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Introduction: Brucellosis is a zoonotic disease of mammals caused by bacterial

species of the Brucella genus. The reservoir for disease is typically mammals,

with species of Brucella found infecting amphibians, bats, and marine mammals.

Brucella spp. can pass directly to humans through contact with infected animals

or their products. Brucella spp. can cause chronic debilitating infections in

mammals, including humans, and is associated with spontaneous abortions in

infected animals, causing reduced fecundity. In Hawai‘i, terrestrial species that

could harbor Brucella spp. include swine, cattle, horses, and axis deer among

others. The numerous feral swine in Hawai‘i are known to carry Brucella suis,

with evidence supporting infections in cattle. Brucella suis also poses infection

risk to humans, dogs, and potentially horses across the state.

Methods: In this study, 3,274 feral swine serum samples collected from 5 of the

8 main islands over a 15-year span were analyzed for exposure to B. suis. Of

the 558 watersheds in the state, 77 were sampled as part of this e�ort. Spatial

analysis was used to identify watersheds of concern. MLVA and whole genome

SNP analysis was used for molecular epidemiological analysis.

Results: Statewide seropositivity rates were triple that of feral swine found

in the conterminous United States. Smoothed positivity rates were highest on

Maui, followed by O‘ahu, and the island of Hawai‘i. Island-by-island analysis

found high brucellosis positivity levels associated with specific watersheds and

agricultural areas. Local spatial autocorrelation identified hot spots on O‘ahu

and Hawai‘i. MLVA analysis of available B. suis from Hawai‘i found molecular

epidemiological connections with B. suis found in French Polynesia and the

mainland US while di�ering from those in Tonga, Western Polynesia. Strains from

Hawai‘i are phylogenetically closest to strains from the United States. MLVA and

SNP analysis found B. suis strains from Hawai‘i fell into the genetic group that

contains biovar 1 B. suis.

Discussion: This work identified islands and watersheds of high brucellosis

seropositivity in feral swine of Hawai‘i, highlighting the magnitude of the

zoonotic risk. Introduction of strains in recent history is unlikely due to modern

animal trade and disease control practices. Genomic analysis of strains in Hawai‘i

and the Pacific area can provide hidden historical and local clues to brucellosis

epidemiology in the state.
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brucellosis, Brucella, feral swine, Hawai‘i, Asia-Pacific, zoonoses, molecular
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Introduction

The zoonotic disease brucellosis is also known as Malta fever or

undulant fever. The monikers are in reference to the geographic

location where brucellosis was first identified and the common

recurrent fevers observed in human patients (1). Brucellosis is

a chronic syndromic infection commonly resulting in chronic

infections that can lead to or co-occur with spontaneous abortions,

fevers, arthritis, and infections of the male or female reproductive

tracts (2–4). The slow progression of the infection is characterized

by lethargy, malaise, general pain, and weight loss (5, 6). It is not

usually fatal on its own but weakens the host, making them more

susceptible to comorbidities (7). The disease in humans is caused

by six species in the Brucella genus that are often host-adapted (8).

Brucella spp. have host preferences but most virulent strains can

infect multiple host species; observable as frequent spillover from

one host to another (9–13). The Gram-negative Brucella bacteria

are highly infectious and can be spread by aerosol contact with

mucosal surfaces and contact with infected biological materials

such as milk or aborted material (14).

Globally, the most important source for brucellosis

transmission to humans is domesticated animals. Where possible,

infections in agricultural animals are monitored by testing milk

or serum for antibodies to the bacterial lipopolysaccharide. In

areas with developed veterinary disease programs, brucellosis-

positive animals are culled to prevent disease transmission,

reduce economic losses and protect public health. In many places,

including the US and Europe, wildlife such as wild boar, can

harbor Brucella infections that spread to domesticated animals

and humans (15–17). In the geographically isolated Hawaiian

archipelago, terrestrial wildlife species are more limited than

continental areas. Starting with the arrival of Polynesian travelers

hundreds of years ago, humans have moved food source animals to

the islands. With the arrival of European colonizers, the Eurasian

wild boar was introduced (18). Feral swine are an important

cultural and sport-hunting food source in Hawai‘i (19, 20),

though the populations are uncontrolled. In recent times, rising

nuisance behaviors that destroy property and carriage of disease

has increased attention on controlling the feral swine population

across the United States (US) and Hawai‘i. The diversity of the

terrain in Hawai‘i coupled with ample tree cover make eradication

challenging, necessitating targeted control efforts.

The feral swine in Hawai‘i are known to carry brucellosis

and presumably spread it to disease-free domestic stock, including

swine and cattle (21). Reducing the population of disease carrying

animals would limit threats to agricultural and public health. This

work analyzed 3,274 feral swine over 15 years across the state

of Hawai‘i. The samples were tested for seroreactivity using a

two-stage testing procedure including the Brucella acidified plate

antigen (BAPA) test and Brucella suis fluorescent polarization

assay (FPA) (22–24). Positivity rates were analyzed by year

and spatially. The spatial analysis identified islands of highest

brucellosis seropositivity during the 15-year period. Rates were

smoothed to account for uneven sampling across the state and then

by island. Smoothed rates were determined at the watershed level

for each island and local spatial autocorrelation analysis (LISA)

allowed identification of O‘ahu and Hawai‘i watersheds with the

highest positivity rates. Genetic analysis of global B. suis strains

multi-locus variable number tandem repeat array (MLVA) profiles

was used to identify ecogeogenetic linkages of three B. suis cattle

isolates fromHawai‘i to regional Polynesian strains and others from

around the world.Whole genome SNP analysis was used to confirm

MLVA findings with available whole genome data. This study is the

first to look at long term brucellosis trends in Hawai‘i. The high

spatial resolution achieved at the watershed level will inform policy

makers and stakeholders in efficient deployment of animal control

resources while the genetic analysis provides clues to the placement

of B. suis from Hawai‘i in the global brucellosis genetic landscape.

Materials and methods

Swine sampling

Feral swine were sampled across the state of Hawai‘i by

the United States Department of Agriculture Animal and Plant

Health Inspection Service Wildlife Services National Feral Swine

Damage Management Program. USDA personnel responded to

landowner animal trappings on O‘ahu or in organized trapping

programs in response to animal nuisance activities on O‘ahu and

neighboring islands. Anesthesia was not used on any feral swine

in the study and euthanasia of feral swine was conducted by

gunshot to the head in accordance with the American Veterinary

Medical Association (AVMA) Guidelines for the Euthanasia of

Animals (25), whereby a projectile fired from a firearm enters the

brain, causing instant loss of consciousness.While GPS coordinates

of individual animal trappings were recorded, animal location

was reported to the watershed level to protect identification of

landowners. Feral swine capture and euthanization were done so

with the consent of property owners/managers through amutually-

signed Work Initiation Document, wherein the owner/manager

agreed to allow Wildlife Services personnel on property to

enumerate the target species and perform euthanasia. Blood was

collected from swine carcasses by post-mortem heart puncture

and the serum was separated. Serum samples were shipped

to the USDA APHIS Veterinary Services Federal Brucellosis

Laboratory in Frankfort, Kentucky and tested by the BAPA

test followed by the FPA for confirmation of Brucella specific

antibodies according to the manufacturer’s guidelines (Ellie Lab

LLC; Germantown, Wisconsin, USA) and the USDA Standard

Operating Procedures for Submission and Testing of Brucellosis

Serological Specimens guidance document. Year, watershed, and

USDA brucellosis positivity results for feral swine tested are listed

in Supplementary Table S1.

Seropositivity rate analysis

Seropositive animals for each island tested were divided

by total number of animals tested over indicated periods for

raw rate determination. Number of cases and seropositives

were plotted along with raw rate averages using the GraphPad

Prism software. Raw rates across the island were visualized in

QGIS 3.23 Lima (26). Empirical Bayesian smoothing (EBS) in
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GeoDa (27–30) was used because of the incontiguous nature of

islands and to account for watersheds where few samples were

collected. Unsampled watersheds were not included in the analysis.

Smoothed rates were visualized across the state in QGIS. Islands

with contiguous watershed sampling and positive samples were

analyzed individually by spatial Bayesian smoothing (SBS) (31)

using the first-order queen’s contiguity matrix produced for each

in GeoDa to smooth the random spatial sampling effects to the

means (32, 33). Maui was excluded from SBS analysis due to

sampling of only 3 non-contiguous watersheds. More complete

sampling coverage of Honolulu and Hawai‘i counties meant many

watersheds sampled on the islands of O‘ahu and Hawai‘i were

contiguous and could benefit from SBS. Unless otherwise indicated

place names refer to the island not the county throughout this

manuscript. Smoothing is amethod for dealing with rate instability,

especially when sampled areas are not equally sampled or their

sizes differ considerably, as the size of a watershed could also affect

observed rates. Another smoothing assumption is that the real

rates in contiguous watersheds are likely reflective of each other

since they are spatially linked. Our reasoning for choosing EBS

or SBS based on contiguity of neighboring watersheds is described

above. Simply put, the smoothed rates of each watershed are moved

toward the overall spatial unit average, moving most probable

outliers (high and low) toward that mean and reducing observed

rate instability due to samples biases.

Local spatial autocorrelation analysis (LISA)

To test for hotspots, local spatial autocorrelation analysis

(LISA) was performed separately for Honolulu County (island of

O‘ahu) and Hawai‘i County by calculating the univariate Local

Moran‘s I statistics with the GeoDa default 999 permutations using

the spatially smoothed seropositivity rates for each in GeoDa.

Clusters identified with p ≤ 0.05 were visualized on a map of the

respective island counties to indicate watershed areas of most and

least concern in high-high, high-low, low-low, or low-high clusters

if significant.

MLVA-11 and MLVA-16 analysis

MLVA-11 and MLVA-16 profiles for all Brucella in the Brucella

MLVAbank Microbes Genotyping database (34) were extracted,

totaling 20,982 MLVA-11 strain profiles. Incomplete profiles were

not included in the anlaysis. MLVA-16 profiles of B. suis were

extracted MLVAbank and numbered 695 strain profiles. The MLVA

profiles deposited in MLVAbank provide a historical snapshot of

MLVA profiles when next sequencing did not exist or was not

as accessible as it is today. Raw sequence reads of seven B. suis

strains from Tonga (Western Polynesia) and three strain from

Hawai‘i (Northern Polynesia) were downloaded from NCBI (35).

The genomes were assembled and annotated using the Nextflow

core (36) bacass bacterial genome assembly pipeline (37) run on the

University of Hawai‘i at Mānoa high performance Koa computer.

The MLVA profiles and metadata of assembled genomes from

Tonga and Hawai‘i were obtained using MLVAfinder python code

TABLE 1 Summary of sample locations.

County Islands Islands
sampled

# of
samples

Honolulu O‘ahu O‘ahu 2,558

Hawai‘i Hawai‘i Hawai‘i 329

Kaua‘i Kaua‘i, Ni‘ihau Kaua‘i 212

Maui Maui, Moloka‘i,

Lana‘i, Kaho‘olawe

Maui, Moloka‘i 165

Kalawao Part of Moloka‘i Part of Moloka‘i 10

Total samples 3,274

(https://github.com/i2bc/MLVA_finder) and added to the B. suis

MLVA profiles downloaded from MLVAbank. MLVA profiles were

used to build phylogenetic trees on a local instance of grapetree

and visualized with relevant metadata (38). Neighbor joining trees

were constructed using the RapidNJ (39) in grapetree. MLVA-16

neighbor joining trees were created with profiles of biovar 1 B. suis

to analyze the geogenetic relationships of B. suis biovar 1 in the

Pacific Region. MLVA-16 loci were weighted to account for unequal

variability among the MLVA-16 loci (40).

Whole genome SNP analysis

Sequence read archive files for 258 B. suis genomes,

including seven strains from Tonga and three from Hawai‘i

(Supplementary Table S2), were extracted from the European

Nucleotide Archive and assembled with the Nextflow core bacass

bacterial genome assembly pipeline as described above on the

University of Hawai‘i Koa high performance computer cluster.

Assembly statistics for the whole genomes are provided as

Supplementary Table S3. SNP analysis was performed using the

PhAME package (41). Briefly, NUCmer is used to perform pairwise

alignments between all genomes. Gaps, repeats, and indels were

identified and removed to generate a “core” genome. The contigs

are then compared to a reference, B. suis 1330 (GCF_000223195.1)

in this case, using NUCMer. SNP coordinates in the “core”

genome were used to generate genome-wide core alignments for

the maximum likelihood SNP trees. SNP trees were built and

bootstrapped using RAxML and the resulting trees visualized in

iTOL (42).

Results

The majority of the feral swine samples (2,558/3,274) across the

15 years of study were from Honolulu County which is the island

of O‘ahu (Table 1, Figure 1). O‘ahu is the most populated island

in the state with 989,408 people of the total state population of

1,435,138 as of July 2023 according to the US Census Bureau (43).

The county and island of Hawai‘i had the next highest number of

samples at 329. The county of Kaua‘i includes the islands Ni‘ihau

and Kaua‘i. All 212 Kaua‘i County samples were from the island

of Kaua‘i. Maui County is composed of the islands of Maui, most

of the island of Moloka‘i (except for the Kalaupapa area), Lana‘i,
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FIGURE 1

Location of Hawai‘i within Polynesia and brucellosis seropositivity rates in feral swine during the study period. (A) The globe shows the location of

Polynesia in the Pacific Basin. Simplistically Polynesia can be thought of as a >300,000 sq km (>117,000 sq mi) triangular shaped region

encompassing numerous islands in the Pacific Ocean. At the southwestern vertex of the triangle is New Zealand, the southeastern is Rapa Nui (Easter

Island), and at the northern vertex are the islands of Hawai‘i. The rectangle on the globe indicates the location of Hawai‘i in Polynesia and the map

shows the magnified view of the islands. The administrative county units and island names are indicated. The islands are shaded red according to the

number of swine serum samples analyzed in this study (the darker the red the more samples) and coincide with the details in Table 1. (B) The number

of serum samples (left y-axis) obtained each year from 2007 to 2023 (x-axis) are indicated in white vertical bars with the number of brucella FPA

seropositive samples overlain in black. The raw yearly seropositivity rate is indicated by the red line (right y-axis). Notches on the y-axes indicate

respective averages across the study period. (C) A map of the EBS rates of brucellosis feral swine seropositivity at the county level. The darker islands

have higher EBS smoothed county seropositivity rates.

and Kaho‘olawe. The 165 samples fromMaui were entirely from the

island of Maui. Ten samples were from Kalawao County containing

Kalaupapa on the north shore ofMoloka‘i. Lana‘i is privately owned

and Kaho‘olawe is uninhabited.

On average there were 192.6 (±97.30) samples collected every

year and 44.82 (±35.86) were positive each year of the study as

determined by the two stage BAPA and FPA brucellosis testing

(Figure 1B). The average annual raw positivity rate is 23.77%

(±15.21). Annual sampling minima was 46 in 2018 and a maxima

of 408 in 2023 with an average of 193.69 samples each year. The

minimum brucellosis seropositivity rate in feral swine occurred

in 2011 at 11.93% of 243 swine sampled while the maximum

occurred in 2020 at 74.04% of 208 swine sampled (Figure 1B). Of

the sampled islands there were no positive samples from Kaua‘i

or Moloka‘i.

Low sample size or collection bias could impact the observed

rates. In an attempt to account for such sampling biases, rates were

smoothed at the county level using empirical Bayesian smoothing

in GeoDa (Figure 1C). No samples were positive in Kaua‘i County

however the smoothing increased the rate toward themean andwas

equal to 1.7%. The Kalawao County positivity rate was smoothed to

14.6% and Hawai‘i County was smoothed to 16.5%. The Honolulu

County (O‘ahu) rate was smoothed to 23.4% and Maui County

swine samples had a smoothed brucellosis seropositivity rate of

63.1%. County level divisions are large and the diverse ecosystems

within an island are not captured, so data were analyzed at the

watershed level. The watershed encompasses a mauka to makai

(mountain to sea) piece of the island akin to a slice of pie. In

total there are 558 watersheds across the eight major islands in

the state of Hawai‘i, and 77 out of 558 were sampled as part

of this project (Supplementary Figure S1). The island of O‘ahu

was heavily sampled and swine from 33 of its 87 watersheds

were analyzed. Five watersheds on Kaua‘i, two watersheds from

Kalawao County on Moloka‘i, and three from the island of Maui

were sampled. Thirty four of 166 watersheds on the island of

Hawai‘i were sampled. Altogether, feral swine were sampled from

watersheds representing 51.29% (3,301.87/6,437.22 sq mi) of the

total land area of the eight major Hawaiian Islands. Watershed

positivity rates were smoothed, reducing the mean positivity rate

from 0.2941 to 0.2662 and reducing the standard deviation from

0.2131 to 0.1280 (Figure 2; inset lower left). A major outlier

before and after smoothing was a watershed on the island of

Maui. Since Maui, O‘ahu, and Hawai‘i are geographically isolated,

each island was analyzed independently to increase smoothing

effects on each island’s brucellosis rates. Watershed rates for O‘ahu

and Hawai‘i were spatially smoothed because of the contiguity

of watersheds that were sampled. The small number of non-

neighboring watersheds sampled on Maui precluded appropriate

application of SBS so EBS was applied (Figure 2; individual island

maps). The smoothed rates in sampled watersheds ranged from

0% to 37.68% on O‘ahu, 8.25% to 90.11% on Maui, and 0%

to 42.86% on Hawai‘i. The watershed of highest seropositivity
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FIGURE 2

Feral swine serum sampling and seropositivity rates across Hawai‘i watersheds. Raw watershed seropositivity rates (bar graph on left; lower inset)

were smoothed by statewide EBS (bar graph on right; lower inset) which reduced the mean and standard deviation of the rates across the state. The

statewide smoothed EBS rates are shown in the inset map with darker watersheds having higher brucellosis swine seropositivity rates. Smoothing of

data from individual islands is shown starting with SBS rates for O‘ahu (upper left) then moving clockwise to Maui EBS rates and then Hawai‘i SBS

rates on the bottom right map. In all cases, the darker the fill the higher the smoothed seroprevalence for that watershed. High seroprevalence

watersheds are labeled.

was Anahulu on O‘ahu, Waiakoa on Maui, and Honoli‘i

on Hawai‘i.

Feral swine from three watersheds were sampled on Maui

where Waiakoa was a clear high prevalence outlier. The reduced

number of sampled watersheds prevented a more thorough

LISA analysis for hotspots on Maui. LISA hotspot analysis

of the SBS rates was used to analyze O‘ahu and Hawai‘i

for low and high seroprevalence areas of swine brucellosis

(Figures 3A, B). There were only high-high clusters identified

on O‘ahu (Figure 3A). High-high clusters are neighboring spatial

units that each have statistically higher seropositivity than the

mean and where the test for spatial randomness of those

units has been rejected, indicating a cluster. One cluster

on the north shore of the island consisted of Waimea,

Keamanea, Loko Ea, and Anahulu watersheds and a second

cluster nearby straddling the Waianae mountain range and

central O‘ahu. The most statistically significant cluster was

the Keamanea and Anahulu watersheds on the north shore.

On the island of Hawai‘i, the major high-high cluster was

located in watersheds between the two biggest volcanoes on

the islands, Mauna Kea and Mauna Loa (Figure 3B). Statistically

significant low-high clusters were identified in watersheds that abut

this cluster.

To provide clues to the spread of brucellosis to the islands

of Hawai‘i, phylogenetic analyses of available genetic information

regarding Brucella in Hawai‘i were performed with increasing

genetic resolution. First, in silico MLVA-11 profiles were generated

from assembled Hawai‘i Brucella whole genomes originally

sequenced in (35), then the profiles were compared to historical

Brucella strain MLVA-11 profiles from MLVAbank. MLVA-11

allowed clear species and geographic separation of the larger

Brucella groups using neighbor joining tree phylogenetic analysis.

The strains isolated from cattle in Hawai‘i fell into the B. suis

group (Figure 4A; highlighted red circle). Increasing the MLVA loci

utilized from MLVA-11 to MLVA-16 for the B. suis group found

that the Hawai‘i cattle B. suis fell into the B. suis biovar 1 group
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FIGURE 3

Identification of hot-spot clusters of feral swine brucellosis seropositivity. LISA analysis using Local Moran’s I found significant clusters of brucellosis

seropositivity on O‘ahu (A) and Hawai‘i (B). Clusters with p values ≤ 0.05 are shown. Unfilled watersheds did not cluster significantly or were not

sampled and left out of the analysis. Watersheds in high-high clusters are labeled with their names.

(Figure 4B; highlighted blue circles). The B. suis biovar 1 group was

analyzed further in a MLVA-16 weighted neighbor joining tree to

find the closest non-Hawai‘i B. suis (Figure 4C). One strain from

Hawai‘i was closely related to a strain of B. suis from Texas and

was located across the central tree node from the other two Hawai‘i

isolates. These two Hawai‘i B. suis strains were closely related to a

strain from Tahiti, which is also in Polynesia ∼4,200 km (∼2,600

mi) south of Hawai‘i. Tahitian B. suis strain BCCN#02-28 collected

in 2002 differs from Hawai‘i strain B00-0468 collected in 2000 by

one repeat at Bruce16 MLVA-16 locus. The next closest Hawai‘i

strain is B11-0525 and differs from B. suis B00-0468 by two repeats

at Bruce04, two repeats at Bruce09, and one repeat at the Bruce16

loci. The third Hawai‘i B. suis strain B93-0748 was isolated in 1993

and differs from the year 2000 Hawai‘i B. suis B00-0468 at the

Bruce04, Bruce07, Bruce09, and Bruce16. The third strain, B93-

0748, from the year 1993 was isolated the earliest and is closest to a

B. suis isolated in Texas in 2000. B93-0748Hawai‘i differs fromB00-

0729 Texas by two repeats at the Bruce09 locus. Other Polynesian

B. suis isolates with MLVA-16 profiles were more distantly related

to the Hawai‘i strains, including several isolates from Tonga in

the southwestern corner of Polynesia and additional isolates from

Tahiti. Many of the Tongan B. suis isolates clustered together with

strains from Tahiti, New Zealand, and Mexico.

There are many more strains of MLVA-typed B. suis than

have been whole genome sequenced. Even then, whole genome

sequencing can provide additional high resolution genomic context

to support findings from MLVA comparisons. Strains from the

United States make up the bulk of genome sequenced isolates.

Whole genome reads of the three isolates from Hawai‘i were

publicly available and included in whole genome SNP analysis with

a total of 257 B. suis genomes. Isolates clearly partitioned into

biovar categories as indicated by the color strip (Figure 5A). The

Hawai‘i B. suis clustered with the biovar 1 isolates as found in the

MLVA-16 trees. A closer look at the biovar 1, 3, 4 and 5 isolates

found the Hawai‘i B. suis genomes were phylogenetically closer on

the tree to other biovar 1 isolates from South Carolina and New

York states on the US east coast. A strain of unknown origin named

bsuihSP785-sc-2150388 is predicted to be closely related. All three

whole genome sequenced Hawai‘i isolates neighbor each other on

the tree with no SNPs in the core genome identified among these

strains (Figure 5B). Altogether, the B. suis biovar 1 have low SNP

diversity in the conserved core genome used in this analysis. In

agreement with theMLVA-16 tree in Figure 4C, the Tongan isolates

involved in exported cases of brucellosis in humans are distantly

related to the three cattle isolates from Hawai‘i. There were no

genomic signatures coinciding to a previously described B. suis

biovar 3 in a feral swine from Honolulu County (21).

Discussion

Feral swine brucellosis seropositivity rates in Hawai‘i were

previously unknown. They were presumed comparable to the rates

seen in feral swine from the conterminous US, at ∼10% (44, 45).

Analysis of 15 years of feral swine serum samples from Hawai‘i in

the present study found rates were at least double those seen on

the mainland US (∼10 vs.∼23%). Feral swine sampled from Kaua‘i

and Moloka‘i were negative for brucellosis on both BAPA and

FPA tests though caution is recommended when interpreting this

result due to small sample sizes on these islands. Seropositivity rates

were highest on the island of Maui even though limited watershed

sampling occurred on the island. The Waiakoa watershed had

a smoothed seropositivity rate of 90.11% followed by a 56.91%

seropositivity rate in the Kailua Gulch watershed. These rates on

Maui were higher than any other watersheds sampled in this study.

A 2023 outbreak of brucellosis in a mid-size domesticated swine

operation occurred in the Waiakoa watershed and could be the

result of feral swine spillover (46).

LISA analysis identified clusters of high seroprevalence

watersheds on O‘ahu and the island of Hawai‘i. The positivity rate
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FIGURE 4

Phylogenetic relatedness of Hawai‘i B. suis to global Brucella isolates and regional B.suis. (A) Neighbor joining tree analysis of all available Brucella

strains using the MLVA-11 panel. The outer ring indicates the location of specific Brucella spp. in the tree. Strains are clustered into MLVA-11

sequence types indicated by circles. Circles are colored according to the assigned Brucella group. (B) Neighbor joining tree analysis of all available B.

suis strains using the MLVA-16 panel. The outer ring indicates the location of di�erent B. suis biovars on the tree. As with the MLVA-11 tree in (A),

strains are clustered into MLVA-16 sequence types indicated by circles. Circles are colored according to biovar. The yellow highlighted B. suis circles

indicate the three Hawai‘i B. suis biovar 1 strains. (C) A weighted neighbor joining tree of global B. suis biovar 1 strains. The B. suis biovar 1 were

analyzed to find the closest related strains to the Hawai‘i B. suis isolates. The circles are colored according to the country of isolation and labeled

with their state or subregion of isolation providing a geographic context to the sequence type clusters. US state two letter abbreviations are used.

The location of the three Hawai‘i B. suis are highlighted in yellow on each tree. Numbers on the branches indicate the allelic di�erences between

connected sequence types. Circle size in each tree corresponds to the number of strains within the indicated groups.

was ∼35% across this cluster on the north shore of O‘ahu which is

higher than the 15-year average of 23.77% found in the sampled

study population. The second cluster in the central and western

portion of the island had seropositivity rates near the average. These

two clusters are second order geographic neighbors and feral swine

could feasibly move between the two clusters. These areas of the

island are high in agricultural land use compared to others. Another

possible effect on seropositivity is that swine tend to move in family

groups and animals with close physical contact are more likely to

infect one another. Due to the length of the study, this effect should

be sufficiently diminished. The high seroprevalence watersheds on

the island of Hawai‘i cluster between Mauna Kea and Mauna Loa,

an area that has increased levels of agriculture compared to other

parts of the island and had seropositivity rates at or above the

state average. Some watersheds could have higher seropositivity

due to the number of feral swine in those areas. More accurate

counts could help with determining their population levels. It could

also be due to the different types of swine in those areas. Two

swine breeds were introduced to the islands. The Polynesian swine

and, hundreds of years later, the Eurasian swine. It is unknown
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FIGURE 5

Whole genome SNP analysis of Brucella suis from Polynesia indicates multiple introductions of B. suis. (A) Whole genome SNP RAxML 100x

bootstrapped phylogenetic tree of available B. suis genome sequences. Biovar data is indicated by the vertical bv strip where light blue = biovar 1,

dark blue = biovar 2, dark orange = biovar 3, green = biovar 4, light orange = biovar 5. Dark green highlighted strains are the B. suis strains from

Hawa‘i and orange highlighted strains are the B. suis strains from Tonga. (B) The biovar 1,3,4,5 whole genome sequenced B. suis strains are

emphasized with silhouettes indicating the host species involved in B. suis strain isolations. Hawai‘i strains are from cattle. Tongan strains are from

exposure in Tonga with subsequent cases diagnosed in New Zealand and Oregon, USA. The wild boar silhouette indicates where the Hawai‘i B. suis

biovar 3 wild boar isolate described in literature would presumably be found on the tree if sequences were available.

whether the current distribution of animals is correlated with these

historical populations or if it plays a role in disease prevalence. It

is also worth noting that a previous study found that 52% of B.

suis culture positive swine from across the USA were positive by

brucellosis FPA (21); indicating a potential underestimation of B.

suis in Hawai‘i’s feral swine as determined in this study.

Molecular epidemiological analysis suggests a genetic link

between a B. suis strain in Tahiti and B00-0468 isolated from

a cow in Hawai‘i in 2000, but not to B. suis in other parts of

Polynesia. The other two B. suis strains isolated in Hawai‘i from

cattle in 1993 and 2011 were more closely related to Eurasian

and central American strains or mainland US strains, respectively.

Whole-genome sequencing data is not as complete as the historical

MLVA databases. Using available whole genome sequences, B. suis

infecting domestic cattle in Hawai‘i as far back as 1993 and as

recently as 2011 had similar genome sequences that were related to

B. suis from the US mainland. Based on available MLVA and whole

genome sequence analysis, a westward transportation from Eurasia

or the Americas to Hawai‘i that established the biovar 1 B. suis in

the central Pacific rather than an eastward movement from Asia

or other parts of Polynesia can be speculated. A caveat is that the

genomic information is rather limited. Other strains profiles have

been published using out of date typing schemes incompatible with

the MLVA analysis. B. suis biovar 3 has been reported in feral swine

in Hawai‘i (21) however current typing and genomic data were not

generated. This indicates a need for further sampling and genomic

analysis to understand the molecular epidemiology of B. suis in the

Hawaiian Islands.

Modern animal movement practices have reduced the

introduction of zoonotic disease into Hawai‘i. Previous

introduction through the mid-20th century is likely and could even

have occurred during discovery of Hawai‘i by ancient Polynesian
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mariners. While the historical source of the zoonotic pathogen

in Hawai‘i may be debatable, the presence of B. suis in terrestrial

wildlife in Hawai‘i is not. The rate of brucellosis seropositivity in

feral swine is double the national average of the US over the last

15 years and in some areas of the Hawai‘i it may be difficult to

find feral swine that are negative for exposure. Feral pig hunting

is practiced in Hawai‘i by using hunting dogs to track and capture

the animals, a situation where both human hunters and their dogs

could be exposed. A limited study found 1/7(14%) of tested hunting

dogs on O‘ahu and 2/49 (4%) on Hawai‘i had titers indicating

Brucella exposure (47). Future work focused on disease exposure or

infection in hunting dogs and hunters could help understand risk

to those groups. The three cases of domestic cattle infected with

B. suis nearly 20 years apart, and recent domestic swine outbreaks

of brucellosis indicate a pernicious threat to agriculture in the

state. As an isolated island chain, Hawai‘i supports agriculture that

provides locally sourced foods to residents. Difficult to control

feral swine populations that act as reservoirs for brucellosis and

transmit disease to many different species, including livestock and

humans, threaten the public health and the state’s burgeoning

agricultural goals.

Identification of high positivity watersheds and hotspot clusters

can be used by policy makers and stakeholders to focus limited

resources for the most impact. Eliminating feral swine in areas of

the highest zoonotic burden can reduce brucellosis infection risk

to humans and livestock. This study has laid the groundwork for

future studies into brucellosis in the state and in other areas of

Polynesia. More genomic data and animal movement information

are needed to understand the dynamics of brucellosis among

terrestrial wildlife in the Hawaiian Islands and transmission to

humans. In the future, occurrence of Yersinia enterolitica infections

in swine should also be investigated, as swine with high antibody

levels to Y. enterolitica can cross-react to brucella serological

tests and yersiniosis is a zoonoses that impacts public health

in Hawai‘i. However, the spike in positivity on Maui coincident

with a known brucella outbreak and the spillover of B. suis

into cattle and humans support the notion of higher levels of

circulating brucellosis in the feral swine population. The increased

specificity of the FPA test over other brucellosis test like Rose-

Bengal Test (RBT) and the complement fixation test (CFT)

support our serological findings. Additionally, the delicate island

ecosystems are inextricably linked and disease on land can be

transmitted to fragile marine ecosystems (48, 49). Brucellosis in

marine mammals is recognized as an emerging infectious disease.

Since the first described marine mammal brucellosis infection in

1994 (50), there have been several strandings of marine mammals

infected with Brucella in Hawai‘i (51, 52) and evidence of exposures

in other marine animals (53). Understanding brucellosis across

terrestrial and marine environments can provide valuable insight

to protecting agricultural, wildlife, and public health in Hawai‘i, the

Pacific basin, and the broader Asia-Pacific region.
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