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Introduction: Smart cities, artificial intelligence (AI) in healthcare, and low-carbon 
building materials are pivotal to public health, environmental sustainability, 
and green efficiency. Despite their critical importance, understanding public 
perceptions and attitudes toward these domains remains underexplored. 
Additionally, the effective use of advanced technologies like convolutional 
neural networks (CNN) in predicting and promoting low-carbon solutions in 
construction is gaining attention.

Methods: This study employs a dual approach: (1) A survey of 200 respondents 
was conducted to gauge public perceptions and attitudes toward smart cities, 
AI in medicine, and low-carbon building materials. (2) A CNN model was 
developed and implemented to predict the performance of low-carbon building 
materials. The model utilized convolutional and pooling layers to capture local 
features and spatial information from image datasets, with tasks including image 
classification and segmentation.

Results: The survey results indicate high awareness of smart cities (80%), with 60% 
associating them with environmental protection and green living. For AI in medicine, 
70% of respondents are aware of its applications, but only 45% perceive it as 
environmentally beneficial. Regarding low-carbon building materials, 60% expressed 
willingness to pay premium prices, and 65% recognized their positive environmental 
impact. The CNN model demonstrated high prediction accuracy on both training 
and validation datasets, effectively aiding in the identification of low-carbon materials 
and reducing building energy consumption and carbon emissions.

Discussion: The findings highlight significant public awareness and diverse 
attitudes toward these critical domains, suggesting the need for improved 
communication and advocacy for AI’s environmental benefits. The application 
of CNN models in the construction industry showcases a promising pathway 
to enhance material selection efficiency and foster sustainable practices. These 
insights are essential for aligning public understanding with technological 
advancements to achieve environmental and public health goals.
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1 Introduction

As science and technology march forward, the concept of smart 
cities has emerged as a beacon of innovative urban development. 
Through the strategic utilization of information technology and data 
analysis, smart cities have transformed into bustling hubs of efficiency, 
convenience, and comfort, ultimately enhancing the quality of life for 
residents (1–3). Within the framework of smart city initiatives, the 
integration of artificial intelligence (AI) technology and the promotion 
of eco-friendly building materials emerge as pivotal strategies in 
fostering urban sustainability and environmental stewardship. As the 
pace of urbanization accelerates, cities grapple with a myriad of 
challenges ranging from traffic congestion to environmental 
degradation, necessitating proactive solutions. Enter smart cities, 
poised to confront these challenges head-on by leveraging cutting-
edge technologies such as AI, communication networks, and big data 
analytics to intelligently manage and optimize various urban facets, 
including infrastructure, services, and resource allocation. This 
holistic approach not only presents innovative solutions but also 
charts a promising path toward mitigating pressing urban concerns, 
paving the way for a greener, more sustainable future (4–6).

As AI technology rapidly evolves, its integration into the medical field 
has matured significantly. AI now plays a pivotal role in aiding physicians 
across various aspects of medical care, from disease diagnosis to treatment 
planning and prognostication, thanks to its ability to analyze vast amounts 
of data and deploy sophisticated machine learning algorithms (7, 8). 
Particularly in medical imaging, AI has achieved diagnostic accuracy 
comparable to seasoned medical professionals and, in some cases, even 
surpasses human performance. Moreover, AI facilitates personalized 
medical care by enabling intelligent medical devices and health 
management systems, enhancing both the quality and efficiency of 
medical services for patients. This synergy between AI and medicine 
heralds a new era of precision medical care, where technology empowers 
clinicians to deliver more accurate diagnoses and tailored treatment plans, 
ultimately improving patient outcomes and revolutionizing the practice 
of medicine (9). The extensive application of AI in the medical field, such 
as in diagnostics and treatment planning, has indeed enhanced efficiency 
and accuracy. However, it may also lead to a series of issues, including but 
not limited to data privacy breaches, misdiagnoses due to algorithmic 
bias, and the potential replacement of human physicians, which could 
exacerbate social inequality (10, 11). Particularly, if access to and 
utilization of AI technologies are uneven, it may intensify the unequal 
distribution of healthcare resources, thereby affecting the accessibility and 
equity of public health services. While AI technologies have brought 
numerous conveniences and efficiency improvements in the short term, 
their long-term impacts on social structures and the environment cannot 
be  overlooked. Specifically, the rapid development and widespread 
application of AI technologies may accelerate resource consumption, 
potentially causing irreversible harm to the environment in the absence 
of appropriate green technologies and policy guidance.

The greening of AI represents a direction worthy of in-depth 
exploration. By optimizing algorithm designs, utilizing renewable 
energy-poared data centers, and developing more environmentally 
friendly hardware materials, it is possible to significantly reduce the 
carbon footprint of AI technologies (12). Additionally, promoting the 
application of AI in environmental protection, resource management, 
and sustainable development—such as through smart pollution 
monitoring and optimized energy distribution—represents important 

pathways toward achieving greener AI. The construction industry plays 
a pivotal role in global energy consumption and carbon emissions, 
making the adoption of low-carbon building materials imperative for 
sustainable development. By advocating for these materials, the 
industry can significantly reduce its environmental impact. Low-carbon 
building materials offer a practical solution by decreasing building 
energy usage and greenhouse gas emissions. Through initiatives such 
as integrating renewable energy sources and utilizing efficient 
insulation materials, buildings can substantially decrease their reliance 
on fossil fuels, leading to a noticeable reduction in carbon emissions. 
This proactive approach addresses environmental concerns and sets the 
stage for a more sustainable and resilient built environment.

This study aims to explore public perceptions of the application of 
CNN models in the identification of low-carbon materials and how 
these perceptions influence the promotion and utilization of such 
materials. Although some research has addressed the application of 
AI technologies in environmental protection, studies focusing on 
public views of these innovative technologies and their impacts 
remain relatively scarce. Therefore, this research seeks to fill this gap, 
providing valuable insights for policymakers, businesses, and various 
sectors of society.

Public perceptions of these innovations are critical because they 
directly affect the acceptance and scope of technology application. 
Only when the public has a comprehensive understanding and trust 
in the accuracy and reliability of CNN models for low-carbon material 
identification can these technologies be applied in broader contexts. 
Furthermore, public attitudes directly influence the formulation and 
implementation of relevant policies, as well as corporate decisions 
regarding technology development and market promotion. In 
addition to environmental impacts, these technologies are closely 
related to public health. The use of low-carbon materials can reduce 
energy consumption and carbon emissions in buildings, thereby 
improving indoor air quality and decreasing the incidence of health 
issues such as respiratory diseases. Concurrently, the application of 
CNN models in medical image recognition has also achieved 
significant results, providing robust support for the early detection 
and treatment of diseases. Thus, exploring how these technologies 
intersect with public health not only enhances their relevance but also 
offers insights for broader application scenarios.

In light of the evolving landscape of smart cities, AI medical care, and 
low-carbon building materials, this study undertakes an exploration of 
their integration to bolster environmental sustainability within urban 
settings. The research endeavors to delve into the intersection of AI 
medical care and low-carbon building materials within smart city 
frameworks, aiming to fulfill several key objectives. Firstly, it seeks to 
conduct an in-depth analysis of the current applications and emerging 
trends of AI medical care and low-carbon building materials within the 
context of smart cities. Secondly, the study aims to scrutinize integration 
methods and mechanisms for seamlessly incorporating AI medical care 
and low-carbon building materials into the fabric of smart urban 
environments. Lastly, it endeavors to propose tangible strategies and 
actionable pathways for fostering synergy between AI medical care and 
low-carbon building materials within the context of smart cities. Through 
the execution of these objectives, the study introduces novel concepts and 
methodologies for smart city development and advocates for the wider 
adoption and advancement of AI medical care and low-carbon building 
materials. Thus, it makes significant strides toward the sustainable 
evolution of urban landscapes.
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2 Literature review

The emergence of smart cities as a leading trend in global 
sustainable urban development underscores the profound impact of 
technological innovation on urban landscapes. As AI technology rapidly 
evolves, smart cities continually seek ways to harness its potential to 
optimize operations and enhance residents’ well-being. In tandem, the 
exploration and implementation of low-carbon building materials have 
become pivotal in shaping the infrastructural fabric of these forward-
thinking cities (13). This section embarks on a comprehensive review of 
relevant literature spanning smart cities, AI medical care, and 
low-carbon building materials, laying the theoretical groundwork for 
the framework and objectives of this study. Smart cities epitomize a 
paradigm shift in urban development, leveraging cutting-edge 
information and communication technology alongside robust data 
analytics to efficiently manage resources and deliver essential services 
across various domains such as urban planning, transportation, 
environmental conservation, and energy management. Musa et al. (14) 
highlight key attributes including intelligent transportation systems, 
energy management, and environmental monitoring as integral 
components of smart cities. Ultimately, the overarching objective of 
smart city initiatives is to enhance operational efficiency, optimize 
resource utilization, and ultimately, improve the overall quality of life 
for residents. Through a synthesis of these interdisciplinary domains, 
this study aims to propel the advancement of smart cities toward greater 
sustainability and resilience in the face of urban challenges.

The integration of AI into the medical field has led to 
transformative breakthroughs. Research by Ghaffar Nia, Kaplanoglu 
(8) illustrates how AI empowers physicians by aiding in disease 
diagnosis, treatment planning, and predicting disease progression 
through the analysis of vast datasets and sophisticated machine 
learning algorithms. Moreover, Agarwal, Yadav (7) highlight the 
remarkable diagnostic accuracy achieved by AI-based medical care, 
particularly in areas like skin cancer detection and breast cancer 
screening, rivaling that of expert physicians. This rapid progression of 
AI in medical care holds immense promise for improving the 
precision and efficiency of medical diagnosis, reducing wastage of 
medical resources, and delivering superior medical care services to 
patients. As AI continues to evolve, its integration into medical 
practice stands to revolutionize patient care and enhance outcomes 
across diverse medical disciplines.

Low-carbon building materials play a pivotal role in mitigating 
greenhouse gas emissions and reducing resource consumption across 
their entire life cycle. Alaux et al. (15) underscore the importance of 
investigating and adopting such materials, emphasizing their potential 
to significantly decrease the construction industry’s energy dependency 
and mitigate carbon emissions from buildings. Building upon this, 
Norouzi et al. (16) highlight how the integration of low-carbon materials 
can effectively curb carbon emissions by lowering buildings’ energy 
consumption, especially through the incorporation of renewable energy 
sources and the utilization of high-efficiency insulation materials. The 
research and implementation effort not only contribute to the creation 
of energy-efficient and environmentally friendly urban environments but 
also drive sustainable urban development. By embracing low-carbon 
building materials, cities can reduce their ecological footprint and move 
toward a more sustainable future.

In regions such as the United States and Europe, the application of 
AI technology in the identification of low-carbon materials has also 

garnered widespread attention. These studies exhibit both similarities 
and differences in terms of algorithm optimization, dataset 
construction, and practical application scenarios when compared to 
research conducted in China. Comparative analysis reveals that 
research in different regions displays distinct characteristics and trends 
influenced by various factors, including cultural background, economic 
level, and policy environment. These differences provide a richer 
comparative perspective, facilitating a deeper understanding of the 
practical applications and potential challenges of AI technology in the 
identification of low-carbon materials.

In conclusion, the development of smart cities, AI medical care, 
and low-carbon building materials are pivotal considerations in 
contemporary urban sustainable development. The establishment of 
smart cities necessitates the incorporation of advanced technologies 
to elevate the management and service standards of urban areas. 
Meanwhile, the progression of AI medical care holds promise for 
enhancing the caliber and efficacy of medical services. Additionally, 
the adoption of low-carbon building materials emerges as a 
fundamental strategy for constructing energy-efficient and 
environmentally conscious cities. This study endeavors to investigate 
the integration of AI medical care and low-carbon building materials 
to bolster the environmental advantages of smart cities and contribute 
to the enduring sustainability of urban environments.

3 Methods

3.1 AI medical care in smart cities

The integration of AI into medical care within the smart city context 
heralds a new era of transformative benefits and possibilities. At its core, 
the synergy between AI and smart city infrastructure establishes a solid 
foundation for revolutionizing medical care delivery. The advanced 
intelligence and digitalization inherent in smart city infrastructure 
provide a fertile ground for AI applications in medical care. Medical care 
facilities within smart cities can capitalize on this robust technical 
framework to harness intelligent medical devices and systems, enabling 
seamless real-time collection, transmission, and analysis of medical data. 
This capability not only streamlines medical processes but also enhances 
the efficiency and effectiveness of medical care services. For instance, 
through continuous patient monitoring facilitated by intelligent devices, 
physicians gain unprecedented insights into patients’ physiological 
parameters, enabling remote diagnosis, prompt treatment adjustments, 
and ultimately, improved treatment outcomes. Furthermore, AI 
technology offers unparalleled advantages in medical imaging diagnosis, 
disease prediction, and diagnosis. Within the smart city ecosystem, 
medical care institutions can leverage sophisticated machine learning 
algorithms and big data analytics to glean invaluable insights from vast 
medical datasets. By doing so, they can refine the accuracy and precision 
of medical diagnoses to unprecedented levels. For example, AI-powered 
medical imaging diagnosis systems equipped with deep learning 
algorithms can autonomously analyze medical images, aiding physicians 
in rapid disease identification, minimizing diagnostic errors, and 
elevating diagnostic accuracy to new heights. Moreover, AI medical care 
in smart cities paves the way for personalized diagnosis and treatment 
strategies tailored to individual patient needs. By leveraging patients’ 
medical histories, genetic profiles, and lifestyle data, medical care 
institutions can harness AI algorithms to anticipate health risks and 
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devise personalized preventive and treatment measures. This approach 
embodies the concept of precision medicine, wherein medical care 
interventions are finely tailored to each patient’s unique characteristics 
and circumstances (17, 18).

The integration of AI into medical care within the framework of 
smart city infrastructure represents a paradigm shift in medical care 
delivery, offering multifaceted benefits and transformative potential. 
At its core, the augmentation of intelligence and digitalization within 
smart city infrastructure establishes a robust technical environment 
conducive to the seamless collection, transmission, processing, and 
application of AI-driven medical services. This convergence unlocks 
a myriad of opportunities for intelligent, personalized, and precise 
medical care delivery, reshaping the landscape of medical care 
provision. Firstly, smart city infrastructure serves as a catalyst for 
seamless data collection and transmission, laying the groundwork for 
real-time monitoring and data acquisition. The heightened 
intelligence embedded in smart medical devices and sensors enables 
the continuous gathering of patients’ physiological parameters, 
condition data, and medical images. Leveraging the network 
infrastructure of smart cities, this wealth of data can be  swiftly 
transmitted and shared, facilitating personalized medical services and 
furnishing invaluable insights for optimization and precision in 
medical care delivery. Secondly, the robust data processing and 
analysis capabilities afforded by smart city infrastructure empower 
medical care institutions to delve into vast medical datasets with 
unprecedented depth and efficiency. Through the utilization of 
information systems and big data platforms, medical care providers 
can harness formidable computing and storage capacities to process 
and analyze complex medical data. Cloud computing and big data 
technologies enable the exploration of patients’ health statuses and 
disease progression patterns, equipping physicians with enhanced 
diagnostic and treatment capabilities grounded in empirical evidence 
and scientific rigor. Furthermore, the intelligence and digitalization 
of smart city infrastructure enable the delivery of personalized 
medical services tailored to individual patient needs. By leveraging 
AI technologies and big data platforms, medical care facilities can 
scrutinize patients’ medical histories, genetic profiles, and lifestyle 
data to extract actionable insights. This facilitates the provision of 
tailored diagnosis and treatment plans, as well as personalized health 
management recommendations, thereby enhancing the precision and 
customization of medical services to unprecedented levels. In 
addition, smart city infrastructure supports the optimal allocation of 
medical resources, promoting the efficient utilization of medical care 
resources. By leveraging AI capabilities and big data analytics, 
medical institutions can analyze and forecast the supply and demand 
dynamics of medical resources. This enables the rational allocation 
of medical care resources, optimization of service layouts, and 
enhancement of service quality and efficiency, ultimately leading to 
improved patient outcomes and satisfaction. Lastly, the robust 
information security systems embedded within smart city 
infrastructure ensure the confidentiality and integrity of medical 
data. Privacy protection mechanisms safeguard against unauthorized 
access and misuse of medical information, preserving patients’ rights, 
interests, and privacy. This instills confidence among patients and 
medical care providers alike, fostering a secure environment for the 
exchange of sensitive medical information. In conclusion, the 
evolution of smart city infrastructure plays a pivotal role in advancing 
the integration of AI into medical care, ushering in a new era of 

intelligent and data-driven medical care delivery. By leveraging the 
capabilities of smart city infrastructure, medical care institutions can 
unlock unprecedented opportunities for personalized, precise, and 
efficient medical care provision, ultimately improving patient 
outcomes and shaping the future of medical care delivery (19–21).

The use of low-carbon building materials can significantly 
reduce carbon emissions during the operational phase of buildings, 
thereby improving urban air quality and decreasing health issues 
related to respiratory diseases caused by air pollution. Concurrently, 
the application of AI in healthcare, such as predicting disease risk 
through big data analysis and optimizing medical resource 
allocation, can further enhance public health and collectively 
promote the development of healthy cities alongside low-carbon 
materials. By collecting and analyzing vast amounts of 
environmental, health, and socioeconomic data, AI can construct 
complex models to predict changes in human health risks under 
various carbon emission scenarios. This analytical capability assists 
policymakers in accurately identifying high-risk areas and 
populations, enabling the formulation of effective emission 
reduction measures and health intervention strategies.

3.2 Application of low-carbon building 
materials in smart cities

Low-carbon building materials play a critical role in advancing 
sustainable construction practices, particularly within the context of 
smart cities. These materials encompass a diverse range of building 
elements meticulously engineered to minimize environmental impact 
and reduce greenhouse gas emissions throughout their entire life 
cycle, from production to disposal (22). With mounting concerns 
surrounding climate change, the adoption of low-carbon building 
materials has emerged as a pivotal trend within the construction 
industry. At its core, the adoption of such materials aligns with the 
overarching goal of decarbonization, seeking to address construction 
needs while mitigating the environmental footprint associated with 
building activities. This necessitates a multifaceted approach that 
encompasses various strategies, including the utilization of renewable 
resources, optimization of energy consumption, and reduction of 
emissions during manufacturing processes. For instance, substituting 
traditional building materials with recycled alternatives, implementing 
energy-efficient production techniques, and optimizing transportation 
methods for materials are all effective measures aimed at achieving 
low-carbon objectives (23). Table 1 (24) provides an overview of the 
key characteristics defining low-carbon building materials, illustrating 
their importance in fostering sustainable development within smart 
city environments.

The utilization of low-carbon building materials has profoundly 
influenced the urban environment and residents’ health in a 
multitude of ways, shaping a more sustainable and livable future for 
urban dwellers. Firstly, these materials play a pivotal role in 
improving air quality within urban areas. Crafted from eco-friendly 
components like natural fibers and recycled materials, low-carbon 
building materials minimize the emission of harmful substances, 
thereby ameliorating urban air quality. Compared to conventional 
building materials, these eco-friendly alternatives generate fewer 
pollutants during production and are more conducive to recycling 
post-use, alleviating environmental strain and reducing air pollution 
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levels. Consequently, the health of urban inhabitants is enhanced as 
they breathe cleaner air, reducing the risk of respiratory illnesses and 
improving overall well-being. Secondly, the adoption of low-carbon 
building materials contributes to enhancing indoor environmental 
quality. These materials typically boast superior environmental 
adaptability and comfort attributes, such as effective thermal 
insulation, sound absorption, and moisture regulation capabilities. 
By improving indoor air quality and comfort, low-carbon building 
materials mitigate indoor air pollution and odors, creating healthier 
living environments for residents (25, 26). For instance, 
incorporating paints and construction materials with low volatile 
organic compound (VOC) levels diminishes the presence of 
hazardous substances in indoor air, reducing the risk of respiratory 
issues and enhancing overall health. Furthermore, the integration of 
low-carbon building materials aids in mitigating the urban heat 
island effect, a phenomenon where urban areas experience elevated 
temperatures compared to surrounding rural areas. Traditional 
materials like concrete and steel possess high heat capacity and 
thermal conductivity, exacerbating the urban heat island effect by 
absorbing and retaining solar energy. However, materials with low 
heat capacity and high reflectivity, such as reflective roofs and green 
roofs, effectively attenuate building and city temperature rises, 
ameliorating urban climates and bolstering residents’ living comfort. 
Additionally, the use of lightweight and recycled materials in 
construction reduces buildings’ structural weight, subsequently 
curbing their energy consumption and carbon emissions. By 
adhering to low-carbon building design principles, such as 
optimizing natural light utilization and promoting natural 
ventilation, buildings can further diminish their energy usage and 
dependence on external resources. This not only reduces greenhouse 
gas emissions but also promotes sustainable urban development by 
conserving energy and fostering resilience to climate change. Lastly, 
the integration of low-carbon building materials contributes to 
enhancing community health and residents’ well-being. By 
bolstering air quality, indoor environments, and urban climates, 
these materials mitigate the adverse impacts of environmental 
pollution and climate change on residents’ health, fostering 
community cohesion and enhancing overall quality of life. In 
essence, the utilization of low-carbon building materials represents 
a critical step toward creating healthier, more sustainable urban 
environments for present and future generations (27).

3.3 Integration of AI medical care and 
low-carbon building materials in smart 
cities

This study harnesses the power of AI and convolutional neural 
network (CNN) technology to revolutionize the prediction and design 
optimization of building materials. By constructing a sophisticated 
neural network model, the intricate correlations between building 
material performance and structure can be  unraveled, drawing 
insights from extensive experimental datasets. This enables precise 
predictions of material performance under diverse design scenarios. 
For example, employing deep learning techniques facilitates the 
optimization of building material microstructures, ensuring the 
attainment of optimal mechanical properties and durability for 
enhanced structural integrity and longevity.

In the realm of deep learning, CNNs stand out as powerful tools 
for processing and analyzing grid-structured data tasks, particularly 
images and videos. Inspired by the human visual system, CNNs excel 
at extracting features from input data through layers of convolution 
and pooling operations, ultimately performing tasks such as 
classification or regression through fully connected layers. The 
relevance of CNNs to low-carbon building materials lies in their 
potential to revolutionize architectural design and material selection 
processes, paving the way for more environmentally friendly and 
sustainable construction practices. CNNs play a crucial role in 
analyzing the characteristics and performance of building materials. 
By inputting images of various materials into CNN models, their 
physical properties, structures, and textures can be  classified and 
predicted with remarkable accuracy. This empowers designers and 
engineers to make informed decisions when selecting low-carbon 
building materials that meet specific requirements, thereby promoting 
sustainable building practices. Furthermore, CNNs contribute to 
optimizing the energy efficiency of buildings. By analyzing 
architectural appearance, layout, and material properties, CNNs can 
forecast building energy consumption and provide optimization 
recommendations. Adjusting window positioning and size, as well as 
modifying material thermal conductivity, based on CNN insights can 
significantly reduce energy consumption and minimize environmental 
impact. Moreover, CNNs are instrumental in the research and 
innovation of building materials. By analyzing existing materials’ 
characteristics and integrating extensive data and simulation 

TABLE 1 Concepts and characteristics of low-carbon building materials.

Characteristics Description

Green and 

environmental friendly

Low-carbon building materials typically originate from renewable resources or possess recyclable properties, such as bamboo and recycled steel. 

They exhibit minimal environmental impact during production and use, thereby reducing the consumption of natural resources and mitigating 

environmental damage.

Energy efficiency Low-carbon building materials demonstrate excellent energy utilization efficiency, thereby reducing energy consumption during the operational 

phase of buildings. For instance, thermal insulation materials with superior insulation properties contribute to the reduction of heating and cooling 

energy consumption in buildings.

Emission reduction Low-carbon building materials prioritize the adoption of low-energy and low-emission production processes, often leveraging low-carbon fuels 

and energy sources. These practices effectively mitigate the release of harmful emissions, including greenhouse gasses, during the manufacturing 

process.

Recyclability The design of low-carbon building materials emphasizes sustainability across the entire lifecycle, with a focus on material reuse and recycling. By 

facilitating material disassembly and recycling, these materials achieve recyclability, thereby reducing resource consumption and minimizing waste 

emissions.
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experiments, CNNs aid scientists and engineers in developing novel 
low-carbon building materials. These materials may possess enhanced 
insulation properties, durability, and recyclability, thereby advancing 
the construction industry toward greater sustainability and 
eco-consciousness. In conclusion, CNNs offer immense potential in 
the exploration and implementation of low-carbon building materials. 
Leveraging CNN technology enables a deeper understanding and 
optimization of building material performance, enhances building 
energy efficiency, and propels the construction sector toward a more 
sustainable trajectory. This methodology aligns with global efforts to 
mitigate climate change and promote environmental conservation.

A CNN model is constructed to process the structural and 
performance data of materials, followed by obtaining the optimal 
design solution through model prediction and optimization. The 
model’s process flow is illustrated in Figure 1.

The specific steps are as follows:

 (1) Data collection and preprocessing: structural and performance 
data of building materials, including material composition, 
physical properties, mechanical performance, etc., were 
gathered. The collected data underwent preprocessing, 
including tasks such as data cleaning and normalization, to 
facilitate the training and optimization of the neural network.

 (2) Establishing the CNN model: the input of the neural network 
can consist of structural feature data of materials, such as 
crystal structure, element distribution, etc., while the output 
can be  the predicted performance of materials, such as 
strength, thermal conductivity, etc. The model is constructed 
using convolutional layers, pooling layers, and fully connected 
layers. The output of the convolutional layer is calculated via 
Equation 1:
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In Equation 1, l
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The Rectified Linear Unit (ReLU) activation function is defined as 

Equation 2:

 ( )l l
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In Equation 2, l
ija  represents the output of the neuron after the 

activation function, and ReLU denotes a commonly used activation 
function defined as ( ) ( )max 0,ReLU x x= .

The output of the pooling layer is calculated using Equation 3:

 ( )ˆl l
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(3)

In Equation 3, ˆl
ijx  represents the output of the pooling layer, and 

pool is the pooling function, such as Max Pooling or Average Pooling.
The output of the fully connected layer is calculated using 

Equations 4 and 5 below:
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Here, L
jz  represents the weighted sum of the j-th neuron of the 

output layer, L
ijW  refers to the weight connected to the output layer, L

ja  
signifies the output of the j-th neuron of the output layer, and L

jb  
denotes the bias term of the output layer.

 (3) Model training and optimization: training the neural network 
model involves utilizing collected data to learn the intricate 
relationship between material structure and performance. This 
process employs optimization algorithms, such as gradient 
descent algorithms, to refine model parameters. Through iterative 
adjustments, these algorithms minimize prediction errors and 
enhance the overall accuracy of the model, ensuring that it 
effectively captures the underlying patterns within the data.

 (4) Model verification and evaluation: following model training, 
an independent test dataset is employed to verify and evaluate 
the trained model. This step assesses the model’s generalization 
capability and prediction accuracy. Based on validation results, 
the model undergoes adjustments and enhancements to 
further improve its performance and reliability, ensuring its 
effectiveness in real-world applications.

 (5) Optimized design plan generation: the trained neural network 
model, now refined and validated, is deployed to predict and 
optimize building material structure and performance. By 
adjusting input parameters based on specific design 

FIGURE 1

Process flow of the CNN model.
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requirements and objectives, the model generates an optimal 
design solution tailored to the project’s needs. This process 
ensures that the resulting design plan maximizes performance 
while adhering to predefined constraints and goals.

 (6) Plan verification and experimentation: the generated optimized 
design plan is translated into tangible building materials, and 
experimental verification ensues. Through rigorous testing and 
experimentation, the performance of the design plan is 
evaluated, and feedback from experimental outcomes is used 
to further refine and optimize the design. This iterative process 
establishes a closed-loop optimization cycle, continuously 
improving the design plan based on real-world feedback and 
ensuring its effectiveness in practice.

During the training of the CNN model, the following parameter 
settings are employed: the learning rate is set to 0.001 to control the 
model’s update speed during training; the batch size is set to 32; in 
each convolutional layer, the kernel size is 3 × 3; and the ReLU 
activation function is applied following the convolutional and fully 
connected layers to enhance the model’s nonlinear capacity.

For each type of building material, 30 samples are prepared, 
resulting in a total of 90 samples across three material types. Each 
sample includes 10 features, such as the composition ratio, 
manufacturing process parameters, and physical property indicators. 
The range for compressive strength testing is set at 20–100 MPa.

In the test set, the mean squared error (MSE) for the model’s 
compressive strength predictions is 2.5 MPa, while the MSE for 
flexural strength predictions is 1.2 MPa. In field tests, the error 
between the model’s predictions and the actual values falls within an 
acceptable range, indicating that the model exhibits strong predictive 
capabilities and practicality.

3.4 Questionnaire survey and parameter 
settings

3.4.1 Questionnaire survey
This study utilizes a cross-sectional research design aimed at 

investigating public perceptions and attitudes toward smart cities, AI 
in healthcare, and low-carbon building materials at the current time 
point. Data are collected from 200 randomly selected respondents 
regarding their awareness, acceptance, and expectations in these areas. 
This design facilitates the acquisition of a snapshot of current public 
opinions, providing crucial insights into the image and status of these 
domains in the public mind. The survey is conducted from April 2022 
to October 2022, spanning a duration of 6 months. Following the 
elimination of incomplete responses, 190 valid questionnaires are 
obtained, resulting in an impressive response rate of 95%. This high 
response rate ensures the reliability and validity of the survey findings. 
The questionnaire primarily includes sections on personal 
information, understanding and attitudes toward smart cities, 
knowledge and attitudes regarding AI in healthcare, attitudes and 
purchasing intentions toward low-carbon building materials, and 
satisfaction with proposed improvements to the survey materials. A 
random sampling method is employed to ensure that the sample 
adequately represents individuals of varying ages, genders, professions, 
and income levels. This approach aims to gather the broadest and 
most diverse public opinions possible.

In exploring perceptions of AI, a series of questions is designed 
to gain a deeper understanding of the public’s attitudes toward its 
applications in daily life. This includes inquiries about the perceived 
value of AI, concerns regarding potential risks, and views on its 
impact on employment. These questions aim to reveal the diverse 
perspectives held by the public regarding AI technology, ranging 
from enthusiastic support to reservations, and even concerns and 
opposition. For perceptions of smart cities, a set of questions is 
developed to assess the public’s understanding of the concept of 
smart cities and their views on the environmental impact of such 
initiatives. Special attention is given to identifying areas in which the 
public believes improvements are needed in the construction of 
smart cities, with the intent of guiding future policy development 
and practical implementation. Regarding views on low-carbon 
materials, the questions primarily focus on the public’s 
understanding of the concept and significance of low-carbon 
materials, their awareness of the environmental implications, and 
their willingness to choose low-carbon materials in everyday life, as 
well as the influencing factors. Additionally, the questionnaire 
includes several questions related to income level, such as annual 
household income and job stability, in order to indirectly assess the 
impact of economic status on perceptions and attitudes in 
these areas.

3.4.2 Neural network parameter settings
In the training phase, a dataset comprising 1,000 sample data 

points is utilized, while an additional 200 sample data points are 
reserved for validation purposes. The learning rate employed during 
training is set at 0.01, ensuring a balanced approach to gradient 
descent optimization. The training cycle spanned 100 epochs, allowing 
the neural network model to iteratively learn and adapt to the 
underlying patterns in the data, ultimately enhancing its predictive 
capabilities and performance.

3.5 Ethic approval

The experiment was approved by Academic Ethics Review 
Committee of Guangzhou University (N0 GZRT2024169), China, on 
March 23, 2024. Our study did not involve animal or human clinical 
trials and was not unethical. In accordance with the ethical principles 
outlined in the Declaration of Helsinki, all participants provided 
informed consent before participating in the study. The anonymity 
and confidentiality of the participant guaranteed, and participation 
was completely voluntary. Participants volunteered to take part in the 
interview. Prior to participating in the interview, they were informed 
of the purpose of the study and were told that “submission of records” 
was considered informed consent. Participants could withdraw at any 
time during the participation process.

4 Results

4.1 Descriptive statistics

4.1.1 Personal information of the survey subjects
The demographic data collected from the survey participants is 

summarized in Figure 2.
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As depicted in Figure  2, males constitute 60% of the survey 
respondents, while females make up  40%. The age distribution is 
predominantly concentrated between 31 and 60 years old. These 
findings indicate a relatively balanced gender ratio among participants, 
with the majority falling within the middle-aged demographic. This 
demographic profile enables a more nuanced understanding of 
attitudes and perspectives regarding smart cities, AI medical care, and 
low-carbon building materials across different demographic groups.

4.1.2 Smart city statistics
The statistical findings regarding smart cities are presented in 

Figure 3.
As illustrated in Figure 3, 80% of the respondents possess an 

understanding of smart cities, with 30% indicating a high level of 
comprehension. Additionally, 60% of the participants perceive smart 
cities to have a positive impact on the environment. These results 
suggest that a considerable majority of the respondents exhibit a 
certain level of familiarity with smart city concepts, and a notable 
portion acknowledges their beneficial influence on environmental 
conservation and sustainable living. This trend likely signifies an 
increasing awareness of sustainable development and environmental 
stewardship, as well as a favorable disposition toward the 
advancement of smart city initiatives. Such insights hold significant 
implications for guiding future urban planning and 
developmental endeavors.

4.1.3 AI medical statistics
The statistical findings regarding AI medical treatment are 

presented in Figure 4.
As depicted in Figure  4, 70% of the respondents exhibit an 

understanding of the application of AI in the medical field, with 45% 
expressing belief in its positive impact. Through optimizing supply 
chain management, enhancing energy efficiency, and promoting the 
rational allocation of medical resources, AI contributes to reducing 
the negative environmental impact of healthcare. Proponents also 
emphasize that AI can drive innovation in medical technology, leading 
to the development of more environmentally friendly and efficient 
medical devices and treatment methods. These innovations not only 
improve the quality of healthcare services but also mitigate 
environmental damage. This indicates a substantial level of 
comprehension among participants regarding the integration of AI in 
medical care, with a notable portion acknowledging its potential 
environmental benefits. However, 30% of respondents remain 
unfamiliar with this domain, and 55% perceive its impact as 
unfavorable, possibly reflecting apprehensions and uncertainties 
surrounding the adoption of novel technologies. Some skeptics argue 
that while AI can enhance the efficiency of healthcare services, the 
computational resources and energy consumption required for its 
operation are substantial. If these resources are not managed and 
utilized effectively, they may pose adverse environmental impacts. 
This skepticism primarily stems from several factors: first, the public’s 
limited understanding of AI technology results in insufficient 
awareness of its potential environmental implications; second, there 
is significant concern regarding privacy and security issues in the 
healthcare sector, with fears that the introduction of AI technology 
may introduce new risks; third, varying levels of acceptance of 
low-carbon and environmentally friendly concepts among the public 
lead to differences in expectations and attitudes toward the application 
of AI in healthcare. These findings underscore the necessity for 

enhanced dissemination and advocacy of AI in medical care. 
Moreover, it underscores the importance of gauging public perception 
and attitudes toward its prospective environmental implications.

4.1.4 Statistics of low-carbon building materials
The statistical analysis of low-carbon building materials is 

illustrated in Figure 5.
As depicted in Figure 5, 60% of respondents have expressed their 

willingness to pay higher prices for purchasing low-carbon building 
materials, indicating a notable level of recognition of this material 
type. Furthermore, 30% of respondents possess a substantial 
understanding or extensive knowledge regarding low-carbon 
building materials. However, 35% of respondents exhibit limited 
knowledge, signifying the necessity for further publicity and 
dissemination efforts. Regarding their recognition of environmental 
impact, 65% of respondents concur that low-carbon building 
materials can have a positive influence. These findings suggest that 
while there exists a certain level of awareness regarding low-carbon 
building materials, concerted efforts to enhance public awareness and 
underscore their environmental benefits are imperative to bolster 
widespread acceptance and recognition of their adoption.

4.1.5 Satisfaction survey
The satisfaction level regarding material improvements was 

analyzed, and the results are presented in Figure 6.
As depicted in Figure  6, 40% of participants expressed 

satisfaction, while 25% reported being very satisfied. Additionally, 
20% exhibited a neutral attitude, while the proportions of 
dissatisfaction and extreme dissatisfaction were 10 and 5%, 
respectively. Overall, a majority of participants expressed satisfaction 
or high satisfaction levels with the survey. This indicates a notable 
level of recognition for the survey content, as well as the information 
or services provided throughout the survey process.

4.2 Neural network model performance 
analysis

The CNN model constructed was trained and verified, yielding 
the following results, as depicted in Figure 7.

FIGURE 2

Personal information statistics results.
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As depicted in Figure  7, the model showcases exceptional 
performance on the training set, boasting remarkably high precision, 
recall, and F1 scores. Despite a slight decline in performance observed 
on the validation set, the model exhibits commendable generalization 
capabilities, with accuracy and recall rates consistently exceeding 95%. 
Notably, the MSE of the model remains remarkably low, indicating 
minimal disparity between predicted and actual values. Specifically, 
the MSE on the training set is a mere 0.001, indicative of a robust fit 
to the training data. Even with a slightly higher MSE observed on the 
validation set (0.002), the model maintains strong performance, 
highlighting its capacity to predict new data with precision and 
reliability. This result is consistent with the findings of Guan and Wang 
(28). These results underscore the effectiveness and reliability of the 
model in handling unseen data and generalizing well beyond the 
training set.

5 Discussion

In cultures that emphasize collectivism and obedience to 
authority, individuals may be more inclined to accept decisions made 
by AI, whereas cultures that prioritize individualism and free will may 
exhibit greater vigilance regarding the potential threats that AI poses 
to individual rights. Environmental awareness varies across different 
cultural contexts. In cultures with a strong emphasis on environmental 
protection, individuals may be more concerned about the potential 

impacts of new technologies, such as AI, on the environment and are 
more likely to support technological applications that contribute to 
environmental conservation. In Europe, the application of AI places a 
significant focus on privacy protection and ethical standards, 
underscoring the importance of sustainable development and social 
responsibility in AI technology. Germany has made remarkable 
progress in intelligent manufacturing and Industry 4.0 while actively 
promoting the application of AI in fields such as healthcare and 
education. In Asia, particularly in China, Japan, and South Korea, 
there has been rapid development in the application of AI 
technologies. These countries have achieved significant breakthroughs 
in areas such as smart cities, smart homes, and smart finance, 
particularly benefiting from clear advantages in big data processing, 
cloud computing, and Internet of Things technologies. Denmark is 
recognized as one of the leading countries in global wind energy 
production, achieving a green transformation of its energy structure 
and low-carbon development through the large-scale utilization of 
renewable energy sources like wind. Denmark’s wind energy projects 
serve as successful models for the global advancement of 
low-carbon energy.

In the field of intelligent transportation, the application of AI 
significantly enhances the efficiency and safety of urban traffic 
systems. By integrating big data analytics and machine learning 
algorithms, AI can predict traffic flow in real time, optimize traffic 
signal control, reduce congestion, and assist in planning more efficient 
public transportation routes. Furthermore, the continuous 
development of autonomous driving technology, which relies on AI 

FIGURE 3

Descriptive statistical analysis results of the questionnaire. (a) 
Understanding level; (b) The impact of smart cities on the 
environment.

FIGURE 4

Statistical results of AI medical treatment [(a) understanding of AI 
medical care; (b) impact of AI medical care on the environment].
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decision-making systems, is expected to greatly improve road safety 
and decrease traffic accidents. When combined with IoT technologies, 
AI can enable intelligent connectivity between vehicles and 
infrastructure, further enhancing the overall effectiveness of 
transportation systems.

In energy management, the application of AI contributes to the 
development of greener and more efficient energy systems within 
smart cities. Utilizing deep learning and other technologies, AI can 
forecast energy demand and optimize energy distribution, thereby 
improving energy utilization efficiency and reducing waste. 
Additionally, in conjunction with smart grid technology, AI can 
monitor and control electricity supply in real time, ensuring the stable 
operation of the grid and facilitating rapid energy dispatch when 
necessary. In the renewable energy sector, AI can also optimize the 
utilization of clean energy sources, such as solar and wind power, 
promoting the optimization and upgrading of urban energy structures. 
Regarding smart city governance, the application of AI offers novel 
perspectives and tools for urban management. Through big data 
analysis and natural language processing techniques, AI can collect 
and analyze urban operational data in real time, providing scientific 
support for government decision-making. AI can assist in monitoring 
urban environmental quality, predicting disaster risks, and optimizing 
the allocation of public service resources.

The return on investment for smart cities and low-carbon 
materials may be extended, necessitating collaborative efforts and 

long-term commitments from government, enterprises, and 
individuals. As the advancement of intelligence and low-carbon 
initiatives progresses, employment opportunities in traditional 
industries may decline, while new job openings in emerging sectors 
could increase. This transition may lead to instability in employment 
structures and social stratification. The implementation of smart cities 
and low-carbon materials relies on advanced technologies and 
information systems, which could result in an over-reliance on 
technology, potentially impacting the autonomy and diversity of social 
life. The perspectives of policymakers are crucial in the execution of 
proposed strategies. Policy support and guidance can stimulate the 
enthusiasm of businesses and individuals, facilitating the widespread 
adoption of smart cities and low-carbon materials. Regulatory 
frameworks and oversight are essential for maintaining market order 
and ensuring the legal and compliant use of technology. During the 
implementation of smart cities and low-carbon materials, construction 
companies must focus on cost control and benefit assessment to 
ensure the economic feasibility and sustainability of projects. Although 
the production costs of low-carbon materials may exceed those of 
traditional materials, the energy savings and emissions reduction 
benefits, along with long-term economic returns during their use, 
must also be  considered. Buildings constructed with low-carbon 
materials exhibit superior performance in insulation, thermal 
regulation, and lighting, leading to reduced energy consumption and 
operational costs. Governments should formulate both long-term and 

FIGURE 5

Statistical results of low-carbon building materials [(a) willingness to purchase; (b) degree of understanding; (c) recognition of environmental impact].
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short-term strategic plans that clearly delineate the roles and 
significance of AI and low-carbon materials in economic development, 
environmental protection, and social progress. These strategic plans 
should encompass various aspects such as technology research and 
development, industry cultivation, policy support, and talent training 
to ensure coherence and systemic alignment in policy formulation.

In the field of healthcare, the application of AI often relies on 
extensive personal health data. However, numerous ethical challenges 
arise during the collection, storage, and processing of this data, 
particularly concerning data privacy. Personal health data is highly 
sensitive, and its breach can pose severe privacy risks to individuals. 
Malicious actors may exploit this data for fraud, identity theft, or other 
illicit activities. Even in cases where data is not directly disclosed to 
external entities, inadequate management and protection can lead to 
misuse within organizations. Healthcare institutions or researchers 
might access or utilize this data without authorization for unethical 
research or commercial purposes.

The training data for AI systems often originates from specific 
groups or environments, which may introduce bias when algorithms 
process data from different groups or contexts. If the training data 
predominantly comprises individuals of a particular race or gender, 

the algorithm may exhibit biases when handling data from other races 
or genders. Participants may tend to overestimate their understanding 
of smart cities, AI, and low-carbon materials. This overestimation may 
stem from various factors, such as social desirability bias (where 
respondents feel pressured to display a higher level of understanding 
of emerging technologies), memory biases (where respondents may 
struggle to accurately recall or assess their knowledge), or cognitive 
biases (where respondents may hold inflated self-evaluations of their 
abilities or knowledge). To address this, it is essential to clearly 
communicate the study’s objectives and significance to respondents 
before data collection, as well as the potential biases in self-reported 
data. By increasing respondents’ awareness, they can be encouraged 
to more authentically reflect their knowledge levels, thereby 
minimizing instances of overestimation or underestimation.

The performance of CNN models may be influenced by factors 
such as dataset quality, training methodologies, and parameter 
settings. As the model has not been tested in real-world environments, 
its performance in practical applications remains uncertain. To 
mitigate the impact of these limitations, methodologies such as cross-
validation, model tuning, and performance evaluation are employed 
during the research process to enhance the model’s accuracy and 
generalization capabilities.

6 Conclusion

This study employs a multifaceted approach, combining both 
quantitative and computational methods, to delve into perceptions 
and attitudes toward key aspects of urban development: smart cities, 
AI medical care, and low-carbon building materials. Through a 
combination of questionnaire surveys and neural network modeling, 
this study endeavors to provide a comprehensive understanding of 
public sentiments and expectations in these domains. This study 
employs a random sampling method to ensure the diversity and 
representativeness of the sample. Efforts are made to include 
respondents from various age groups, genders, occupations, and 
regions to minimize the impact of self-selection bias. The survey 
findings reveal a generally positive outlook toward smart cities and 
low-carbon building materials among participants, highlighting an 
increasing awareness and acceptance of sustainable urban 
development practices. However, there exists a nuanced understanding 
and some skepticism regarding AI medical care, suggesting a need for 
further education and awareness campaigns in this area. AI is expected 
to facilitate the widespread adoption of personalized medical services 
by analyzing information related to patients’ genetics, lifestyle habits, 
and medical histories to provide tailored treatment plans and health 
management recommendations. This approach is anticipated to 
significantly enhance the efficiency and effectiveness of healthcare 
services while reducing medical costs. Strengthening collaboration 
among academia, industry, and healthcare institutions is essential for 
advancing the research and application of AI technologies. By sharing 
resources, experiences, and knowledge, the innovation and 
dissemination of technology can be accelerated.

The findings of this study indicate that participants generally held 
a positive attitude, suggesting an increasing awareness and acceptance 
of sustainable urban development practices among the public. This 
conclusion underscores the significant role of smart cities in 
promoting urban sustainability and provides robust support for 

FIGURE 6

Satisfaction survey results on material improvements.

FIGURE 7

Neural network model performance results.
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policymakers to further advance the construction and development 
of smart cities. In the realm of AI in healthcare, although the public 
possesses a certain level of understanding regarding its applications, 
there are nuanced perceptions and some skepticism. This reflects 
concerns regarding the potential risks and uncertainties associated 
with new technologies. Therefore, it is imperative to enhance 
educational and promotional activities in the future to improve public 
comprehension of AI in healthcare and alleviate concerns. The CNN 
model developed here demonstrates robust performance, exhibiting 
high prediction accuracy on both the training and validation sets. 
Despite its strengths, limitations such as a relatively small sample size 
and scope of survey questions, as well as the lack of verification on a 
larger scale, may impact the representativeness and reliability of the 
results. Future research endeavors could focus on expanding the 
sample size, refining survey question formulation, validating the 
model’s generalization capabilities on a larger scale, and conducting 
more comprehensive real-world analyses and evaluations of smart city 
initiatives, AI medical care, and low-carbon building materials to 
provide actionable insights for public health and sustainable urban 
development. Future research will expand the sample size to 
encompass a broader population and geographical areas. This 
endeavor will facilitate a more comprehensive understanding of public 
perceptions and attitudes toward these domains, thereby enhancing 
the representativeness and applicability of the research findings.
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