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Background: Sub-Saharan Africa faces high neonatal and maternal mortality

rates due to limited access to skilled healthcare during delivery. This study

aims to improve the classification of health facilities and home deliveries

using advanced machine learning techniques and to explore factors influencing

women’s choices of delivery locations in East Africa.

Method: The study focused on 86,009 childbearing women in East Africa.

A comparative analysis of 12 advanced machine learning algorithms was

conducted, utilizing various data balancing techniques and hyperparameter

optimization methods to enhance model performance.

Result: The prevalence of health facility delivery in East Africa was found to be

83.71%. The findings showed that the support vector machine (SVM) algorithm

and CatBoost performed best in predicting the place of delivery, in which both of

those algorithms scored an accuracy of 95% and an AUC of 0.98 after optimized

with Bayesian optimization tuning and insignificant di�erence between them

in all comprehensive analysis of metrics performance. Factors associated with

facility-based deliveries were identified using association rule mining, including

parental education levels, timing of initial antenatal care (ANC) check-ups,

wealth status, marital status, mobile phone ownership, religious a�liation, media

accessibility, and birth order.

Conclusion: This study underscores the vital role ofmachine learning algorithms

in predicting health facility deliveries. A slight decline in facility deliveries from

previous reports highlights the urgent need for targeted interventions to meet

Sustainable Development Goals (SDGs), particularly in maternal health. The

study recommends promoting facility-based deliveries. These include raising

awareness about skilled birth attendance, encouraging early ANC check-up,

addressing financial barriers through targeted support programs, implementing
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culturally sensitive interventions, utilizing media campaigns, and mobile health

initiatives. Design specific interventions tailored to the birth order of the child,

recognizing that mothers may have di�erent informational needs depending on

whether it is their first or subsequent delivery. Furthermore, we recommended

researchers to explore a variety of techniques and validate findings using more

recent data.

KEYWORDS

association rule mining, feature relevance, health facility delivery, home delivery,

machine learning algorithms

Introduction

Ensuring universal access to high-quality healthcare services,

particularly for maternal and child health, is a crucial global

goal rooted in the principles of primary healthcare (1, 2).

Within the realm of maternal health, this objective involves

providing comprehensive and easily accessible healthcare services

tailored specifically to women of reproductive age. These services

encompass essential components such as ANC, health facility

delivery, and postnatal care (3, 4).

By placing a strong emphasis on primary healthcare, we can

significantly enhance the wellbeing of both mothers and children

through the provision of essential, accessible, and affordable

healthcare services (3, 4). However, despite these intentions,

challenges remain in the provision of maternal healthcare services,

especially in developing regions. Notably, limited access to

health facility delivery and inadequate ANC visits contribute to

suboptimal health outcomes in East Africa (5–8).

Extensive research has established a clear link between health

facility delivery and maternal and neonatal mortality rates (9, 10).

In particular, home deliveries, which often lack access to skilled

healthcare professionals and emergency obstetric care, expose

mothers and newborns to increased risks of adverse outcomes

(11, 12). Complications during childbirth such as postpartum

hemorrhage, obstructed labor, infections, birth asphyxia, and

neonatal sepsis pose substantial threats to the health and

survival of both mothers and infants (13, 14). Furthermore, the

absence of immediate interventions in home settings can lead to

delays in recognizing and managing these complications, thereby

exacerbating their severity and contributing to poorer health

outcomes (15).

Abbreviations: ADASYN, Adaptive Synthetic Sampling; ANC, Anta Natal Care;

ANN, Artificial Neural Network; AUC, Area under the Receiver Operating

Characteristic Curve; DHS, Demographic Health Survey; FPR, False Positive

Rate; GBM, Gradient Boosting Machines; GNB, Gaussian Naive Bayes;

MLP, Multi-Layer Perceptron; KNN, K-Nearest Neighbors; PCA, Principal

Component Analysis; RBF, Radial Basis Function; RFE, Recursive Feature

Elimination; SDGs, Sustainable Development Goals; SVM, Support Vector

Machine; SMOTE, Synthetic Minority Over-Sampling Technique; SMOTE-

ENN, Synthetic Minority Over-Sampling Technique with Edited Nearest

Neighbor; TPR, True Positive Rate; XGBoost: eXtreme Gradient Boosting;

KNN, K-Nearest Neighbors; ROC, Receiver Operating Characteristic Curve;

WHO, World Health Organization; XGBoost, Extreme Gradient Boosting.

Given that childbirth complications are a leading cause of

maternal and neonatal mortality, delivering in health facilities

emerges as a prominent solution. The World Health Organization

(WHO) identifies severe bleeding (mainly postpartum), infections

(typically after delivery), high blood pressure during pregnancy

(pre-eclampsia and eclampsia), complications from delivery, and

unsafe abortions as responsible for 75% ofmaternal deaths (16). For

instance, severe postpartum hemorrhage alone accounts for 27.1%

of maternal fatalities globally, while obstructed labor contributes

17.9% (17).

Moreover, postpartum infections are a major cause of

maternal death, with ∼5 million cases of pregnancy-related

infections reported annually, resulting in around 75,000 deaths

(18). Additionally, gestational diabetes affects about 20 million

births each year (19), and hypertensive disorders in pregnancy

lead to ∼76,000 maternal and 500,000 prenatal deaths globally

each year (20). Epidemiological studies further report that the

prevalence of hypertensive disorders in pregnancy ranges from

5.2 to 8.2% for gestational hypertension and from 0.2 to 9.2% for

preeclampsia (21).

As of 2023, about 1.2 million pregnant women worldwide

were living with HIV (22), with mother-to-child transmission

accounting for 9% of new infections (23). For neonates, premature

births, birth complications (such as birth asphyxia and trauma),

neonatal infections, and congenital anomalies collectively account

for nearly 40% of deaths in children under five (24). Therefore,

delivering in health facilities is one of the safest methods to

manage these complications and mitigate their severity, ultimately

protecting the lives of both mothers and their newborns. Access

to skilled healthcare professionals and emergency obstetric care

in health facilities significantly reduces the risks associated

with childbirth complications, underscoring the vital role of

health facility delivery in improving maternal and neonatal

health outcomes.

In the context of Sub-Saharan Africa, particularly alarming

rates of neonatal and maternal mortality persist due to inadequate

health facility delivery. For example, in 2017, the region reported a

maternal mortality ratio of 542 per 100,000 live births, highlighting

the urgent need for intervention (7, 8). Additionally, in 2018, Sub-

Saharan Africa recorded the highest neonatal mortality rate among

regions defined by the SDGs, with 28 deaths occurring per 1,000

live births (25, 26).

To address these pressing challenges, the WHO, in

collaboration with governments and partners, has implemented

various initiatives in Sub-Saharan Africa. These initiatives focus on
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developing and implementing comprehensive maternal and child

health programs, promoting community-based interventions,

enhancing emergency obstetric care services, and encouraging

skilled birth attendance (27, 28). Despite these efforts, a significant

proportion of women in East Africa still choose home births

(29, 30).

The choice of delivery location is influenced by a wide array

of factors. These factors encompass residence (31), age (31, 32),

education level of mothers and husband (33), ANC visit (34),

wealth status (34), religion (31), women’s occupation (31), husband

occupation (32), sex of household head (35), media access (29, 31),

the timing of the first ANC check (36, 37), number of pregnancies

(38), age at first marriage (39), preceding birth interval (40),

distance from a health facility (33, 41), mobile phone ownership

(42), and birth order (42, 43).

While previous studies have examined the factors influencing

the choice of delivery location using Demographic and Health

Survey (DHS) data from various countries (29, 44), a deeper

understanding requires the utilization of advanced machine

learning algorithms and data science techniques. Such an approach

enables the discovery of hidden patterns and relationships that may

not be easily discernible through traditional statistical methods.

Consequently, we propose a study aimed at evaluating the

potential improvements in classification performance achieved

by employing a diverse range of advanced machine learning

and data science techniques to distinguish between home and

health facility deliveries. Additionally, the study will investigate

the key factors that influence the decision-making process among

childbearing women in East Africa when choosing between these

two delivery options.

Related works

The topic of health facility vs. home delivery among women of

reproductive age has been extensively studied in various contexts

(30, 31, 35, 40, 44–57). While traditional statistical methods

have been commonly utilized, researchers have recognized their

limitations in capturing complex relationships and interactions

among multiple influencing factors (58). To address these

shortcomings, machine learning techniques have been increasingly

applied, yielding promising results in predicting delivery locations

and improving health outcomes for mothers and newborns.

For instance, a study conducted in Zanzibar employed logistic

regression, LASSO regression, random forest, and artificial neural

networks to predict delivery locations, achieving accuracy rates

between 68 and 77% (59). Another study in Zanzibar focused

on evaluating the vulnerability of algorithms used in community

health worker-led maternal health programs, emphasizing the

critical need for accurate data monitoring strategies to effectively

target high-risk women (60).

In Afghanistan, a web-based predictive model utilizing

machine learning algorithms, particularly random forest, achieved

an impressive accuracy of 84.23%. This highlights the potential for

targeted interventions to enhance the utilization of skilled child

delivery services and reducematernal and childmortality rates (61).

Similarly, a study in Ethiopia that explored determinants of skilled

delivery service utilization developed a predictive model using the

J48 algorithm, demonstrating exceptional accuracy of 98% (62).

Despite these advancements, significant research gaps remain

in the exploration and application of advanced machine learning

algorithms, data balancing techniques, and tuning methods,

particularly when applied to large datasets. Previous studies have

often been constrained by their reliance on relatively small datasets,

which limits the generalizability of their findings.

To bridge this research gap, our study aims to conduct a

comprehensive investigation by leveraging a relatively large dataset.

We will explore and experiment with 12 cutting-edge advanced

machine learning algorithms, along with various data balancing

techniques and tuning methods, to enhance accuracy and precision

in distinguishing between health facility and home deliveries.

Method

Data source

This study utilized secondary data from the most recent

Demographic and Health Surveys (DHS) conducted in 12 East

African countries: Ethiopia (2016), Kenya (2022), Uganda (2016),

Tanzania (2022), Burundi (2017), Rwanda (2015), Madagascar

(2021), Mozambique (2015), Zimbabwe (2015), Zambia (2018),

Malawi (2016), and Comoros (2012). For each country, the most

recent DHS data was used; if multiple surveys were available, the

latest one was taken. The data was obtained from the official DHS

Program database (URL: https://dhsprogram.com/data/available-

datasets.cfm). Ethical approval was obtained from the Institutional

Review Board for the DHS Program to ensure compliance with

research guidelines.

The DHS Program has conducted standardized cross-sectional

surveys in over 90 countries, gathering comprehensive and

representative data on aspects such as population, health, HIV, and

nutrition. These surveys employed a multi-stage stratified sampling

approach, where participants were selected from households within

designated clusters. Sampling strata were created based on urban

and rural sectors, and enumeration areas were chosen using

probability proportional to size. Within the selected enumeration

areas, households were chosen using equal probability systematic

sampling (63).

The study specifically targeted childbearing women in East

Africa, those between the ages of 15 and 49 who had given birth

within the past 5 years. The analysis included a substantial sample

size of 86,009 individuals across the 12 countries mentioned. The

dataset used in the study consisted of 19 distinct features that were

taken into account during the analysis.

Study variables and measurements

In this study, the variable of interest was health facility delivery,

defined as women giving birth in healthcare facilities, including

government, private, and non-government health institutions.

Reproductive-age women who delivered in these facilities were

categorized as “health facility delivery” (coded as 1), while those

who gave birth outside of healthcare facilities were categorized as
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“home delivery” (coded as 0) (63). The study considered several

independent variables after reviewing the literature, including place

of residence, religion, media exposure, sex of household head,

birth order number, birth interval, timing of the first ANC check,

number of children in the family, current marital status, ANC visit,

working status of the mother, owns the mobile telephone, wealth

status, age of household head, husband/partner educational level,

age of the mother, education level of mothers, and distance from

health facilities.

Data preprocessing

The first step in machine learning is data pre-processing,

which involves preparing and transforming the data to make it

understandable for computers (64). In this study, the machine

learning process focused on the outcome variable of delivery

location, along with various independent variables outlined in the

above subsection.

Our machine learning workflow involved a continuous

improvement process for our models. We selected and engineered

features, chose the appropriate model, trained the model, evaluated

its performance, optimized its parameters through cross-validation,

selected the top-performing final model, and deployed it to predict

the place of delivery (65). We refined our models through an

iterative approach, continuously making improvements. Figure 1

visually represents the steps in our workflow, but it may not include

all the recurring tasks that were executed.

Data cleaning

During the data analysis process, a comprehensive data

cleaning approach was employed to ensure the quality and integrity

of the dataset. In this study, no redundant data entries were

identified.

The missing rate for all variables in our study was found to be

below 10%. To address missing values, the K-Nearest Neighbors

(KNN) imputation technique was utilized. KNN imputation

is a widely adopted method that leverages information from

neighboring data points to impute missing values. KNNwas chosen

for its ability to utilize surrounding information, handle different

data types, preserve structure, and its established reliability in

missing value imputation (66, 67).

To identify outliers, we utilized various visualization techniques

such as scatter plots, box plots, and histograms. Few outliers were

removed based on the recommendation of the DHS guideline

(63). Additionally, we assessed multicollinearity by examining the

correlation matrix, considering a correlation value exceeding 0.8

between two variables as indicative of high correlation (68, 69). Our

analysis confirmed that no multicollinearity was observed among

the variables in this study.

As shown in Figure 2, the highest correlation was observed

between marital status and husband’s education, and there was also

some correlation between the number of children and the mother’s

age; however, all correlations remained below 0.8. Therefore, no

significant multicollinearity was detected among the variables.

Feature engineering

Feature engineering is the process of selecting, acquiring, and

transforming the most relevant features from the available data to

build machine learning models that are both precise and efficient

(70). In our research, we used one-hot encoding to encode nominal

categorical variables and label encoding for ordinal categorical

variables (71).

Dimensionality reduction

In our study, we focused on enhancing model performance and

simplifying the dataset through various dimensionality reduction

techniques. These techniques included univariate selection,

recursive feature elimination (RFE), random forest feature

elimination, principal component analysis (PCA), lasso regression,

and Boruta-based feature selection (72). After conducting thorough

experimentation and comparing the results across different feature

selection methods, we determined that the Boruta-based approach

stood out as the most effective in terms of accuracy and robustness.

One of the key advantages of the Boruta algorithm is its ability

to evaluate feature importance by comparing their performance

against randomly generated shadow features. This approach

ensures a comprehensive and unbiased assessment of feature

significance, allowing only the most informative features to be

selected for our predictive model. Moreover, the Boruta algorithm

successfully distinguishes true signals from noise by comparing

features against shadow features, resulting in a more reliable and

robust feature selection process (73, 74).

By incorporating the features selected by the Boruta algorithm,

we observed improved accuracy and robustness in predicting

the place of delivery. Prediction accuracy was measured using

metrics such as accuracy, precision, recall, F1-score, and AUC,

while 5-fold cross-validation was employed to assess robustness.

This underscores the practical benefits of the Boruta-based feature

selection method within the context of our dataset.

Boruta algorithm graph visualized the importance of variables,

highlighting significant variables in green, unimportant variables in

red, and tentative variables in yellow (75). In our comprehensive

analysis, the Boruta algorithm graph (Figure 3) showed all variables

are important. Consequently, we used all variables to predict the

place of delivery and explore data patterns through association

rule mining.

Data balancing

To address the class imbalance, it’s helpful to experiment

with various data balancing methods and select the most effective

one for the specific dataset (76–78). To address the issue of class

imbalance in our dataset, which consists of a binary outcome

variable and categorical independent variables (with a few of them

being binary), we conducted an extensive review of scientific

literature (79, 80) and experimented with seven different data

balancing methods. These methods were carefully selected based

on their appropriateness for our specific dataset. The techniques
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FIGURE 1

Study work flow diagram. ANN, Artificial Neural Network; GNB, Gaussian Naive Bayes; GBM, Gradient Boosting Machines; KNN, K-Nearest Neighbors;

MLP, Multi-Layer Perceptron; SVM, Support Vector Machine; XGBoost, Extreme Gradient Boosting.

we employed are as follows: Under-sampling, Over-sampling,

Adaptive Synthetic Sampling (ADASYN), Synthetic Minority

Oversampling Technique (SMOTE), SMOTE-ENN (Edited

Nearest Neighbor), SMOTE-Tomek, and NearMiss algorithm.

By conducting a comprehensive assessment of model

performance, and considering various metrics, we compared

machine learning algorithms trained on balanced data using

these different balancing techniques. This process enabled us

to identify the most effective approach for addressing the class

imbalance in our dataset. We selected the balancing technique that

demonstrated superior performance for further experimentation

and final prediction.

In this study, we compared the performance of each machine

learning algorithm across different data balancing techniques. The

results showed that SMOTE-ENN significantly outperformed the

other methods, demonstrating a substantial advantage over them.

Consequently, we chose the SMOTE-ENN technique for further

analysis and optimization (see Table 1 for more details).

Additionally, Supplementary material 1 provides a detailed

graphical comparison of the performance of machine learning

algorithms across various data balancing techniques and in the

context of imbalanced data.

Model selection and development

In our research, we focused on predicting the place

of delivery. We aimed to classify the place of delivery

into two groups: “health facility delivery” and “home

delivery.” To ensure accurate predictions, we needed to

select suitable classifiers capable of effectively handling this

classification task.
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FIGURE 2

Heat map of the correlation matrix showing feature relevance.

FIGURE 3

Feature selection using Boruta algorithm.
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TABLE 1 Comparison of data balancing techniques across each machine learning algorithms.

Algorithms Performance
metrics

Unbalanced
data

Under-
sampling

Over-
sampling

ADASYN SMOTE SMOTE-
ENN

SMOTE-
TOMEK

Near
miss

SVM Accuracy 81.0% 69.0% 72.0% 73.0% 75.0% 88.0% 76.0% 76.0%

AUC 0.71 0.71 0.79 0.81 0.83 0.95 0.84 0.83

GNB Accuracy 68.0% 64.0% 64.0% 65.0% 67.0% 80.0% 68.0% 67.0%

AUC 0.71 0.75 0.71 0.74 0.76 0.88 0.77 0.77

Logistic regression Accuracy 80.0% 68.0% 68.0% 70.0% 72.0% 84.0% 73.0% 71.0%

AUC 0.74 0.74 0.74 0.78 0.80 0.92 0.81 0.78

Decision tree Accuracy 72.0% 61.0% 80.0% 73.0% 74.0% 87.0% 75.0% 65.0%

AUC 0.59 0.61 0.81 0.73 0.75 0.85 0.75 0.66

Random forest Accuracy 81.0% 68.0% 85.0% 80.0% 81.0% 92.0% 82.0% 73.0%

AUC 0.74 0.75 0.94 0.88 0.89 0.98 0.90 0.81

GBM Accuracy 81.0% 69.0% 69.0% 72.0% 73.0% 86.0% 74.0% 76.0%

AUC 0.76 0.76 0.77 0.80 0.82 0.93 0.82 0.83

XGBoost Accuracy 81.0% 68.0% 73.0% 75.0% 76.0% 90.0% 77.0% 76.0%

AUC 0.76 0.75 0.81 0.83 0.84 0.96 0.85 0.84

KNN Accuracy 81.0% 67.0% 69.0% 72.0% 75.0% 88.0% 76.0% 69.0%

AUC 0.72 0.73 0.77 0.81 0.83 0.95 0.84 0.77

MLP Accuracy 76.0% 62.0% 73.0% 72.0% 73.0% 89.0% 74.0% 70.0%

AUC 0.68 0.67 0.79 0.79 0.81 0.94 0.82 0.77

AdaBoost Accuracy 81.0% 68.0% 68.0% 71.0% 72.0% 85.0% 73.0% 73.0%

AUC 0.75 0.75 0.75 0.79 0.80 0.92 0.82 0.81

CatBoost Accuracy 82.0% 69.0% 73.0% 75.0% 76.0% 89.0% 77.0% 77.0%

AUC 0.77 0.77 0.81 0.83 0.85 0.96 0.86 0.85

ANN Accuracy 76.0% 63.0% 73.0% 75.0% 74.0% 88.0% 75.0% 71.0%

AUC 0.69 0.68 0.79 0.80 0.82 0.94 0.83 0.78

AUC, Area under the Receiver Operating Characteristic Curve; ADASYN, Adaptive Synthetic Sampling; ANN, Artificial Neural Network; ENN, Edited Nearest Neighbor; GNB, Gaussian Naive

Bayes; GBM, Gradient Boosting Machines; KNN, K-Nearest Neighbors; MLP, Multi-Layer Perceptron; SMOTE, Synthetic Minority Oversampling Technique; SVM, Support Vector Machine;

XGBoost, Extreme Gradient Boosting.

To accomplish this, we used the scikit-learn version 1.3.2

packages in Python, implemented within Jupyter Notebook.

We employed 12 advanced machine learning algorithms to

evaluate their predictive capabilities in distinguishing the place

of delivery. The selection of these algorithms was based on

their suitability for classification tasks and the nature of our

dataset (81–83).

The algorithms we utilized include SVM with kernel

methods, Gaussian Naive Bayes (GNB), logistic regression,

decision tree, random forest, gradient boosting machines

(GBM), eXtreme Gradient Boosting (XGBoost), AdaBoost,
KNN algorithm, CatBoost Classifier, multilayer perceptron

(MLP) neural network, and artificial neural networks

(ANN) using TensorFlow. By incorporating a diverse set of

algorithms, we aimed to explore different modeling approaches

and assess their effectiveness in predicting the place of

delivery (82).

Model training, evaluation, and
optimization

In our study, we employed a straightforward method

of dividing the data into two sets: an 80% (68,807 cases)

training set and a 20% (17,202 cases) testing set. To assess

the performance of each predictive model, we used various

measurements, such as accuracy, precision, recall/sensitivity, F1-

score, specificity, and AUC. Using these metrics, we conducted a

comprehensive evaluation of each predictive model, considering

overall correctness, accurate positive predictions, identification of

positive instances, balance, and discriminatory ability (84).

In addition, we conducted a comprehensive analysis of

the hyperparameters to optimize and enhance the model’s

performance. During model optimization, we systematically

explored grid search, random search, and Bayesian optimization

to identify the optimal hyperparameter settings. We compared the
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results from these techniques to determine which configurations

yielded the highest performance. It is recommended to experiment

with different tuning techniques and select the one that

demonstrates superior performance (85, 86). To ensure robust

performance evaluation, we employed cross-validation techniques

and compared different options such as 3-, 5-, and 10-fold

validations. Upon analysis, we found that 5-fold cross-validation

provided the best results for our specific dataset. Therefore, we

utilized the 5-fold cross-validation approach to ensure reliable and

accurate performance evaluation (87).

To improve the model’s accuracy and reliability, we carried out

model calibration. By fine-tuning the model through calibration,

we enhanced its predictive capabilities, resulting in more precise

forecasts of the desired outcome (88).

Moreover, we compared different kernel methods specifically

for the SVM model. We experimented with five commonly

used types of kernel methods: linear kernel, polynomial kernel,

radial basis function (RBF) kernel, sigmoid kernel, and Gaussian

kernel (89). After conducting evaluations, we determined that the

polynomial kernel method exhibited the highest performance for

SVM, and thus we selected and employed it. Our objective was to

select the kernel function that produced the best results for the SVM

model through a thorough evaluation and comparison process.

Model interpretability

To enhance the interpretability of our model, we utilized

association rule mining techniques to uncover hidden patterns and

relationships within the dataset. This involved applying the widely

adopted Apriori algorithm, specifically designed for association

rule mining. Through this algorithm, we identified frequent item

sets and extracted meaningful association rules using measures

such as lift and confidence. The lift measure quantified the strength

of associations between variables, revealing the influence of one

variable on the occurrence of another. Confidence, on the other

hand, indicated the reliability of association rules by showing

how often the consequent variable appeared when the antecedent

variable was present (90–92).

Furthermore, we employed the final top-performing machine

learning model to select relevant features for prediction. This

process allowed us to evaluate the importance of different features

and choose those that had the greatest impact on the model’s

performance. By incorporating feature relevance selection, we

improved the interpretability of our model, emphasizing the

influential variables in making predictions.

Results

Descriptive results of the background
characteristics

The study extensively analyzed the descriptive and socio-

demographic characteristics of 86,009 women of reproductive age.

Among the participants, the highest percentage, which represented

39,639 individuals (46.09%), were between the ages of 25 and 34.

TABLE 2 Individual characteristics of reproductive age group women in

East African countries (n = 86,009).

Variable Category Frequency
(n)

Percent
(%)

Residence Urban 21,461 24.90%

Rule 64,548 75.10%

Religion Catholic 24,345 28.31%

Protestant 24,361 28.32%

Muslim 7,462 8.68%

Adventist 5,649 6.57%

Jehovah 17,301 20.12%

Tradition animist 4,166 4.84%

No religion 713 0.83%

Sect 361 0.42%

Other 1,651 1.92%

Educational
status

No education 19,191 22.31%

Primary education 41,242 47.95%

Secondary
education

21,540 25.05%

Higher education 4,036 4.69%

Age (in years) 15–24 26,570 30.89%

25–34 39,639 46.09%

35–49 19,800 23.02%

Marital status Divorced 2,687 3.12%

never in union 5,374 6.25%

Widowed 1,458 1.70%

No longer living
together

4,996 5.81%

living with partner 12,963 15.07%

Married 58,531 68.05%

Timing of first
ANC check

During first
trimester

31,789 36.96%

During second
trimester

52,878 61.48%

During third
trimester

1,342 1.56%

Owns mobile
telephone

Yes 30,939 35.97%

No 55,070 64.03%

Wealth index Poorest 21,058 24.48%

Poorer 17,015 19.78%

Middle 16,123 18.75%

Richer 15,913 18.50%

Richest 15,900 18.49%

Number of
children

≤4 54,077 62.87%

>4 31,932 37.13%

(Continued)
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TABLE 2 (Continued)

Variable Category Frequency
(n)

Percent
(%)

Working status Have work 59,540 69.23%

Have no Work 26,469 30.77%

Media exposure Yes 44,840 52.13%

No 41,169 47.87%

ANC visit No visit 5,612 6.52%

2–3 visit 35,605 41.40%

4 and above visit 44,792 52.08%

Short birth
interval

Long birth 4,517 5.25%

Normal birth 22,293 25.92%

Short birth 59,199 68.83%

Distance to health
facility

Big problem 31,977 37.18%

Not big problem 54,032 62.82%

Birth order
category

1 18,940 22.02%

2–3 32,183 37.42%

4–5 18,950 22.03%

6 and above 15,936 18.53%

Husband
educational level

No education 17,503 20.35%

Primary 38,575 44.85%

Secondary 23,059 26.81%

Higher 6,872 7.99%

Sex of house hold
head

Female 21,486 24.98%

Male 64,523 75.02%

Age of household
head

15–19 488 0.57%

20–29 21,714 25.25%

30–49 49,373 57.40%

50 and above 14,434 16.78%

In terms of their place of residence, the majority of the study

participants, comprising 64,548 individuals (75.1%), came from

rural areas. For more detailed information, please refer to Table 2.

Prevalence of health facility delivery in East
Africa

Based on the analysis of the recent DHS dataset in our study,

as described in the methodology section, it was revealed that the

overall prevalence of health facility delivery among women of

reproductive age in East Africa was 83.71% (95% CI: 83.48, 83.93).

Notably, Ethiopia had the lowest rate of health facility delivery,

with only 38.05% (95% CI: 36.92, 39.18) of women accessing

such services. Conversely, Malawi had the highest prevalence of

health facility delivery, with 94.35% (95% CI: 93.95, 94.74) of

women delivering at a health facility. For a more comprehensive

breakdown of health facility-based deliveries in each country,

please refer to Figure 4.

Machine learning analysis of the place of
delivery

In this subsection, we present the performance of each machine

learning algorithm both before and after optimization.

Comparative analysis of machine learning models
using balanced data

As outlined in the methodology, we selected SMOTE-ENN for

further analysis and optimization due to its significant effectiveness.

The analysis of the balanced data using SMOTE-ENN revealed

that Random Forest was the top-performing algorithm, followed

by CatBoost and XGBoost. The ROC curve value for SMOTE-ENN

is presented in Figure 5. For detailed performance metrics, please

refer to Supplementary material 1.

Performance comparisons of optimized
machine learning models

We compared the performance of 12 machine learning

algorithms for predicting the place of delivery using three

different tuning techniques. We employed techniques such as grid

search, random search, and Bayesian optimization for tuning the

model. The results demonstrated excellent performance across all

12 algorithms, although performance varied depending on the

tuning technique.

In the grid search technique, the random forest algorithm

achieved the highest performance metrics, with an AUC of 0.98 and

an accuracy of 92.0%. The KNN and GBM closely followed with

accuracies of 92.0 and 91.0%, respectively, and corresponding AUC

values of 0.96 and 0.97. Most algorithms achieved an AUC above

0.90, except for GNB and decision trees, which had AUC values of

0.88 and 0.86, respectively.

In the random search technique, the random forest algorithm

demonstrated superior performance metrics, with an AUC of 0.98

and an accuracy of 93.0%. The XGBoost and CatBoost algorithms

closely followed with accuracies of 92.0% and AUC values of 0.97.

Similar to the grid search results, most algorithms achieved an AUC

above 0.90, except for GNB and decision trees, which had AUC

values of 0.88.

Using the Bayesian optimization technique, the SVM and

CatBoost algorithms showcased the best performance metrics, in

which both of those algorithms scored an accuracy of 95% andAUC

of 0.98. The KNN and MLP algorithms closely followed, achieving

accuracies of 90.0% with respective AUC values of 0.96 and 0.95.

Most algorithms achieved an AUC above 0.90, except for GNB and

GBM, which had AUC values of 0.88 and 0.84, respectively.

Overall, the comprehensive evaluation demonstrated excellent

performance across all 12 machine learning algorithms, with

consistent and comparable results. Different tuning techniques
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FIGURE 4

The prevalence of health facility delivery among reproductive age women in East Africa countries using forest tree plot.

yielded the best outcomes for different algorithms, with random

search, grid search, and Bayesian optimization showing notable

performance in specific cases.

The top-performing algorithms were obtained using Bayesian

optimization tuning. Although variations in performance were

observed, no single technique consistently outperformed all

aspects of the machine learning algorithms. The top-performing

algorithms across all metrics were SVM and CatBoost with

Bayesian optimization tuning, both scoring an accuracy of

95%, an AUC of 0.98, and showing insignificant differences in

comprehensive analysis of metrics performance such as accuracy,

precision, recall/sensitivity, F1-score, specificity, and AUC (see

Figure 6).

To get a detailed comparison of the 12 machine learning

algorithms and how they performed in the three different tuning

techniques, please refer to Table 3. You can also find graphical

representations of the algorithm performance in each tuning

technique in Supplementary material 2.

Model interpretability and feature relevance

Association rule mining
By employing the Apriori algorithm, our study discovered

seven influential association rules based on their lift values

and confidence. Significantly, the consistent presence of

variables such as maternal and paternal education levels,

timing of the first ANC checkup during the first trimester

(early ANC visit), wealth status, having marital status, mobile

phone ownership, religious affiliation (Jehova or traditional),

having media exposure, and giving birth for the first time

indicated their strong association with the likelihood of

facility delivery.

The top seven association rules and their corresponding lift

values are as follows:

1. If mothers have a higher education level and their husbands

also have a higher education level, the probability of giving

birth at a facility is 97.4% (confidence = 0.974 and lift

= 1.226).

2. If mothers have a higher education level and attend their

first ANC checkup in the first trimester, the probability of

giving birth at a facility is 95.8% (confidence = 0.958 and lift

= 1.205).

3. If mothers are in the middle level of economic status and

their husbands have a higher education level, the probability

of giving birth at a facility is 95.5% (confidence = 0.955 and

lift= 1.202).

4. If mothers and their husbands have a higher educational

level and the mothers are married, the probability of

giving birth at a facility is 96.7% (confidence = 0.967 and

lift= 1.216).
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FIGURE 5

ROC curve value of each machine learning algorithm using balanced data.

FIGURE 6

A ROC curve value of each machine learning algorithm after optimized using Baysian optimization technique.
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TABLE 3 Accuracy and AUC value of the selected machine algorithms after data balancing and optimized with across di�erent hyperparameter tuning

techniques.

Algorithms Grid search Random search Baysian optimization

Accuracy AUC Accuracy AUC Accuracy AUC

SVM 91.0% 0.96 90.0% 0.96 95.0% 0.98

GNB 80.0% 0.88 80.0% 0.88 80.0% 0.88

Logistic regression 84.0% 0.91 84.0% 0.91 84.0% 0.92

Decision tree 87.0% 0.86 86.0% 0.88 83.0% 0.90

Random forest 92.0% 0.98 93.0% 0.98 83.0% 0.93

GBM 91.0% 0.97 90.0% 0.96 74.0% 0.84

XGBoost 90.0% 0.97 92.0% 0.97 70.0% 0.95

KNN 92.0% 0.96 93.0% 0.92 90.0% 0.96

MLP 89.0% 0.94 89.0% 0.94 90.0% 0.95

AdaBoost 85.0% 0.92 85.0% 0.92 85.0% 0.93

CatBoost 91.0% 0.97 92.0% 0.97 95.0% 0.98

ANN 89.0% 0.94 89.0% 0.94 89.0% 0.95

The bold and underlined numbers indicate the highest accuracy and AUC scores of each machine learning algorithm after comparison through various optimization techniques.

5. If mothers have a higher educational level, own a mobile

phone, and follow the Jehova religion, the probability of

giving birth at a facility is 97.6% (confidence = 0.976 and lift

= 1.228).

6. If mothers have a higher education level, have access to media,

and follow the Jehova religion, the probability of giving birth

at a facility is 97.5% (confidence= 0.975 and lift= 1.217).

7. If mothers have a higher education level, are giving birth for

the first time, and follow a traditional religion, the probability

of giving birth at a facility is 96.8% (confidence = 0.968 and

lift= 1.219).

Evaluation of feature relevance
We used the CatBoost algorithm to analyze the importance of

features in predicting the place of delivery. Choosing CatBoost over

SVM, despite their equal prediction performance in this study, was

due to CatBoost’s interpretability advantage. Unlike SVM, CatBoost

allows for direct interpretation of feature importance.

Accordingly, the top seven importance variables for this

prediction were religion, birth order category, timing of the first

ANC checkup, wealth status, ANC visit, highest educational level

of mother, and husband education level (see Figure 7).

Discussion

In our research study conducted using recent DHS data of

East African countries, we evaluated 12 advanced machine learning

algorithms using different techniques to balance the data and

fine-tune the hyperparameters. Our extensive experimentation

enabled us to take the possible best performance metrics score

of each algorithm after comparison in each data balancing and

tuning technique.

Our analysis revealed that the overall prevalence of health

facility delivery among women of reproductive age in East Africa

was found to be 83.71% (95% CI: 83.48, 83.93). This figure is

slightly lower than the previously reported rate of 87.49% (30).

The discrepancy may stem from the different timeframes in which

the surveys were conducted across countries. The decline in health

facility deliveries signals the need for urgent measures to meet

SDGs aimed at reducing maternal mortality.

Ethiopia exhibited the lowest health facility delivery rate at

38.05%, while Malawi had the highest at 94.35%. The challenges

in Ethiopia may relate to insufficient medical care and human

resources to serve over 120 million people (93).

Out of the 12 algorithms that were evaluated and compared,

SVM and CatBoost after being optimized using Bayesian

optimization tuning emerged as the top performers in predicting

the place of delivery, in which both of those algorithms scored an

accuracy of 95%, and AUC of 0.98. Furthermore, a comprehensive

analysis of various performance metrics indicated that there was no

significant difference between these two algorithms, highlighting

their comparable capabilities in predicting the place of delivery. It

is worth noting that the performance of these algorithms in our

study surpasses that of previous research on predicting the place of

delivery (59–61). This variation could be attributed to the unique

nature of our dataset, which involved a larger sample size and

different features. Additionally, our study focused on extensively

experimenting with various data balancing and tuning techniques,

which may have contributed to the improved performance as noted

by previous scholarly findings in this field (76, 77, 85, 86).

On the other hand, the performance of the top-performing

algorithms in our study was lower compared to previous research

in Ethiopia (62) that focused on predicting skilled delivery. This

disparity could be attributed to differences in dataset characteristics

and the methodology employed for feature selection. While the

previous Ethiopian study solely utilized variables identified as

significant in the multivariable logistic regression for developing
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FIGURE 7

CatBoost based feature relevance.

their model, we employed the Boruta algorithm feature selection

technique after comparing various techniques. This difference

in feature selection methodology could potentially explain the

variation in the performance of the machine learning algorithms.

Our findings implied the effectiveness of SVM and CatBoost

when optimized with Bayesian optimization tuning. SVM

combines the strengths of effective classification with the efficiency

of Bayesian optimization for hyperparameter optimization,

resulting in improved predictions. Similarly, CatBoost, designed

for categorical data, performs well when paired with Bayesian

optimization tuning due to its ability to handle categorical

features and benefit from optimization capabilities. This

finding is supported by several studies conducted by different

researchers who analyze the strengths and weaknesses of each

algorithm (94–96).

Association rule mining analysis led us to identify seven strong

rules with confidence above 95.0% that provide insights into the

factors influencing facility-based deliveries. One consistent finding

is that higher education levels of both mothers and their husbands

are strongly associated with an increased probability of delivering

at a facility. This association can be explained by the fact that

education equips individuals with knowledge about the benefits

of skilled birth attendance and the risks associated with home

deliveries. Educated individuals are more likely to understand

the importance of accessing healthcare facilities for safe deliveries

and are empowered to make informed decisions. The finding is

supported by previous studies (33).

The findings indicate that early ANC checkups are a significant

predictor consistently identified in the association rules. This

suggests that early ANC visits influence women’s decisions

regarding facility delivery. During these visits, expectant mothers

receive essential information about the importance of skilled birth

attendance and are encouraged to deliver in healthcare facilities.

Notably, this finding aligns with a study conducted in Southern

Ethiopia (37), though it contradicts results from a study based on

the Mini Ethiopian DHS (36).

We also find that wealth status plays a role in determining

the probability of delivering at a health facility. The middle level

of economic status is associated with facility delivery, highlighting

the role of financial resources in accessing and utilizing maternal

healthcare services. This could be due to women with good

economic status being more likely to afford the costs associated

with facility deliveries, including transportation, medical fees, and

other related expenses. Additionally, they may have access to

better healthcare facilities, which further encourages facility-based

deliveries. This finding is supported by previous studies elsewhere

in the world (34).

Being married is found to enhance the chances of opting

for facility delivery. This could be because married women often

have a partner who can assist them in decision-making regarding

childbirth, which may influence their choice to select facility

delivery. This finding is supported by previous studies conducted

in Northern Ethiopia, which highlight the potential link between

marital status and the utilization of maternal health services (97).

Mobile phone ownership is significantly associated with facility

delivery. This correlation likely stems from mobile phones’ ability

to provide access to health-related information, helping women

gather crucial knowledge about the benefits of facility delivery and

the services available. While ownership does not necessarily imply

internet access or that one has a smartphone only, it still enhances
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communication with healthcare providers through features such as

voice calls and text messaging. This functionality enables women

to seek advice and assistance during their decision-making process.

This finding aligns with a previous study conducted elsewhere (42).

Religious affiliation, specifically being a follower of Jehovah

or traditional religions, is also associated with a higher likelihood

of facility delivery. This finding suggests the importance of

considering religious factors in public health interventions and

highlights the need for targeted, culturally sensitive strategies to

enhance health facility delivery in diverse religious communities.

The finding is supported by studies elsewhere in the world (31).

Media exposure is consistently linked to a higher probability

of delivering at a health facility. This could be due to media

platforms, such as radio, television, or the internet, playing a

crucial role in disseminating information about the benefits of

facility delivery, available services, and success stories. Exposure to

such messages creates awareness and helps women make informed

choices regarding their place of delivery. This finding is supported

by previous studies elsewhere in the world (29, 31).

According to the top seven association rules identified in this

study, give a first-order child increase the likelihood of facility-

based deliveries. This finding is supported by studies conducted

elsewhere (42, 43). A possible explanation is that first-time mothers

may be more aware of the potential complications associated with

home deliveries, leading them to choose facility-based care for

their childbirth.

Strengths and limitations of the study

This study has several notable strengths. It conducted a

comprehensive evaluation of 12 advanced machine learning

algorithms using a relatively large dataset, thoroughly examining

their performance. Additionally, extensive experimentation with

various data balancing and hyperparameter tuning techniques was

undertaken to optimize each algorithm’s effectiveness, enhancing

the reliability of the findings. The study also identified key factors

associated with facility-based deliveries, providing valuable insights

for interventions and strategies.

However, certain limitations must be considered when

interpreting the results. Firstly, the study relied on existing

survey data, which may have inherent limitations and gaps in

capturing some relevant variables. Another limitation is the lack

of exploration of ensemble techniques, which combine multiple

models to improve predictive accuracy. The study utilized DHS

data starting from 2012, which may affect its applicability and

highlights the opportunity for further validation with more recent

data. Lastly, the exclusive use of the Apriori algorithm for

constructing association rules presents a limitation.

Conclusion

The analysis of various machine learning algorithms, alongside

various techniques, revealed that the SVM andCatBoost algorithms

excelled in accurately identifying health facility-based deliveries.

These results underscore the effectiveness of machine learning

models as valuable tools for healthcare providers and policymakers,

enabling them to identify women at risk of delivering outside

healthcare facilities and design targeted interventions to promote

safe deliveries.

The overall prevalence of facility-based deliveries stands at

83.71%, indicating a slight decline from previous reports. This

trend highlights the urgent need for targeted interventions to meet

SDGs, particularly in maternal health.

Furthermore, the investigation into factors influencing facility-

based deliveries through association rule mining identified several

key determinants, including education level, early ANC visits,

wealth status, marital status, mobile phone ownership, religious

affiliation, media exposure, and giving birth for the first time.

By addressing these factors through tailored interventions and

policies, stakeholders can enhance health outcomes for mothers

and children in East Africa.

This study recommends promoting facility-based deliveries

through a variety of strategies: raising awareness about skilled birth

attendance, encouraging early ANC visits, addressing financial

barriers with targeted support programs, implementing culturally

sensitive interventions, and utilizing media campaigns and mobile

health initiatives. Additionally, interventions should be designed

with consideration for the birth order of the child, recognizing

that mothers may have different informational needs depending on

whether it is their first or subsequent delivery.

Future research should consider additional contextual factors

to develop a comprehensive understanding of influences on the

place of delivery. Researchers are also encouraged to explore

alternative algorithms for constructing association rules and

to experiment with model ensembling techniques to optimize

algorithm performance. Incorporating more recent and diverse

datasets will further enhance the relevance and applicability of

findings. By adopting these approaches, researchers can improve

the accuracy and robustness of their predictions.
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