset (%).

Method Precision Sensitivity F1 score AUC G-mean

MobileNet v3 (45) 83.0 81.9 82.0 99.1 82.4

Desnenet 121 (46) 78.2 77.3 77.3 89.8 77.7

Shufflenet v2_x10 (47) 81.5 81.1 81.0 99.4 81.3

Resnet34 (23) 81.2 80.5 80.6 99.1 80.8

MobileViT (48) 83.4 82.1 82.1 99.4 82.7

Our work 85.2 84.9 84.8 99.5 85.0

vision transformer would benefit from additional context from

the image patches, especially in clinical settings where lesions

can be present anywhere in a retinal image. It’s important

to remember that transformers were initially designed for

sequential data processing, and each image patch in the proposed

model retains the position information of the whole image.

In addition, the proposed integration of softmax and pooling

operations into the self-attention module plays a vital role in

unveiling the global receptive field while decreasing computational

resources. It contributes to implementing the trade-off between

expressiveness capability and the quadratic complexity of the

attention mechanism. To be more specifically, softmax attention is

a fundamental component of the transformer architecture, known

for its ability to model global dependencies between elements in the

input sequence. It calculates attention weights as a softmax function

of the similarity scores between query and key vectors, ensuring

that all elements contribute to the output in a weighted manner.

Thus, this allows the model to capture complex relationships and

dependencies within the data, which is crucial for tasks like image

classification where global context is important. On the other

hand, pooling is a technique commonly used in CNN models

to reduce the spatial dimensions of the representation, thereby

reducing the number of parameters and computations required

in subsequent layers. In the context of attention mechanisms,
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FIGURE 6

Examples of the retinal images and their corresponding heat maps in the ISIC 2019 dataset using the proposed approach [(top) DR 0; (bottom) DR 2].

pooling is used to downsample the query and key vectors while

generating the global and local features of the input. By reducing

the dimensionality of the input, pooling helps to decrease the

computational complexity of the attention calculations, making the

model more efficient without sacrificing the quality of the extracted

features. To note that the proxy attention mechanism integrates

these two operations by first using pooling to downsample the

query and key vectors, creating proxy tokens that capture both

global and local features. These proxy tokens are then used in the

softmax attention calculation, where the reduced dimensionality

leads to lower computational costs during the attention

weight computation.

The experimental findings suggest that the proposed vision

transformer model, with its unique configuration, is adept

at capturing local feature embeddings and identifying global

associations. This enables the proposed model to convert retinal

images into a detailed feature map, which is crucial for detecting

lesions. Furthermore, the streamlined model structure presented

in this study is compatible with other vision transformer variants

and can be integrated in a modular manner. The proposed model

can be integrated into existing electronic health record systems or

diagnostic software platforms used in clinical settings. The model

can be deployed as a backend service that receives retinal images,

processes them, and returns the grading results. These results

can then be presented to the healthcare professionals alongside

other relevant patient data. Furthermore, in practical applications

of the proposed approach in clinical settings, our model offers

at least the following advantages over existing systems. Firstly,

the proposed approach allows for more accurate detection and

grading of diabetic retinopathy lesions, which plays vital role in

clinical diagnosis. Secondly, the proposed attention mechanism

that integrates both softmax and linear attention, can guarantee

the model’s ability to capture both global and local features within

the retinal images. This attention approach could potentially lead

to fewer false negatives and false positives, while improving the

overall accuracy and reliability of DR screening. Thirdly, we have

focused on optimizing our model for computational efficiency,

which is crucial for real-world applications where timely processing

of images is essential. Therefore, the proposed model’s efficiency

allows it to be deployed on various platforms, from high-end

servers to edge devices, making it accessible to a wider range of

clinical settings, including those with limited resources.

However, there are still several limitations to this study. Firstly,

the quantity of data samples is limited, which could impact the

performance of deep learning models, as the number of images

is directly related to model outcomes. Secondly, the range of

evaluation metrics employed is limited, and expanding the set of

metrics used could provide a more comprehensive assessment. In
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addition, the proposed model has been optimized for efficiency,

with an average processing time of 420 milliseconds per image

during our experiments. This performance indicates that the model

is capable of providing near real-time feedback, which is essential

for clinical decision-making processes. However, it is notable that

the current version of the proposed model may not meet the real-

time performance requirements for all clinical settings, especially

those with limited resources. Therefore, we are committed to

further optimizing this model to ensure it can be deployed in a wide

range of environments, from well-equipped hospitals to remote

clinics with basic infrastructure.

4 Conclusion

To tackle the challenge of classifying retinal images, we

have integrated a newly proposed attention mechanism into the

conventional vision transformer model. This research investigates

the potential of integrating linear and softmax attention modules

for the task of identifying retinal lesions. While CNNs have made

significant strides in image classification by revealing intrinsic

image properties, they tend to concentrate on local features. In

contrast, vision transformers offer a broader perspective by utilizing

feature embeddings from CNNs to grasp the global context. After

pre-training on a large-scale natural image dataset and fine-tuning

with retinal image datasets, this hybrid model has demonstrated

its proficiency in detecting retinal lesions and has outperformed

leading CNNs and vision transformers.

For future endeavors, we plan to experiment with integrating

different backbone networks as feature extractors and exploring

various classification algorithms. Given the promising results for

retinal image analysis, we aim to apply the proposed architecture to

classify a broader range of images.
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