
Frontiers in Public Health 01 frontiersin.org

Enhancing mass vaccination 
programs with queueing theory 
and spatial optimization
Sherrie Xie 1*, Maria Rieders 2, Srisa Changolkar 2, 
Bhaswar B. Bhattacharya 3, Elvis W. Diaz 4, Michael Z. Levy 1,4 and 
Ricardo Castillo-Neyra 1,4

1 Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, 
PA, United States, 2 Department of Operations, Information, and Decisions, The Wharton School, 
University of Pennsylvania, Philadelphia, PA, United States, 3 Department of Statistics and Data Science, 
The Wharton School, University of Pennsylvania, Philadelphia, PA, United States, 4 Zoonotic Disease 
Research Lab, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, 
Lima, Peru

Background: Mass vaccination is a cornerstone of public health emergency 
preparedness and response. However, injudicious placement of vaccination sites 
can lead to the formation of long waiting lines or queues, which discourages 
individuals from waiting to be  vaccinated and may thus jeopardize the 
achievement of public health targets. Queueing theory offers a framework for 
modeling queue formation at vaccination sites and its effect on vaccine uptake.

Methods: We developed an algorithm that integrates queueing theory within a 
spatial optimization framework to optimize the placement of mass vaccination 
sites. The algorithm was built and tested using data from a mass dog rabies 
vaccination campaign in Arequipa, Peru. We  compared expected vaccination 
coverage and losses from queueing (i.e., attrition) for sites optimized with our 
queue-conscious algorithm to those used in a previous vaccination campaign, 
as well as to sites obtained from a queue-naïve version of the same algorithm.

Results: Sites placed by the queue-conscious algorithm resulted in 9–32% less 
attrition and 11–12% higher vaccination coverage compared to previously used 
sites and 9–19% less attrition and 1–2% higher vaccination coverage compared 
to sites placed by the queue-naïve algorithm. Compared to the queue-naïve 
algorithm, the queue-conscious algorithm placed more sites in densely 
populated areas to offset high arrival volumes, thereby reducing losses due 
to excessive queueing. These results were not sensitive to misspecification of 
queueing parameters or relaxation of the constant arrival rate assumption.

Conclusion: One should consider losses from queueing to optimally place mass 
vaccination sites, even when empirically derived queueing parameters are not 
available. Due to the negative impacts of excessive wait times on participant 
satisfaction, reducing queueing attrition is also expected to yield downstream 
benefits and improve vaccination coverage in subsequent mass vaccination 
campaigns.
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1 Introduction

The expeditious and equitable distribution of vaccinations and 
other health services is a cornerstone of public health emergency 
preparedness. Queues, or waiting lines, result from scarce or 
misallocated resources and volatility in traffic and service patterns; 
they can hinder the delivery of critical services and thereby jeopardize 
the achievement of public health targets. Not only can long queues 
deter people from waiting to receive essential health services, they can 
erode individuals’ trust in health systems in certain contexts (1, 2) and 
can thus discourage participation in future programs. Long wait times 
was a major structural barrier to testing for COVID-19 during the 
early phase of the pandemic (3), and poor planning in some 
jurisdictions resulted in people waiting hours at some mass COVID-19 
vaccination sites (4–6). Moreover, excessive queueing during 
pandemic emergencies also poses health risks, as long wait times may 
increase exposure to infectious pathogens (7), underscoring the need 
for safe and efficiently managed healthcare settings (8, 9).

Queueing theory is a branch of applied mathematics that offers 
a valuable framework for studying the behaviors and effects of 
waiting lines or queues (10). In brief, queueing models aim to 
capture how a customer population moves through a queueing 
system via a series of processes dictated by probabilistic rates: 
arriving at a service site, receiving service, waiting in a queue if the 
server is busy, or leaving the queue before service is rendered when 
waiting times exceed a customer’s willingness to wait. Queueing 
theory is foundational to operations research and has been applied 
to many facets of healthcare operations, including the triage process 
in emergency care departments (11), staffing needs in operating 
rooms (12), hospital bed management (13, 14), and outpatient 
scheduling (15). Additionally, it has been applied to COVID-19 
vaccine distribution and capacity planning (7, 16–20), as well as the 
containment of disease outbreaks, bioterrorist attacks, and other 
public health emergencies (21–24).

Mass dog vaccination campaigns (MDVCs) are held annually in 
Arequipa, Peru to address the re-emergence of dog rabies in the region 
(25); they have important parallels with early pandemic vaccination 
and testing programs in that success depends, in part, on strategically 
placing and optimally allocating resources across a discrete number 
of fixed-location facility sites (26). While the World Health 
Organization (WHO) and Pan American Health Organization 
(PAHO) recommend a minimum vaccination coverage of 70–80% 
sustained over multiple years to achieve control and eventual 
elimination of rabies, the MDVCs in Arequipa, which have relied on 
convenient or ad hoc placement of fixed-location vaccination sites, 
have continually fallen short of this goal (27, 28).

We have previously developed a data-driven strategy to 
optimize the placement of fixed-location MDVC sites and found 
that spatially optimized vaccination sites improves both overall 
vaccination coverage and spatial evenness of coverage (28). 
However, optimization that addresses spatial accessibility without 
considering queueing is likely to result in an uneven volume of 
arrivals across facility sites, which may result in long waiting lines 
(28). Here, we  incorporate queueing theory into our existing 
spatial optimization framework to improve dog rabies vaccine 
uptake by accounting for both the spatial accessibility of MDVC 
sites and losses resulting from dog owners who refuse to wait for 
service in the face of excessive queue lengths (i.e., queueing 

attrition). We compare the performance of our queue-conscious 
algorithm to the queue-naïve algorithm in terms of expected 
vaccination coverage and queueing attrition and evaluate the 
sensitivity of our results to misspecification of queueing parameters 
and the assumption of a constant arrival rate within our 
queueing model.

2 Materials and methods

2.1 A queueing model for MDVCs

We modeled queueing, vaccination, and attrition at each 
MDVC vaccination site according to an M/M/1 system with first-
in-first-out (FIFO) service (Figure  1). The M/M/1 system is a 
widely used queueing model for single server systems and assumes 
that customer arrivals occur according to a Poisson process, and 
job service times are independent and identically distributed (iid) 
exponential random variables that are independent of the arrival 
process and queue length. Applied to MDVCs, the M/M/1 
queueing model assumes that dogs arrive with their owners to a 
vaccination site according to a Poisson process with arrival rate λ, 
meaning that the interarrival times are iid and follow an 
exponential distribution with parameter λ. The service times (i.e., 
the time it takes for a dog to get vaccinated) are iid exponential 
with parameter μ, such that the average service time is equal to 1/μ. 
The system is assumed to be  FIFO, meaning that dogs are 
vaccinated in the order that their owners join the queue. Only one 
dog can get vaccinated at a time, as there is only one vaccinator per 
site, and dogs are assumed to leave the system as soon as they 
get vaccinated.

The service rate μ was assumed to equal 30 h−1 in accordance with 
the empirical observation that it takes 2 min on average to vaccinate 
a dog. The arrival rates were assumed to vary across MDVC sites and 
were determined as follows. First, the MDVC participation probability 
function described above was applied to all households falling within 
an MDVC site’s catchment (i.e., all houses closest to the given MDVC 
site in terms of travel distance) to determine the probability that each 
household would participate in the MDVC if the house were 
inhabited and owned dogs. To obtain the total number of dogs 
arriving at MDVC site s, these participation probabilities were 
summed and scaled by the habitability rate, household-dog-
ownership rate, and average number of dogs per dog-owning 
household (57, 40%, and 1.86, respectively); these estimates were 
derived from household surveys administered following previous 
MDVCs, and the survey methodology has been described previously 
(25). The total number of arrivals was then divided by the total 
operation time for the MDVC site to obtain λs, the arrival rate 
for site s.

A dog enters the queueing system at site s after it arrives at the site 
and its owner elects to join the vaccination queue. However, some 
owners may decline to join the queue if they judge the queue to be too 
long. This first form of attrition is known as balking and was modeled 
by modifying the arrival rate λs so that it decreases by a discouragement 
factor e-αn/μ < 1 (10). The modified arrival rate λs,n captures the rate that 
owners join the queue after accounting for those that balk and is 
given by:
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Where n is the number of dogs that are currently in the 
system (waiting in queue or being vaccinated), μ is equal to the 
service rate, and α is a parameter that scales with balking 
propensity (10).

The other form of attrition, known as reneging, occurs when an 
owner who has already joined the queue loses patience and exits the 
queue before their dogs are vaccinated. We  modeled reneging by 
modifying the service rate μ to capture all those leaving the system - 
both those leaving after vaccination and those who renege. This exit 
rate μn is equal to:

 ( )1 ·n nµ µ β= + −  (2)

Where the second term captures the rate that each of the present 
n – 1 dogs in queue are reneging, and β scales with reneging propensity 
(29). Note that in Equations 1, 2, above, the rates of attrition (both 
balking and reneging) increase with the queue length n  – 1, 
as expected.

In order to calculate the expected number of dogs vaccinated 
during an MDVC, we need to find a closed-form expression for the 
vaccination rate at a given vaccination site that accounts for losses due 
to attrition. The derivation of these closed-form equations can 
be found in Supplementary Text A, and are based on the stationary 
distribution of the queueing model, i.e., on ,s np , the probability of 

finding n dogs in the queueing system at MDVC site s with arrival 
rate λs:
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where ( )zΓ  denotes the gamma function, i.e., ( ) ( )1 !n nΓ = −  for 
any integer 0n >  and ( ) 1z tz t e dt− −Γ = ∫  interpolates the factorial 
function to non-integer values, and ps,0 is a normalizing constant 
given by:
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The expected rate that dogs are vaccinated at site s is then equal to:
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where the first term is equal to the rate that dog owners join the 
queue after accounting for balking, and the second term is equal to the 

FIGURE 1

An M/M/1 first-in-first-out queueing model for an MDVC vaccination site. (A) Illustrates the processes captured by the queueing model, with the forms 
of queuing attrition highlighted by the red boxes. (B) Shows the transition-state diagram for the queueing model, where states, depicted by circles, are 
defined by the number of dogs in the system, and transitions between states, depicted with curved arrows, are labeled by their corresponding 
transition rates.

https://doi.org/10.3389/fpubh.2024.1440673
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Xie et al. 10.3389/fpubh.2024.1440673

Frontiers in Public Health 04 frontiersin.org

rate that dog owners renege and thus leave the queue before their dogs 
are vaccinated. The expected number of dogs vaccinated during an 
MDVC is thus equal to:

 ∈
= ∑ s

s S
V v t

 
(6)

Where S is the set of all selected vaccination sites and t is equal to 
the total operation time, which is assumed to be  the same for all 
MDVC sites.

In addition to the closed-form equations for the expected behavior 
of the MDVC queueing system, which were derived assuming the 
system had reached steady state (Equations 3–6), we also conducted 
stochastic simulations to study the behavior of the system in the 
absence of such assumptions. Simulations were conducted for low- 
and high-attrition parameter regimes (low: α = 0.01 and β = 0.02; 
high: α = 0.1 and β = 0.1) and for a range of arrival rates (0.5–37.5 
dogs/h in increments of 0.5 dogs/h). Low- and high-attrition 
parameter regimes were chosen to represent the high and low range 
of feasible values based on our observations of balking and reneging 
at MDVC sites. An MDVC site operates for four weekend days (over 
two weekends) for about 4 h per day (t = 16 total hours). To mimic 
these conditions, a single simulation consisted of four independent 
four-hour-long trials (days), each initialized with no dogs in the queue 
at time zero; the number of dogs vaccinated each day was summed 
across the 4 days to obtain the total dogs vaccinated at an MDVC site. 
The simulation was run for 1,000 iterations per set of parameter 
values, and the simulation results were compared to the expected 
number of dogs vaccinated as determined via the closed-form 
equations to see how well the two approximated each other.

2.2 Optimizing the location of vaccination 
sites

We optimized the placement of MDVC sites for the Alto Selva 
Alegre district of Arequipa; no more than 20 sites can operate in this 
region during a campaign due to resource constraints, and 70 locations 
have been approved by the Ministry of Health for use as feasible 
MDVC sites (Figure 2) (28). We determined the optimal placement of 
k = 20 sites among these 70 candidate sites by maximizing the 
expected number of households participating in the MDVC (and 
hence the total dogs vaccinated). To determine the number of 
participating households, we  first used a fixed-effects Poisson 
distance-decay function that links a household’s travel distance to 
their nearest vaccination site and their probability of participating in 
an MDVC (henceforth referred to as the “MDVC participation 
probability function”); this function was fit previously using survey 
data (28). We assumed that participating households travel to their 
closest MDVC site, and we used the MDVC participation probability 
function to estimate the number of households that are expected to 
arrive at each site. We divided the number of arrivals by the total 
operation time for an MDVC site (i.e., 16 h) to calculate the arrival 
rate λs at each site s. Then, for queue-conscious optimization, 
we  estimated the number of dogs vaccinated at each site using 
Equation 5, which accounts for attrition resulting from queue 
formation due to high arrival rates. Queue-naïve optimization, in 

contrast, assumes that all arriving dogs get vaccinated and thus does 
not account for queueing-related losses. The objective function (total 
vaccinated dogs) was then calculated by summing the number of dogs 
vaccinated at each site.

We performed queue-conscious and queue-naïve optimization by 
implementing a hybrid recursive interchange-genetic algorithm 
(Supplementary Text B and Supplementary Figures S1, S2). The 
recursive interchange portion of our algorithm is similar to Teitz and 
Bart’s (30) solution to the p-median problem that solves the facility 
location problem by minimizing the average distance traveled by all 
households to their nearest site, but instead of minimizing average 
travel distance, our algorithm aims to maximize the expected number 
of households participating in the MDVC, which allowed our queue-
conscious optimization algorithm to simultaneously account for travel 
distance and queue-length-dependent attrition rates.

The general steps of the recursive interchange algorithm are 
as follows:

 1 Select a random subset of 20 vaccination sites and use the 
MDVC participation probability function to determine the 
expected arrival rate λ at each site.

 2 Calculate the expected number of dogs vaccinated at each site 
and sum across all sites to calculate the total number of 
dogs vaccinated.

 3 Exchange one selected site with all non-selected candidate 
locations and keep the one that maximizes the number of 
dogs vaccinated.

 4 Repeat step 3 with remaining sites to obtain a locally optimized 
set of sites.

 5 Perform steps 1–4 over 1,000 iterations, initializing each 
iteration with a different random subset of sites.

An animation showing a single iteration of the recursive 
interchange algorithm can be viewed in the Supplementary materials. 
The recursive interchange algorithm was repeated over 1,000 iterations 
to increase performance, as the algorithm does not guarantee a 
globally optimal solution. Performance was further enhanced by 
combining the recursive interchange algorithm with a genetic 
algorithm that “mates” parental sets output by the recursive 
interchange algorithm, mimicking natural selection by introducing 
crossover and mutation and ultimately producing new starting sets on 
which to repeat the recursive interchange algorithm. The cycling 
between the recursive interchange and genetic algorithms was 
repeated until the expected number of dogs vaccinated did not 
increase over two subsequent rounds of optimization (stopping 
condition). A full description of the hybrid algorithm can be found in 
the Supplementary Text B.

MDVC sites were optimized under three scenarios: no attrition 
(α = β = 0), low attrition (α = 0.01, β = 0.02), and high attrition 
(α = 0.1, β = 0.1). Note the no-attrition scenario is the least realistic, 
as some degree of balking and reneging is expected to occur in the real 
world. The low- and high-attrition queue-conscious solutions were 
compared to the queue-naïve solution obtained under the assumption 
of no attrition (i.e., all dogs that arrive get vaccinated) to determine 
how the incorporation of queueing behaviors impacted the amount of 
dogs lost to attrition and the total vaccination coverage, which was 
calculated as the proportion of dog-owning households that are 
expected to participate in the MDVC. Additionally, the 
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queue-conscious solutions were compared to the locations of actual 
sites used in the 2016 MDVC to evaluate how the performance of sites 
placed by the queue-conscious algorithm compared to a real-world 
baseline (28). Note that although the queue-naïve solution to the 
location problem was obtained assuming no attrition, its performance 
was assessed under the assumption of a low- or high-attrition 
parameter regime. Additionally, the optimized sites were mapped 
along with their catchments to compare how site placement varied 
between the queue-conscious and queue-naïve solutions.

2.3 Sensitivity analyses

To determine how our results may have been impacted by 
misspecification of α and β, we considered four possible scenarios for 
true balking and reneging propensities. In addition to the low- and 
high-attrition scenarios discussed previously (α = 0.01/β = 0.02 and 
α = 0.1/β = 0.1, respectively), we considered two additional scenarios 

for true balking and reneging propensities: (1) low balking and high 
reneging (α = 0.01, β = 0.1) and (2) high balking and low reneging 
(α = 0.1, β = 0.02). We applied the low- and high-attrition solutions to 
these four scenarios to evaluate performance (in terms of number of 
vaccinations and losses to attrition) for situations in which α and β are 
correctly and incorrectly specified. For each scenario and queue-
conscious solution applied, performance was evaluated using the 
number vaccinated and losses to attrition achieved by the queue-naïve 
solution as a benchmark.

The optimization methods detailed above rely on the use of the 
closed-form equations for the queueing system, which assumes a 
constant arrival rate λ. We considered how this assumption impacted 
our results by allowing λ to vary in a step-wise manner to approximate 
time-varying arrival rates that have been observed in the field 
(Supplementary Figure S3). Four time-varying arrival densities were 
considered: (a) a steep unimodal peak density, (b) a wide unimodal 
density that is skewed right, (c) a wide unimodal density that is 
skewed left, and (d) a bimodal density distribution 

FIGURE 2

Potential vaccination site locations in Alto Selva Alegre. The boundaries of Alto Selva Alegre are depicted by the solid, black line. Candidate MDVC sites 
(N = 70) are indicated by red diamonds, and the locations of houses are shaded brown.
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(Supplementary Figure S4). Eight total scenarios were considered, 
representing all combinations of the four time-varying arrival 
densities and low- and high-attrition parameter regimes. Queueing 
simulations were performed for each scenario, and natural splines 
were used to summarize the behavior of the system over a range of 
arrival rates (Supplementary Text C and Supplementary Figure S5). 
Once again, the performance of the low- and high-attrition solutions 
were assessed for each scenario, using performance under the queue-
naïve solution as a benchmark. Additionally, the different 
non-constant arrival rate densities were compared to the baseline 
assumption of a constant arrival rate to determine how this 
assumption impacted estimations of the number of vaccinations and 
losses to attrition.

3 Results

3.1 Queue-conscious optimization for 
MDVCs

As expected, the amount of balking and reneging was greater for 
higher arrival rates and for higher α and β values, representing greater 
attrition propensity (Figure 3). Although the closed-form expression 
for the expected number of vaccinations (Equation 6) was derived 
under steady-state assumptions, the results of the stochastic 
simulations closely approximated results obtained using Equation 6 
across a range of arrival rates for both high- and low-attrition 
parameter regimes (root mean square percentage error < 2% for both 
regimes; Supplementary Figure S6). Thus, Equation 6 was used as the 
objective function in the hybrid algorithm that was used to optimize 
MDVC site placement.

Compared to the queue-naïve algorithm, the queue-conscious 
algorithm favored a more even distribution in the number of arrivals 
across all selected sites (Figure 4). The queue-conscious algorithm 
“flattens” the distribution of arrivals by placing more sites in densely 
populated areas to divide the higher vaccination workload across 
more vaccinators and placing fewer sites in less populous areas 
(Figure 5). This difference in site distribution is expected, because too 
many arrivals at a site result in the formation of long queues and more 
losses from balking and reneging; these losses are accounted for 
(penalized) by the queue-conscious algorithm but not by the queue-
naïve algorithm, which assumes that all arrivals get vaccinated. This 
difference between the queue-naïve and queue-conscious algorithms 
also results in the queue-naïve algorithm yielding more arrivals, as it 
maximizes the number of participating households simply by 
maximizing the number of arrivals.

Within the low-attrition system (α = 0.01, β = 0.02), vaccination 
sites that were placed using the queue-conscious algorithm achieved 
an expected vaccination coverage of 57.2% compared to 56.4% 
achieved by the queue-naïve algorithm (Table 1 and Figure 4). The 
amount of queueing attrition (i.e., the expected number of dog owners 
balked or reneged) was also lower for sites placed using the queue-
conscious algorithm: 596 vs. 733 for the queue-naïve algorithm, 
representing a 19% reduction. Trends were similar for the high-
attrition system (α = 0.1, β = 0.1), in which the queue-conscious 
algorithm improved the expected vaccination coverage from 47.2 to 
48% and reduced queueing attrition by 9% from 1,727 to 1,566. 
Queue-conscious optimization resulted in markedly superior 

performance when compared to that of historic MDVC sites, 
increasing expected vaccination coverage from 50.9 to 57.2% in the 
low-attrition regime and from 43.2 to 48% in the high-attrition 
regime; it also decreased queueing attrition by 32% (from 882 to 596) 
and 9% (from 1,721 to 1,566) in the low- and high-attrition regimes, 
respectively (Table 1 and Supplementary Figure S7).

3.2 Sensitivity analyses

These results were robust to misspecification of α and β, and the 
performance varied only slightly between the high- and low-attrition 
solutions for all combinations of α and β considered (Figure 6). When 
the true values of α and β are low (α = 0.01 and β = 0.02), 
overestimating these parameters in the optimization did not result in 
a substantial loss in the number of dogs vaccinated compared to the 
correctly optimized solution (82 vs. 84 more dogs vaccinated beyond 
the queue-naïve solution). Similarly, when the true values of α and β 
are high (α = β = 0.1), underestimating these parameters in the 
optimization did not markedly impact the number of dogs vaccinated 
compared to the correctly optimized solution (83 vs. 85 more dogs 
vaccinated beyond the queue-naïve solution). Moreover, applying the 
low- and high-attrition solutions resulted in a similar number of dogs 
vaccinated when the true value of α is low and the true value of β is 
high and vice-versa (Figure 6A). The high-attrition solution resulted 
in a greater reduction in queueing attrition than the low-attrition 
solution for all four attrition scenarios, though both solutions resulted 
in substantially fewer losses compared to the queue-naïve solution 
(Figure 6B). Taken together, these results demonstrate that the queue-
conscious algorithm outperforms the queue-naïve algorithm even in 
the presence of mis-specified queueing parameters.

The superior performance of the queue-conscious algorithm 
compared to the queue-naïve algorithm was also robust to relaxation 
of the constant arrival rate assumption. For all four time-varying 
arrival densities and attrition regimes, both low- and high-attrition 
solutions substantially outperformed the queue-naïve solution in 
terms of the numbers vaccinated and lost to attrition 
(Supplementary Figure S7). Interestingly, with the exception of arrival 
density D under a low-attrition regime, for which the low- and high-
attrition solutions yielded roughly equal numbers of vaccinations, the 
high-attrition solution outperformed the low-attrition solution in 
terms of the numbers vaccinated. The high-attrition solution also 
resulted in less queueing attrition than the low-attrition solution for 
all scenarios considered. In addition, non-constant arrival rates 
resulted in more queueing attrition and fewer dogs vaccinated 
compared to an otherwise equivalent scenario where the constant 
arrival rate assumption is met (Supplementary Figure S8).

4 Discussion

We developed an optimization algorithm that integrates 
queueing theory into a spatial optimization framework to improve 
the placement of mass vaccination sites. We applied our algorithm 
to the MDVC in Arequipa, Peru by simultaneously minimizing 
travel distance to MDVC sites and queueing attrition resulting from 
large arrival volumes at some sites. Our queue-conscious algorithm 
decreased queueing attrition by 9–32% and increased expected 
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vaccination coverage by 11–12% compared to actual sites used in a 
previous MDVC and decreased queueing attrition by 9–19% and 
increased expected vaccination coverage by 1–2% compared to a 
queue-naïve version of the same algorithm. MDVC site 
optimization that accounted for queueing placed more vaccination 
sites in densely populated areas to even out the number of expected 
arrivals across sites, and sensitivity analyses revealed that 
accounting for queueing resulted in improved MDVC performance, 
even in the absence of accurate parameter estimates. Moreover, the 
expected gains in vaccination coverage do not capture the indirect 

gains from reduced queueing and increased MDVC participant 
satisfaction, which is likely to improve turnout in 
subsequent campaigns.

Longer wait times have been negatively associated with patient 
satisfaction in a variety of healthcare contexts, and patients report 
being less likely to repeatedly patronize a medical practice with long 
wait times compared to one with shorter wait times (1, 31, 32). For 
dog rabies vaccination, individuals who must wait a long time before 
receiving vaccinations for their dogs may be far less likely to participate 
in subsequent vaccination campaigns. Furthermore, considering the 

FIGURE 3

Realized trials of the stochastic queueing model. Each trial of the stochastic queueing simulation represents a single four-hour day at an MDVC site. 
The gray-shaded portion of each plot tracks the queue length over the four-hour period, and the colored shapes in the white portion of each plot 
tracks the occurrences of balking (red triangles), reneging (red diamonds) and vaccination (blue circles). The number of balking events (B), reneging 
events (R), and vaccinations (V) are reported for each trial. Trials are shown for two different α/β parameter regimes (low: α = 0.01, β = 0.02 and high: 
α = 0.1, β = 0.1) and two different arrival rates (15 and 30 dogs per hour).
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evidence of social contagion around vaccines (33–37), dog owners 
could share their negative experiences waiting at an MDVC site with 
friends and neighbors, discouraging them from participating. The 
reduction of attrition resulting from well-placed vaccination sites may 
pay dividends in improving turnout and vaccination coverage in 
subsequent MDVCs; this is particularly important for dog rabies 
elimination, which requires sustained high levels of vaccination year 
after year (38–40).

We assumed that owners arrived with their dogs to MDVC sites 
at time-invariant rates. The rationale behind this assumption was 
twofold: (1) it ensured tractability of the queueing equations, and 
(2) it was unclear how to specify a non-constant arrival rate in the 
face of heterogeneity in the trajectory of rates observed at MDVC 
sites (Supplementary Figure S3). Our sensitivity analysis indicated 
that the queue-conscious solutions outperformed the  
queue-naïve solutions even when arrival rates varied over time 
(Supplementary Figure S7). We also found that non-constant arrival 
rates resulted in more queueing attrition and fewer dogs vaccinated 
than the baseline assumption of a constant arrival rate 
(Supplementary Figure S8). This result can be explained by the fact 
that a time-varying arrival density leads to swells of arrivals during 

peak intervals, when queue lengths would escalate and cause 
attrition to spike.

Surprisingly, the high-attrition solution performed as well as or 
better than the low-attrition solution for all time-varying arrival 
scenarios, even those in which the true attrition rates were low 
(Supplementary Figure S7). This result can be explained by the spikes 
in attrition that accompany time-varying arrival rates but are not 
captured by the low-attrition solution, which are obtained under the 
assumption of a constant arrival rate. As a result, even when α and β 
are low, the expected vaccination rate is higher with the high-attrition 
solution, as it favors a more even distribution in the number of arrivals 
across vaccination sites (compare top vs. bottom rows of Figures 4, 5). 
These results suggest that applying MDVC optimization in the real 
world is as much an art as it is a precise science. Even if the “true” 
balking and reneging rates could be determined, it may be beneficial 
to slightly overestimate these parameters to offset the reality of 
non-constant arrival rates.

The queue-conscious algorithm we employed decreases queue 
lengths across the study area, but some queueing is inevitable. 
Attrition can be  minimized further by improving the waiting 
experience for queueing dog owners (41, 42). In the context of 

FIGURE 4

Arrivals histograms for sites selected by queue-naïve and queue-conscious optimization compared to actual sites used in the 2016 MDVC assuming 
low- and high-attrition parameter values. The height of each stacked bar represents the expected number of dogs that arrive at a selected vaccination 
site. Bars are subdivided by color according to whether dogs ultimately get vaccinated (blue) or are lost to attrition, either through balking (dark red) or 
reneging (light red). The text above the bars gives the total number of arrivals, total losses to attrition, and overall vaccination coverage achieved for 
each set of sites. Top row shows results assuming a low-attrition parameter regime, and bottom row shows results for a high-attrition parameter 
regime. The number of dogs vaccinated and the number of dogs lost to attrition for all situations were determined using Equation 6 and the equations 
outlined in the electronic Supplementary Text A.
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FIGURE 5

Locations of MDVC sites selected by the queue-naïve vs. queue-conscious algorithm for the low- and high-attrition systems. The locations of selected 
vaccination sites are indicated by white circles that are labeled and scaled according to the expected number of arriving dogs, which were calculated 
using Equation 6. Top row shows results for the low-attrition system, and bottom row shows results for the high-attrition system. Houses in the study 
area are small dots colored according to their catchment, representing the area in which a MDVC site is the closest site for houses in terms of travel 
distance. Areas in which the queue-conscious algorithm placed a higher density of vaccination sites compared to the queue-naïve algorithm are 
indicated by ellipses with solid lines, and areas in which the queue-conscious algorithm placed one fewer site are indicated by ellipses with dotted 
lines.

TABLE 1 Performance of vaccination sites placed by queue-naïve and queue-conscious optimization compared to actual sites used in 2016 for low- 
and high-attrition parameter regimes.

Parameter 
regime

Placement type Expected 
arrivals, n

Losses to 
attrition, n (%)

Households 
vaccinated, n (%)

Est. vaccination 
coverage, %

Low attrition Actual sites 6,381 882 (13.8) 5,499 (86.2) 50.9

Low attrition Optimized, queue-naïve 6,825 733 (10.7) 6,092 (89.3) 56.4

Low attrition
Optimized, queue-

conscious
6,771 596 (8.8) 6,175 (91.2) 57.2

High attrition Actual sites 6,381 1721 (27.0) 4,660 (73.0) 43.2

High attrition Optimized, queue-naïve 6,825 1727 (25.3) 5,098 (74.7) 47.2

High attrition
Optimized, queue-

conscious
6,771 1,566 (23.1) 5,205 (76.9) 48.0

Losses to attrition and total vaccinated are expressed as the number of households lost or vaccinated, as well as a percentage of arriving households. The estimated vaccination coverage was 
calculated as the proportion of dog-owning households that are expected to participate in the MDVC.
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MDVCs, accommodations should be made for aggressive dogs, whose 
presence in a queue can cause other owners to balk or renege. Some 
vaccinators may choose to deviate from FIFO principles and vaccinate 

aggressive dogs first regardless of when they arrive to remove them 
from the queue more quickly. This strategy should be explained clearly 
to the owners present as violations of FIFO are generally perceived as 
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FIGURE 6

Sensitivity of results to misspecification of balking and reneging parameters. Panels a-b illustrate how misspecification of α and β impacts the expected 
number of dogs vaccinated (A) and the number of dogs lost to attrition (B). The performance of the low- and high-attrition solutions are provided with 
the queue-naïve solution acting as a benchmark; thus (A) shows the additional number of dogs vaccinated beyond the expected number achieved 
with the queue-naïve solution, and (B) shows the reduction in attrition compared to the queue-naïve solution. Bars outlined in bold represent 
scenarios in which the balking and reneging parameters are correctly estimated in the optimization. (C) Provides a legend with the values of α and β for 
the four balking/reneging scenarios considered.
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unfair (42, 43). MDVC participant satisfaction should be prioritized 
wherever possible, as it impacts whether individuals will continue to 
participate in future MDVCs. Other behavioral interventions that can 
minimize queueing attrition are messaging and incentives to flatten 
out the arrival rate. Field observations show arrival peaks, longer 
queue lengths, and greater attrition at midday 
(Supplementary Figure S3). Attrition during these peaks can 
be mitigated by communicating about shorter wait times early in the 
morning or incentivizing early arrivals by rewarding a limited quantity 
of “doorbuster” prizes (e.g., dog food or dewormer medication).

The expected vaccination coverage achieved by our 
optimization of fixed-location vaccination sites (57 and 48% for the 
low- and high-attrition scenarios, respectively) falls short of the 
70–80% threshold recommended by World Health Organization 
(38) and Pan American Health Organization (44). This gap can 
be met, in part, by combining fixed-location vaccination sites with 
door-to-door vaccination in areas with low penetration by the 
fixed-location campaign. This two-pronged approach has been 
leveraged successfully in other MDVCs (45, 46) as well as 
pandemic-era COVID-19 vaccination programs (47, 48). A benefit 
of combining door-to-door vaccination with fixed-point 
vaccination is the ability to target high-risk or underserved areas, 
which not only increases total vaccine uptake but also promotes 
vaccine equity. We  have previously found that the queue-naïve 
algorithm increases the spatial evenness of vaccine coverage, a 
dimension of vaccine equity, even though it does not explicitly 
optimize for spatial equity (28). By placing more vaccination sites 
in more populous areas and limiting the placement of sites in less 
populous ones, the queue-conscious algorithm inadvertently 
decreases the spatial equity of fixed-point vaccinations compared 
to the queue-naïve algorithm, which is a limitation of the queue-
conscious approach. In many Latin American cities, including 
Arequipa, the less populous peri-urban areas also coincide with 
areas of greater socioeconomic disadvantage (25, 26); thus, it is 
crucial for peri-urban areas to be  prioritized by door-to-door 
campaigns following the deployment of fixed-point vaccination 
sites to ensure vaccine equity. Disadvantaged groups face the 
greatest barriers in accessing health services and are thus least able 
to travel to vaccination sites and wait for service (49–51). They 
might benefit the most from this combined approach.

There are other limitations of our study. The balking and reneging 
parameters α and β were not estimated from data but selected to 
model two hypothetical parameter regimes that fell within the 
upper and lower bounds of values that could feasibly capture real-
world dynamics. While this lack of empirical estimation is a study 
limitation, our sensitivity analyses also indicated that the performance 
of our optimization algorithm was robust to misspecification of these 
parameters. In addition, the MDVC participation probability 
function that was used to optimize vaccination site locations included 
distance to the nearest site as a sole predictor and did not consider 
other household-level factors such as socioeconomic status (SES) or 
local environment factors such as urban/peri-urban status. Future 
studies can investigate how travel distance to MDVC sites affect 
MDVC participation among different household SES levels and 
across urban and peri-urban areas to derive a more nuanced MDVC 
participation function. Doing so can also be a means of promoting 
vaccine equity; for example, if future investigations revealed that 
marginalized groups are less able to travel long distances to 

participate in the MDVC, then the algorithm using this “updated” 
function would favor placing more sites near marginalized 
populations. Additionally, deviations from a constant arrival rate in 
the real world may impact the generalizability of our results, though 
our sensitivity analyses suggested that the superior performance of 
the queue-conscious algorithm was robust to relaxation of the 
constant arrival rate assumption. Finally, our algorithm assumed that 
all MDVC sites were operated by a single vaccinator (i.e., M/M/1). As 
a result, the algorithm tended to place multiple, adjacent single-
vaccinator sites in highly populous areas. There are generally 
efficiency gains associated with multi-server (i.e., multi-vaccinator) 
queueing systems (where multiple vaccinators serve a single queue) 
compared to single-server systems with designated queues (10). 
However, pooling vaccinators (i.e., placing k vaccinators across fewer 
than k sites) may also lead to performance loss, as reducing the 
number of sites could result in longer queues, which may increase 
perceived waiting times and result in greater attrition (52); reducing 
the number of sites may also increase travel distances for some dog 
owners and thus decrease their probability of participation. A 
possible extension of our work would be to examine the tradeoff 
between gains from pooling vaccinators and losses due to slightly 
longer travel distances and potentially longer queue lengths.

In summary, our spatial optimization framework that incorporates 
expected losses from queueing offers insights for current vaccine-
preventable disease programs and for future pandemic preparedness 
efforts. We  maximized the total vaccine uptake by enhancing the 
spatial accessibility of vaccination sites while mitigating excessive 
queue lengths to reduce losses due to queueing attrition. We found that 
explicitly modeling queueing behavior, even with imprecise parameter 
estimates, led to gains in vaccination coverage and fewer losses to 
attrition than optimization that ignores the effects of queueing. 
Combined with door-to-door outreach and targeted media campaigns, 
rational placement of fixed-point vaccination sites is expected to bring 
vaccine uptake closer to threshold levels recommended for the control 
and eventual elimination of dog rabies. Considering the impact of 
excessive wait times on other vaccination campaigns, including the 
early rollout of the COVID-19 vaccine, our spatial optimization 
framework that explicitly considers queueing attrition can be broadly 
adopted to support other mass vaccination programs.
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