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Introduction: In this study, we used a mathematical epidemic model to explore

the status of the HIV epidemic in the USA and Pakistan. In addition to studying

the dynamics of the model, we fitted the model with recent data to estimate the

parameters describing the epidemic in both countries.

Results: Our estimation shows that in the USA, the reproduction number is

0.9688 (0.9684, 0.9694); if the reproduction number is maintained at this level, it

would take a long time to eradicate HIV entirely. Meanwhile, it is 2.2599 (2.2556,

2.2656) in Pakistan, which is due to a lack of awareness in the confirmed group

and a lower rate of maintained treatment. We also estimated the rate of vertical

transmission, which plays a significant role in Pakistan but not in the USA.

Discussion: We conclude that improving the screening rate and educating

people would be e�ective for controlling HIV in Pakistan, whereas improved

screening rate in the USA can eradicate HIV faster.

KEYWORDS

HIV/AIDS, horizontal and vertical transmission, maximum likelihoodmethod, screening,

treatment

1 Introduction

Human immunodeficiency virus (HIV) attacks the body’s immune system, leading

to acquired immunodeficiency syndrome (AIDS) in the chronic stage. AIDS is among

the most devastating diseases in human history. The dynamics of HIV transmission

are influenced by both horizontal (e.g., sexual contact) and vertical (mother-to-child)

pathways, and the impact of these pathways varies widely by region. However, awareness,

proper treatment, and care can help to control the spread of the disease. Cutting-edge

treatment of an infected person may increase lifespan, improve health, and reduce the risk

of both types of transmission (1).

The incidence of HIV/AIDS is very high in most developing nations, with some

countries experiencing worsening condition daily (2). For instance, HIV cases in Pakistan

have increased rapidly in recent years (3). The first HIV-infected person in Pakistan was

detected in 1987 (4, 5). The prevalence rate of HIV is still not high in Pakistan, but in

recent years, the HIV-infected population has greatly increased in Pakistan. According

to UNAIDS (6), from 2010 to 2018, the number of new HIV infections increased

from 14,000 to 22,000, while AIDS-related deaths surged by over 350% since 2010.
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In contrast, developed countries like the USA have seen a decline

in new infections due to consistent efforts to improve awareness

and treatment. As of 2018, ∼84% of the HIV population in the

USA had been diagnosed, though one in seven individuals do not

know the status of their infection (7). In Pakistan, only 14% of

the HIV population knew the status of their infection, and a mere

10%were receiving treatment (6). This stark difference in screening

and treatment rates between the USA and Pakistan underscores the

need for targeted intervention strategies.

Mathematical modeling plays an important role in

understanding epidemic diseases such as HIV. The pioneering

mathematical model of HIV was proposed by Anderson and May

in 1986 (8–10); this model has been further refined by many

researchers (11–22). For instance, in Busenberg et al. (13), the

role of sex workers was investigated, and dilution by increasing

the number of sex workers was shown to be an effective measure

for decreasing HIV incidence. However, this was later criticized,

and a decrease in the sex industry with the use of condoms was

proven more effective (21). A differential infectivity model stressed

the importance of identifying super spreaders through contact

tracing besides the use of condoms (15). Contact tracing was

also emphasized in the study of De Arazoza and Lounes (23).

Another model on a homosexual cohort with differential infectivity

showed that reducing the number of partners is key to reducing

the incidence of HIV (11).

In addition to horizontal transmission, HIV can also be

transmitted vertically to newborns from infected parents.

According to UNAIDS (24), 160,000 juveniles (aged 0–14 years)

became infected globally in the year 2018 alone. Pakistan is also

confronted with the devastating impact of the epidemic on its

young population. The number of infected juveniles in Pakistan

increased continuously from 2010 to 2018 (25). This may divert

health and welfare resources. In Naresh et al. (26), the authors

modeled horizontal and vertical transmission explicitly. They

considered that a fraction of newborns were HIV-infected and

grouped into the infectious class. However, newborns are not

infectious, as they do not transfer the disease either horizontally

or vertically until adulthood. This was further addressed in

López et al. (27), where the authors proposed a two-age group

model considering horizontal and vertical transmission, and

only the adult infected group was responsible for either type of

transmission. In a recent study, the role of vertical transmission

was modeled by moving a fraction (proportional to the fraction

of infected) of the new recruitment into the infectious class (28).

Testing of pregnant women has been recommended to reduce

vertical transmission (29).

The role of awareness in controlling HIV and AIDS was

modeled in Kaur et al. and Kaymakamzade et al. (30, 31) by

considering the transmission rate as an asymptotically decreasing

function of the number of infected individuals. The roles of

screening and treatment have been recognized by many authors

(23, 32–36). The combined role of condom usage, screening, and

treatment was investigated using optimal control analysis (33). As

treatment increases the lifespan of an infected individual, it may

also increase the incidence (27). However, treatment implemented

with sufficient awareness is effective in reducing the incidence of

HIV (33).

As the disease may be transmitted both horizontally and

vertically, treatment should impact the transmission in both

ways. Therefore, it is important to also understand the impact

of treatment on vertical transmission to deal with the growing

number of infected juveniles. However, existing models with

vertical transmission are tailored with minor limitations regarding

non-infectious juveniles becoming infected (26, 28, 29). In the two-

age group model proposed by López et al. (27), only the adult class

of infected individuals is considered responsible for transmitting

the infection. The prevailing focus of some studies, including those

conducted by the authors in Olaniyi et al. (37) and Alhassan

et al. (38), is on general horizontal and vertical transmission,

overlooking the inclusion of juvenile populations or real-world

data, and the absence of country-specific analysis. On the other

hand, recent studies conducted by Khan et al. (39) and Teklu

and Mekonnen (40) highlighted the significance of incorporating

awareness strategies and real-world data into epidemic models. In

a similar vein, Teklu and Rao (41) emphasize the importance of

identifying key transmission pathways to inform interventions that

are effective, especially in settings where resources are limited. In

the context of HIV/AIDS, researchers have also investigated delay

strategies and stochastic models to achieve insights into the impact

of delayed treatment on transmission dynamics. These studies

underscore the significance of timely interventions in controlling

the epidemic (42, 43). Our study expands upon these existing

foundations by integrating awareness and treatment interventions

into a compartmental model to determine the effects of these

strategies on both horizontal and vertical transmission routes.

Our study further develops these understandings by providing

quantitative estimations of the contributions made by both

horizontal and vertical transmission pathways to the spread of

the HIV epidemic in two distinct socioeconomic contexts—the

USA and Pakistan. Based on the information available to us, this

study is the first to quantify the relative impacts of these pathways

and propose country-specific recommendations grounded in real-

world data.

We also modeled the role of treatment as an extension of

infectious life, which resulted in a “treat or not to treat” dilemma.

The available cutting-edge treatments not only increase life span

but also reduce the probability of transmission both vertically

and horizontally. Furthermore, by incorporating both horizontal

and vertical transmission pathways and distinguishing between

treated and untreated infected populations, this work provides a

detailed and practical framework for policymakers to optimize

interventions suited to their national circumstances.

2 Mathematical modeling

We incorporated the heterogeneity in transmission

from infected people, and people assumed that people

maintained/continued their treatment in the model as proposed

by López et al. (27). We denote the size of the total population

at time t by N (t), which is divided into a juvenile class J (t) and

adult class A (t). The juvenile class is further divided into two

sub-classes: susceptible juvenile population J1 (t) and infected

juvenile population J2 (t). The adult class is divided into three
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sub-classes: susceptible adult population A1 (t), infected adult

population not in treatment A2 (t), and infected adult population

in treatment A3 (t ).

We consider both horizontal and vertical transmission.

Horizontal transmission occurs when an individual in class A1

acquires infection from individuals in class A2 or A3 by risky

acts, such as unprotected sexual intercourse, sharing needles,

etc., with a transmission rate v1 or v2, respectively, and this

individual moves to class A2. We assume that juveniles are sexually

inactive and can only be infected through vertical transmission.

Vertical transmission occurs during birth from individuals in A2

or A3 with probabilities r and ǫ, respectively; the birth rate is

β2 for both classes. Therefore, the recruitment rate into class

J2 is β2 (rA2 + ǫA3). The remaining births from A2 and A3,

β2 ((1− r)A2 + (1− ǫ)A3), are recruited to class J1. Moreover,

susceptible adults give birth to β1A1 susceptible juveniles. Juveniles

mature and move to A1 and A3 from J1 and J2, respectively, at

a maturation rate η. Individuals from class A2 learn their status

of infection and start maintaining treatment at a rate θ and

accordingly move to class A3. It is important to note that while

specific data related to testing pregnant women are utilized for

certain parameters (e.g., ((r) and (ǫ)), (θ)) encompasses treatment

scenarios for all infected individuals, considering various diagnosis

routes. The natural death rates of the juvenile classes (J1, J2) and

adult classes (A1,A2,A3) are µ1 and µ2, respectively. We assume

that the infected individuals in A3 maintain treatment, and as a

result, the disease-related death rate is negligible. However, the

disease-related death rate for individuals in J2 and A2 is α.

We propose juveniles play no significant role in HIV

transmission, a claim that is supported by the extensive South

African Petra Study (44). The study effectively illustrated that

individuals under the age of 15 handled a mere 2% of all HIV

transmissions, underscoring the limited autonomous contribution

of juveniles in fueling the HIV epidemic. Our modeling approach

aligns closely with the guidelines established by the World Health

Organization on Mother-to-Child Transmission (MTCT) (45),

which emphasize interventions to prevent HIV transmission from

infected mothers to their children. This perfectly aligns with our

modeling assumption, emphasizing the significance of maternal

transmission. Infected juveniles are assumed to transition into

infected adults who receive treatment upon reaching adulthood.

This assumption aligns with our specific scenario and contributes

to our study. The density-dependent death rate ismN for all classes.

A schematic diagram of the model is shown in Figure 1.

Following the aforementioned assumptions, wemay express the

model as follows:

dJ1

dt
= β1A1 + β2 ((1− r)A2 + (1− ǫ)A3) − (η + µ1 +mN) J1

(1)

dA1

dt
= ηJ1 −

(v1A1A2 + v2A1A3)

A
− (µ2 +mN)A1 (2)

dJ2

dt
= β2 (rA2 + ǫA3) − (α + η + µ1 +mN) J2 (3)

FIGURE 1

Schematic diagram of the proposed model. B (t) = v1A1A2+v2A1A3

A
.

The juvenile and adult populations are separated by the dotted line.

dA2

dt
= (v1A1A2 + v2A1A3)

A
− (θ + µ2 + α +mN)A2 (4)

dA3

dt
= ηJ2 + θA2 − (µ2 +mN)A3 (5)

where A = A (t) = A1 (t) + A2 (t) + A3 (t) and N = N (t) =
J1 (t) + J2 (t) + A1 (t) + A2 (t) + A3 (t). We observe that B (t) is

continuous at (A1,A2,A3) = (0, 0, 0) if we define B (0, 0, 0) = 0.

We also notice that B ≤ 2max (A1,A2,A3), and is Lipschitzian

for A1 ≥ 0, A2 ≥ 0 and A3 ≥ 0. However, B (t) is clearly not

differentiable at (0, 0, 0 ).

In our mathematical model, we incorporate a density-

dependent death rate (mN) for all classes, a simplification

commonly utilized in epidemiological models. This assumption

serves to represent the impact of population density on

mortality rates and imposes bounded growth. It is important

to note that such modeling choices involve simplifications for

mathematical tractability.

3 Model analysis

We performed a mathematical analysis of the model

Equations 1–5 to understand its dynamics from an

epidemiological perspective.

3.1 Equilibria

Our model exhibits one trivial equilibrium (0, 0, 0, 0, 0), a

disease-free equilibrium
(
J∗1 ,A

∗
1 , 0, 0, 0

)
, a susceptible extinction

equilibrium
(
0, 0, J∗2 , 0,A

∗
3

)
, and an endemic equilibrium(

J∗∗1 ,A∗∗
1 , J∗∗2 ,A∗∗

2 ,A∗∗
3

)
. As B (t) is not differentiable at the trivial

equilibrium, stability analysis at this equilibrium is unfeasible

using standard linearization techniques. The criteria for the

existence of the remaining equilibria are summarized in the

following propositions.
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Proposition 1. For the system of Equations 1–5, if κ1 =
β1η

µ2(η+µ1)
> 1, then the system has a unique disease-free equilibrium(

J∗1 ,A
∗
1 , 0, 0, 0

)
, where

J∗1 = a2N
∗
1

η + a2
, A∗

1 = ηN∗
1

η + a2

and

N∗
1 =

− (η + µ1 + µ2) +
√

(η + µ1 + µ2)
2 − 4µ2 (η + µ1) (1− κ1)

2m

Proposition 2. For the system of Equations 1–5, if r = 1, ǫ = 1

andκ2 = β2η
µ2(α+η+µ1)

> 1, then this system has a unique susceptible

extinction equilibrium
(
0, 0, J∗2 , 0,A

∗
3

)
. Here,

J∗1 = a2N
∗
1

η + a2
, A∗

1 = ηN∗
1

η + a2

J∗∗2 = a4a5 (T1 + T2T5) (�1 − (1− T2))A
∗∗

�1�2η
,

A∗∗
2 = a5 (1− T2) (�1 − (1− T2))A

∗∗

�1�2
,

and

N∗
2 = − (η + µ1 + µ2 + α) +√

κ3

2m

with

κ3 = (η + µ1 + µ2 + α)2 − 4µ2 (α + η + µ1) (1− κ2) .

Proposition 3. For the system of Equations 1–5, if T2 < 1

and R0 > 1, then the system has a unique endemic equilibrium(
J∗∗1 ,A∗∗

1 , J∗∗2 ,A∗∗
2 ,A∗∗

3

)
, where

J∗∗1 = a5 (1− T2) (�2 + a4 (�1 − (1− T2)))A
∗∗

�1�2η
,

A∗∗
1 = (1− T2)A

∗∗

�1
,

and

A∗∗
3 = a4 (T1 + T5) (�1 − (1− T2))A

∗∗

�1�2

with

A = A1 + A2 + A3, �1 = T3 (1− T2)

+T4 (T1 + T5), and �2 = a5 (1− T2) + a4 (T1 + T5).

T1, T2, T3, T4, T5, a1, a2, a3, a4, and a5 are defined in

Section 3.2.

Parameter (κ1) is a critical factor in Proposition 1, influencing

the existence of a unique disease-free equilibrium. Parameter κ1:

offspring number of susceptible adults.

Parameter (κ2) plays a crucial role in Proposition 2,

determining the existence of a unique susceptible extinction

equilibrium. Parameter κ2: basic offspring number of

infected adults.

3.2 Basic reproduction number R0

The basic reproduction number (R0) is the expected number

of infections produced by an infected individual in an entirely

susceptible population throughout their entire infectious lifetime.

Following the approach introduced by Van den Driessche and

Watmough (46), the next-generation matrix is given by

K =




ǫβ2η
a3a5

β2(ra5+ǫθ)
a4a5

ǫβ2
a5

ηv2
a3a5

v1
a4

+ v2θ
a4a5

v2
a5

0 0 0




where η+µ1+mN = a1,µ2+mN = a2, α+η+µ1+mN =a3,

θ + µ2 + α +mN = a4, and, µ2 +mN = a5 = a2.

The basic reproduction number is the spectral radius B1 =(
−
(
a1 +mJ∗1

)
β1 −mJ∗1

η −mA∗
1 −

(
a2 +mA∗

1

)
)
of K. Thus,

R0 = 1
2(

(T2 + T3 + T4T5) +
√

(T2 − T3 − T4T5)
2 + 4T4 (T2T5 + T1)

)

where T1 = rβ2η
a3a4

, T2 = ǫβ2η
a3a5

, T3 = v1
a4
, T4 = v2

a5
, and

T5 = θ
a4
. Although the expression for R0 is too complex to

interpret, T1,T2, . . . ,T5 produce a meaningful interpretation. The

average infectious lifetimes of an infected individual in A2 and A3

are 1/a4 and 1/a5, respectively. The average lifetime of an infected

juvenile individual is 1/a3; thus, the maturation probability of an

infected juvenile is η/a3. Hence, one infected individual from A2

transmits the disease vertically to rβ2 × η
a3

× 1
a4

= T1 individuals

on average throughout their infectious lifetime. Similarly, one

infected individual from A3 transmits the infection to ǫβ2 × η
a3

×
1
a5

= T2 individuals vertically. An infected individual belonging

to A2 transmits the disease to v1
a4

= T3 individuals on average

horizontally. In addition, an infected individual belonging to A3

transmits the disease to v2
a5
× θ

a4
= T4×T5 individuals horizontally

over their infectious lifetime. Thus, R0 consists of the reproduction

numbers associated with the two transmission pathways from each

of the two infectious classes A2 and A3.

Another threshold of interest is R1 = β1η
a1a2

, which is the

average number of new J1 (t) produced by each A1 (t) during

adulthoodmultiplied by the probability of the survival of each J1 (t)

during juvenility.

3.3 Stability analysis

In this subsection, we discuss the stability analysis of our

system of Equations 1–5. We describe the local and global stability

results for the aforementioned non-trivial equilibria. All threshold

values are defined in Table 1, and the conditions are biologically

meaningful. We present a series of key theorems that establish

the stability properties of the system of Equations 1–5 under

various conditions.
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TABLE 1 All results proved for the system of Equations 1–5.

Condition Result

i. κ1 > 1 and R0 < 1 Disease-free equilibrium

is LAS

ii. κ1 ≤ 1 ⇒ R1 < 1 and R0 ≥ 1 with

r = ǫ = 1

Susceptible extinction

equilibrium is LAS

iii. κ1 >
(η+µ1)(v1+v2+µ2)

ηµ2
and

T1 + T2 + T3 + T4 + T5 < 1

Disease-free equilibrium

is GS

iv. r = ǫ = 1, κ1 ≤ 1 ⇒ R1 < 1 and

κ2 >
η+µ1+α

η

Susceptible extinction

equilibrium is GS

v. r = ǫ = 1, κ1 ≤ 1 ⇒ R1 < 1 and

R0 < 1

Trivial equilibrium is GS

Here, LAS means locally asymptotically stable, and GS means globally stable.

3.3.1 Local stability analysis
Theorem 1. If κ1 > 1 and R0 < 1, we demonstrate that the

disease-free equilibrium is locally asymptotically stable within R
5
+.

Proof. If κ1 > 1, then Proposition 1 ensures the uniqueness

of the disease-free equilibrium. Now, for stability analysis, the

Jacobian of the mathematical model represented by Equations 1–5

and evaluated at the disease-free equilibrium is:

B =
(
B1 B3
O B2

)

where

B2 =



−a3 rβ2 ǫβ2

0 v1 − a4 v2
η θ −a5




B3 =
(
−mJ∗1 (1− r) β2 −mJ∗1 (1− ǫ) β2 −mJ∗1
−mA∗

1 −
(
v1 +mA∗

1

)
−
(
v2 +mA∗

1

)
)

and O =



0 0

0 0

0 0


.

The characteristic polynomial of B1, denoted by charpoly (B1),

is given as

charpoly (B1) = λ2 + b1λ + b2,

where b1 = a1 + a2 + mA∗
1 + mJ∗1 and b2 = a1a2 − β1η +

a1mA∗
1 + β1mA∗

1 + a2mJ∗1 + ηmJ∗1 .
From Proposition 1 and Equations 1–5, we note that ηβ1 =

a1a2. This implies that all the coefficients of charpoly (B1) are

positive. Hence, by the Routh–Hurwitz stability criteria, all

eigenvalues of B1 have negative real parts.

Moreover, charpoly (B2) = λ3 + c1λ
2 + c2λ + c3,

where c1 = a3 + a5 + a4 (1− T3) , c2 = a3a4 (1− T3) +
a3a5 (1− T2) + a4a5 (1− T3 − T4T5) , and c3 =
a3a4a5 (T2T3 + 1− T2 − T3 − T1T4 − T4T5 ).

Because R0 < 1 by assumption, we have c1 > 0, c3 > 0, and

c1c2 > c3. Thus, according to the Routh–Hurwitz stability criteria,

all the eigenvalues have negative real parts. This implies that the

disease-free equilibrium is locally asymptotically stable.

The local asymptotic stability of the disease-free equilibrium

suggests that the disease will eventually be eliminated from the

population sufficiently close to disease-free equilibrium when R0 <

1 and κ1 > 1. Within this context, the transmission of HIV

is at a minimal level, and the implemented control measures,

encompassing treatment, preventive interventions, and public

health strategies, demonstrate sufficient efficacy in averting the

prolonged presence of the virus. The system reverts to a state devoid

of disease, signifying the successful eradication of HIV within

the population.

Theorem 2. Under specific conditions involving R1 < 1 and

κ2 > 1 (⇒ R0 ≥ 1)with r = ǫ = 1, we establish the local asymptotic

stability of the susceptible extinction equilibrium in the domain R
5
+.

Proof. If κ2 > 1 , then Proposition 2 ensures the uniqueness

of the susceptible extinction equilibrium. For the stability

analysis of this equilibrium, the Jacobian of the mathematical

model (Equations 1–5) evaluated at the susceptible extinction

equilibrium is:

D =
(
D1 D3

O D2

)

.

Here,

D1 =
(
−a1 β1

η − (v2 + a2)

)

D2 =



−
(
a3 +mJ∗2

)
β2 −mJ∗2 β2 −mJ∗2

0 −a4 0

η −mA∗
3 θ −mA∗

3 −
(
a5 +mA∗

3

)


,

D3 =



−mJ∗2 −mJ∗2
0 v2

−mA∗
3 −mA∗

3




and O =
(
0 0 0

0 0 0

)
.

The characteristic polynomial ofD1 denoted by charpoly(D1) is

given as

charpoly (D1) = λ2 + d1λ + d2,

while d1 = a1 + a2 + v2 and d2 = a1a2 − β1η + a1v2.

From supposition R1 < 1, this implies that a1a2 − ηβ1 > 0.

Thus, all the coefficients of charpoly(D1) are positive.

Moreover, charpoly (D2) = f1 (λ) · f2 (λ ).

Here,

f1 (λ) = λ + a4
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and

f2 (λ) = λ2 +
(
a3 + a5 +mA∗

3 +mJ∗2
)
λ + (a3 + β2)mA∗

3

+ (a5 + η)mJ∗2 + a3a5 − ηβ2

From Proposition 2, we notice that ηβ2 = a3a5; therefore

all the coefficients of f2 (λ) are positive. Thus, according to the

Routh–Hurwitz stability criteria, all the eigenvalues have negative

real parts. This implies that the susceptible extinction equilibrium

is locally asymptotically stable.

The local stability analysis of the susceptible extinction

equilibrium indicates that, given certain conditions (R1 <

1, κ2 > 1), the susceptible individuals will be eradicated from

the population, leaving only the infected individuals. This scenario

illustrates the worst possible outcome, in which HIV becomes

endemic in the population due to inadequate control measures,

resulting in unrestricted virus transmission.

3.3.2 Global stability analysis
Theorem 3. For cases where κ1 >

(η+µ1)(v1+v2+µ2)
ηµ2

and R0 <

1, then N (t) > 0 (Trivial equilibrium is a Repeller) and the

disease-free equilibrium is a global attractor in R
5
+.

Proof. To prove this theorem, we claim that N (t) > 0; on

the contrary, suppose that N (t) = 0. Let us consider a function

x = A1 + ξ1J1, where 0 < ξ1 < 1. Differentiating x with respect to

t, along with the solution of the system of Equations 1–5, we obtain,

x′ = (ηJ1 − a2A1) + ξ1 (β1A1 − a1J1)

≥
(

η
ξ1

− (η + µ1)
)

ξ1J1 +
(

ξ1β1η
η+µ1

− v1 − v2 − µ2

)
A1 −mxN

=
(

η
ξ1

− (η + µ1)
)

ξ1J1 + (ξ1µ2κ1 − v1 − v2 − µ2)A1 −mxN.

Because κ1 >
(η+µ1)(v1+v2+µ2)

ηµ2
, ∃ ǫ ∈ (0, 1) such that

ηµ2κ1 > (η + µ1 + ǫ) (v1 + v2 + µ2 + ǫ)

.

Let us choose ξ1 such that,

(v1 + v2 + µ2 + ǫ)

µ2κ1
< ξ1 <

η

η + µ1 + ǫ

.

Thus, x
′
> ǫξ1J1 + ǫA1 −mxN = ǫx− mxN.

Now, if N (t) = 0, then we observe that x → ∞. This

contradicts the fact that x is bounded. Thus, N (t) > 0.

Next, we consider the positive definite function,

V (X) = σ1J2 + σ2A2 + σ3A3,

X = (J1,A1, J2,A2,A3) ∈ R
5
+σ1 =

ηv2

a3a5
= ηT4

a3

with, σ2 = 1− ǫβ2η
a3a5

= 1− T2, and σ3 = v2
a5

= T4.

Because R0 < 1, we derive that T2 < 1 ⇒ 1− T2 > 0. Thus,

V̇ = ηT4
a3

(rβ2A2 + ǫβ2A3 − a3J2)

+ (1− T2)
(
v1A1A2+v2A1A3

A − a4A2

)

+T4 (ηJ2 + θA2 − a5A3)

≤
(
rβ2ηT4

a3
+ v1 (1− T2) + θT4 − a4 (1− T2)

)
A2

+
(

ǫβ2ηT4
a3

+ v2 (1− T2) − a5T4

)
A3

= a4 (T1T4 + T3 (1− T2) + T4T5 − (1− T2))A2

+a5 (T2T4 + T4 (1− T2) − T4)A3

= a4 (T1T4 + T3 − T2T3 + T4T5 − 1+ T2)A2

= a4 (T1T4 + T2 + T3 + T4T5 − T2T3 − 1)A2.

Based on our supposition that R0 < 1 ⇒ T1T4 + T2 + T3 +
T4T5 < 1 + T2T3, we have V̇ ≤ 0. This implies that V is a

Lyapunov function with selected σ1, σ2, and σ3. Thus, according

to the Lyapunov–LaSalle invariance principle,

E =
{
X ∈ R

5
+ | V̇ = 0

}
=
{(
J1,A1,0, 0, 0

)
| J1 ≥ 0,A1 ≥ 0

}

is an invariant set. Consequently, the largest invariant set is E

itself. Therefore, all positive solutions of the system of Equations 1–

5 tend to the set E.

Let us consider the limiting system,

J
′
1 = β1A1 − (η + µ1) J1 − (J1 + A1)mJ1 = F1 (J1,A1)

A
′
1 = ηJ1 − µ2A1 −mA1 (J1 + A1) = F2 (J1,A1 ) . (6)

Let f (J1,A1) = 1
J1A1

. Then,
∂(fF1)

∂J1
+ ∂(fF2)

∂A1
< 0 ∀ (J1,A1) ∈ R

2
+.

By applying the Bendixson–Dulac criteria, we can say that there

are no non-trivial periodic orbits in R
2
+. Solutions of this limited

system (6) are bounded, and there is only one non-trivial positive

equilibrium point. Because trivial equilibrium is repellent in the

system of Equations 1–5, it is also repellent in the system (6). In

addition, Theorem 1 shows the local stability of the positive steady

state of the system (6). Thus, from these two results, we conclude

that the ω-limit set of bounded positive solutions of the system

(6) is only
(
J∗1 ,A

∗
1

)
. Hence, for the system of Equations 1–5, the

disease-free equilibrium
(
J∗1 ,A

∗
1 , 0, 0, 0

)
is a global attractor inR

5
+.

The global stability of the disease-free equilibrium reveals that,

irrespective of disparate initial infection levels, the population will

ultimately attain a disease-free state, if R0 < 1 and κ1 exceeds a

certain threshold. From a biological standpoint, it can be concluded

that the implementation of comprehensive HIV control measures,

including extensive testing, treatment, and prevention strategies,

holds the potential for effectively eradicating HIV within the

population. This global stability result underscores the importance

of maintaining strong public health interventions.

Theorem 4 If r = ǫ = 1, R1 < 1, and κ2 >
η+µ1+α

η
,

we establish that the susceptible extinction equilibrium is a global

attractor in R
5
+.
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Proof. First, we claim that N (t) > 0 under the aforementioned

assumptions. On the contrary, assume that N (t) = 0. Let us

suppose a function y = A3 + ξ2J2 with 0 < ξ2 < 1. The derivative

y along with the solution of the system, Equations 1–5, with respect

to t will be,

y′ = (ηJ2 − a5A3) + ξ2 (β2A3 − a3J2)

= (ηJ2 − µ2A3) + ξ2 (β2A3 − (η + µ1 + α) J2) −myN

≥
(

η
ξ2

− (η + µ1 + α)
)

ξ2J2 +
(

ξ2β2η
η+µ1+α

− µ2

)
A3 −myN.

Because κ2 >
η+µ1+α

η
= µ2(η+µ1+α)

ηµ2
, ∃ ǫ̃ ∈ (0, 1) such that

ηµ2κ2 > (η + µ1 + α + ǫ̃) (µ2 + ǫ̃) .

Let ξ2 be chosen such that,
(µ2+ǫ̃)
µ2κ2

< ξ2 <
η

(η+µ1+α+ǫ̃)
< 1.

Then, y
′

> ǫ̃ξ2J2 + ǫ̃A3 − myN = ǫ̃y − myN. If N (t) = 0,

then y → ∞, which contradicts the fact that y = A3 + ξ2J2 < N.

Therefore, N (t) > 0.

Now, we consider the positive definite function V (X) = ̺J1 +
A1 + A2,X = (J1,A1, J2,A2,A3) ∈ R

5
+.

Setting ̺ = η
a1
, we have

V̇ (X) = η
a1

(β1A1 − a1J1) +
(
ηJ1 − v1A1A2+v2A1A3

A − a2A1

)

+
(
v1A1A2+v2A1A3

A − a4A2

)

=
(

β1η
a1

− a2

)
A1 − a4A2

= a2 (R1 − 1)A1 − a4A2.

By assumption R1 < 1, V̇ ≤ 0. This implies that V (X)

is a Lyapunov function with ̺ = η
a1
. Now, we apply the

Lyapunov–LaSalle invariance principle. This indicates that the

positive solutions tend to

E =
{
X ∈ R

5
+ | V̇ = 0

}
=
{(
0, 0, J2,0,A3

)
| J2,A3 ≥ 0

}

.

Again, by applying the Bendixson–Dulac criteria to the limited

J2A3-system of Equations 1–5, we observe that the non-trivial

equilibrium is
(
J∗2 ,A

∗
3

)
. Thus, the susceptible extinction equilibrium(

0, 0, J∗2 , 0,A
∗
3

)
is a global attractor of the system (Equations 1–5) in

the domain R
5
+.

The global stability of the susceptible extinction equilibrium

implies the eventual elimination of all susceptible individuals,

leaving only infected individuals. This potential outcome may arise

if control measures are inadequately implemented or if the disease

may propagate without restraint.

Theorem 5. In the scenario of r = ǫ = 1, R1 < 1, and

R0 < 1, we show that all solutions of the system (Equations 1–5)

tend to (0, 0, 0, 0, 0) as time approaches infinity.

Proof. Let us consider the positive definite function,

V (X) = ρ1J1 + A1 + ρ2J2 + A2 + A3,

X = (J1,A1, J2,A2,A3) ∈ R
5
+.

Setting ρ1 = η
a1

and ρ2 = η
a3
, we have

V̇ = η
a1

(β1A1 − a1J1) + (ηJ1 − B (t) − a2A1)

+ η
a3

(β2A2 + β2A3 − a3J2) + (B (t) − a4A2) + (ηJ2 + θA2 − a5A3)

=
(

β1η
a1

− a2

)
A1 +

(
β2η
a3

+ θ − a5 − α − θ
)
A2 +

(
β2η
a3

− a5

)
A3

= a2

(
β1η
a1a2

− 1
)
A1 + a5

(
β2η
a3a5

− α
a5

− 1
)
A2 + a5

(
β2η
a3a5

− 1
)
A3

≤ a2 (R1 − 1)A1 + a5 (T2 − 1)A2 + a5 (T2 − 1)A3.

By our assumption R1 < 1, R0 < 1 (⇒ T2 < 1); therefore,

V̇ (X) ≤ 0. This shows that V is a Lyapunov function

with the selected ρ1 and ρ2. Applying the Lyapunov–LaSalle

invariance principle,

E =
{
X ∈ R

5
+ | V̇ = 0

}
= {(0, 0, 0, 0, 0)}

where E is an invariant set. Thus, using the aforementioned

principle, all positive solutions of the system (Equations 1–5) tend

to E as t → 0.

It is also critical to see that all threshold values in our model

are biologically meaningful. Table 1 summarizes all our major

mathematical results for the system of Equations 1–5.

Theorem 1 proves the local stability of the disease-free

equilibrium, i.e., if a ratio derived from the basic offspring number

κ1 is >1, then we obtain a unique disease-free equilibrium.

Moreover, if the basic reproduction number R0 is <1 and κ1

is greater than the ratio ηµ2
(η+µ1)(v1+v2+µ2)

, which is clearly >1, i.e.,

if κ1 is greater than the inverse of the product of the probability

of surviving in J1 and probability of dying in A1, then Theorem 3

shows that all infected classes will gradually cease to exist and only

susceptible classes will approach a positive constant value.

If there is no recovery under any initial conditions and R0 ≥ 1,

then Theorem 2 gives a unique susceptible extinction equilibrium.

Moreover, if we consider all newborns from infected mothers to be

infected, offspring number is <1, and κ2 >
η+µ1+α

η
, then Theorem

4 shows that susceptible classes will eventually vanish over time and

infected classes will approach constant values. Here, κ2 is derived

from T2 = 1 and κ2 >
η+µ1+α

η
. This means that κ2 is greater than

the inverse of the probability of survival of J2.

By Theorem 5, if the basic offspring number is <1 and the

sum of all ratios used in horizontal and vertical transmission of an

infected individual is <1, then the total population will vanish over

time. This means that if growth in susceptible and infected classes

is not sufficient, then the whole population will become extinct.

However, as r = 1 and ǫ = 1 is not practically feasible,

it is not possible to observe a susceptible extinction equilibrium.

Meanwhile, if a sufficient growth rate is maintained, the solution

to the system will not approach a trivial equilibrium; rather, it

will approach a disease-free equilibrium provided that the basic

reproduction number is below one. However, owing to several

non-linearities in the model, we skip the tedious stability analysis

of the endemic equilibrium; from the present analysis, it is

straightforward to conclude that the basic reproduction number

is the threshold for an outbreak. We implemented this model to

explore the recent HIV scenarios in the USA and Pakistan.
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4 Model implementation

For the experimental setup, we first describe the parameters and

their values in Tables 2, 3. To integrate the system of differential

Equations 1–5, some parameters were estimated with the help

of data; the remaining ones were estimated using the maximum

likelihood method.

4.1 Parameterization for the USA

In the USA (47), the annual live infected births per thousand

from 2014 to 2018 were recorded as 12.4, 12.2, 11.8, 11.6, and

11.6, respectively. Calculating the average value of β1 over this

period yields

β1 =
11.92

1000
= 0.01192.

According to the World Health Organization, if infected

mothers are unaware of their infection, then the transmission rate

of HIV infection from mother to newborn is between 15 and

45%. With awareness and treatment, this can be reduced to 5%.

Therefore, we considered the values of r = 0.4 and ǫ = 0.1 for

our model simulation.

To determine the transmission rate (v2) due to diagnosed

infected adults, we used the estimated incidence rate for the USA

in 2014, which was 14.3 per 100,000 (7). We also know that

the diagnosed adult population of the USA was 926,209 in 2014,

and the estimated total number of infected adults in 2010 was

1,085,100. The total population (adults) was 256,498,913; therefore,

the susceptible adult population in 2014 was 255,413,813, and we

calculated the value of transmission rate due to the diagnosed

infected adults as follows:

v2A1 (2014)A3 (2014)

A (2014)
= incidence rate in 2014.

This implies v2 =
14.3× (256, 498, 913)

(100, 000) (255, 413, 813) (926, 209)

= 1.55× 10−10.

The average infection period of HIV in developed countries

like the USA is reported to be between 8.6 and 19 years (27, 48).

It was shown that the average infection period of HIV is 8.6 − 19

years. Given the excellent health facilities, we considered an average

infection period of 19 years, resulting in a mean infection duration

(MID) for the USA of α = 1
MID = 1

19 .

The UN Inter-agency Group for Child Mortality Estimation

(49) provided the probabilities of dying in the first 5 years of life in

the USA from 2014 to 2018. The average values (JDR0−4) for these

years were calculated as:

JDR0−4 = 0.00688 + 0.0068 + 0.00673 + 0.00666 + 0.00658

5
= 0.00673.

Similarly, the estimated probabilities of dying between the ages

of 5 and 15 for the same period were used to compute the average

(JDR5−14), resulting in:

JDR5−14 = 0.0129 + 0.0131 + 0.0133 + 0.0135 + 0.0137

5
= 0.0133.

Consequently, the juvenile natural mortality rate (µ1) in the

USA was determined as

µ1 =
1

13
(0.00673+ 0.0133) = 0.001545

[see (27)]

The UN Inter-agency Group for Child Mortality Estimation

(49) provided the probabilities of dying in the first 5 years of life in

the USA from 2014 to 2018. The average values (JDR0−4) for these

years were calculated as:

JDR0−4 = 0.00688 + 0.0068 + 0.00673 + 0.00666 + 0.00658

5
= 0.00673.

According to World Bank data, the average life expectancy

(ALE) in the USA from 2014 to 2018 was 78.57 (50). The natural

death rate µ is the inverse of ALE; therefore,

Natural mortality rate = µ = 1

ALE
= 1

78.57
,

and

Natural mortality rate in adults = µ2 =
1

78.57− 13
= 1

65.57

We consider the maximum age of the juvenile population as

13 years because the data were collected from the Centers for

Disease Control and Prevention (CDC), which uses this cutoff

(7, 51) therefore,

Maturation rate of the juvenile population = η = 1

13

For the estimation of carrying capacity C, we considered the

rate of change of the total population with respect to time as:

g (N) = N′ = pN (C − N)

Here, p is the kinetic parameter. Differentiating g with respect

to N, we get

dg

dN
= p (C − 2N)

Because the function g (N) is bounded and increasing, by the

first-order derivative criteria, we can obtain the maximum value of

Nmax = C/2 for this function. Thus,

gmax = p
C

2

(
C − C

2

)
= p

C2

4

and with the help of Table 4, we get gmax = 2, 334, 155, where
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TABLE 2 Parameters in our proposed model.

Symbol Description Value (USA) Value (Pakistan) Unit

β1 Per capita birth rate of susceptible adults 0.01192 0.029 yr−1

v2 Transmission rate due to A3 1.55× 10−10 0.0142 yr−1

r Probability of vertical transmission from A2 0.40 0.40 D.L

ǫ Probability of vertical transmission from A3 0.1 0.1 D.L

α Disease-induced death rate 1/19 1/13 yr−1

µ1 Natural juvenile mortality rate 0.001541 0.0109 yr−1

µ2 Natural adult mortality rate 1/65.57 1/51.7536 yr−1

η Maturation rate of juvenile population 1/13 1/15 yr−1

K Carrying capacity of population 645.42 407.39 Million

µ Natural mortality rate 1/78.57 1/66.7536 yr−1

m Density-dependent death rate β1−µ

K
β1−µ

K
yr−1

All parameters were either estimated using data or taken from different references. Here, D.L denotes that the unit is dimensionless.

TABLE 3 Estimated parameters for the data of Pakistan and the USA.

Symbol Description Value (CI) for the USA Value (CI) for Pakistan Unit

β2 Per capita birth rate of infected adults 0.0011 (0.000923, 0.00130) 0.0274 (0.02637, 0.02851) yr−1

v1 Transmission rate due to A2 0.3045 (0.30104, 0.30794) 0.2559 (0.25446, 0.25738) yr−1

θ Rate of screening and treatment 0.2495 (0.24604, 0.25286) 0.0182 (0.01760, 0.01872) yr−1

These parameters were estimated using the maximum likelihood method. Here, CI represents the confidence interval.

gmax = max
∣∣difference of two consecutive years

∣∣.
The average total population of the USA (2014–2018) was

N = 322, 710, 104.

gmax = pN (C − N)

Implies 2, 334, 155 = p (322, 710, 104) (C − 322, 710, 104)

p = 4,318,344
(322,710,104)(C − 322,710,104) .

Moreover, gmax = pC2

4 .

Implies C2 = 4gmax

p = 4(4, 318, 344)(322, 710, 104(C − 322, 710, 104))
4,318,344

= 4 (322, 710, 104 (C − 322, 710, 104)) .

⇒ C2 − 4 (322, 710, 104)C + 4(322, 710, 104)2 = 0

This implies that the average value of C is 645.42 million.

Initial values for the simulation were given as follows:

J1 (0) = Total juvenile population − J2 (0) =
61, 802, 095 − (2, 477+ 2, 477× 0.14) is the approximate

initial susceptible juvenile population in 2014 in the USA

(52, 53).

A1 (0) = A (0) − Total adult infected population =
256, 498, 913 − 10, 851, 00 is the approximate initial susceptible

adult population in 2014 in the USA (7, 52, 53).

J2 (0) = 2, 477+2, 477×0.14 is the initial HIV-infected juvenile

population in 2014 in the USA (51).

A2 (0) = 1, 085, 100− 926, 209 is the initial HIV-infected adult

population not in treatment in 2014 in the USA (7, 51).

A3 (0) = 926, 209 is the initial HIV-infected adult population

in treatment in 2014 in the USA (51).

4.2 Parameterization for Pakistan

In the study of the World Bank (47), the numbers of live-

infected births each year (per thousand) from 2014 to 2018

in Pakistan were 29.318, 29.124, 28.888, 28.599, and 28.25,

respectively. We consider the same values of r and ǫ for Pakistan

as we did for the USA.

From UNAIDS (25), we estimated that the average number of

newly infected adults was 18,000 per year from 2014 to 2018. The

average percentage of people in treatment was 10% (6) and the

average total infected during this time interval per year in Pakistan

was 126,800 (54). We assume the same percentage of newly aware

infected adults in treatment. Therefore, we use the formula given

by López et al. (27) as follows:

v2 = Average total new infected adults(per year)×10%
Average total infected population

= (18,000)(0.1)
126,800 ≈ 0.0142

Once an individual is infected with HIV, the average

infection period of HIV is 8.6–19 years (27, 48). Because

Pakistan is a developing country, we consider the average life

expectancy after infection of 13 years as the MID for our

model. Thus,

α = 1

MID
= 1

13

According to the UN Inter-agency Group for Child Mortality

Estimation, the probabilities of dying in the first 5 years of life
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from 2014 to 2018 were 0.0783, 0.07605, 0.07381, 0.07158, and

0.0694, respectively.

Therefore, the average value (JDR0−4) is:

JDR0−4 = 0.0783 + 0.07605 + 0.07381 + 0.07158 + 0.0694

5
= 0.073828.

In addition, the probabilities of dying between the ages of 5

and 15 from 2014 to 2018 were 0.0939, 0.0918, 0.0897, 0.0875, and

0.0856, respectively (55).

Therefore, the average value (JDR5−14) is:

JDR5−14 = 0.0939 + 0.0918 + 0.0897 + 0.0875 + 0.0856

5
= 0.0897.

Thus, the juvenile natural mortality rate is:

µ1 =
1

15
(0.073828+ 0.0897) = 0.0109.

The average life expectancy in Pakistan from 2011 to 2018

was 66.7536 (50). The natural death rate µ is the inverse of

this; therefore,

Natural mortality rate = µ = 1

66.7536
,

and

Natural mortality rate of adults = µ2 =
1

66.7536− 15
= 1

51.7536
.

Considering the maximum age of the juvenile population as 15

years (27, 48),

Maturation rate of the juvenile population = η = 1

15
.

For carrying capacity C, we used the same estimation approach

as for the US data.

As Table 4 shows, gmax = 43, 183, 44. From the same table,

the average total population of Pakistan (2014-2018) was N =
203, 694, 557.8. Therefore,

C2 = 4(4,318,344)((203,694,557.8)(C−203,694,557.8))
4,318,344

= 4 ((203, 694, 557.8) (C − 203, 694, 557.8))

⇒ C2 − 4 (203, 694, 557.8)C + 4(203, 694, 557.8)2 = 0.

This implies that the average value of C is 407.39 million.

Initial values for the simulation were given as follows:

J1 (0) = Total juvenile population − J2 (0) = 70, 797, 567 −
3, 500 is the approximate initial susceptible juvenile population in

2014 in Pakistan (25, 53).

A1 (0) = A (0)−A2 (0)−A3 (0) = 124, 509, 258−90, 500 is the

approximate initial susceptible adult population in 2014 in Pakistan

(25, 52–54).

J2 (0) = 3, 500 is the initial HIV-infected juvenile population in

2014 in Pakistan (25).

A2 (0) = 90, 500 − 6, 292 is the initial HIV-infected adult

population not in treatment in 2014 in Pakistan (54).

A3 (0) = 6, 292 is the initial HIV-infected adult population in

treatment in 2014 in Pakistan (54).

4.3 Maximum likelihood fitting

In this subsection, we explain the maximum likelihood method

and estimation of the remaining parameters. Because β2 the birth

rate and v1 the transmission rate due to infected adults, A2 and

the status of infection are not always known, estimating them

directly from data of newborns and the newly infected is not

convenient. Instead, we estimate the parameters β2, v1, and θ

using the maximum likelihood method. We have time-series data

of juvenile infected, HIV-positive adults in treatment and infected

population not in treatment (total infected – infected in treatment;

see Tables 5, 6).

Let X = (J1,A1, J2,A2,A3) ∈ R
5
+ be the vector of state

variables and F be the right side of the system (Equations 1–5).

P = (β2, v, θ) is the vector of parameters to be estimated.Y (t,P) =
(A3 (t,P) , J2 (t,P) ,A2 (t,P)) is the vector of observables. Y0 (t,P)

represent the observed data at t = 2014, · · · , 2018. We assume that

all Y0 (t,P) are independent and Poisson distributed with mean

Y (t,P). Thus, the Poisson maximum likelihood function will be:

L
(
Y
0 (t,P) | Y (t,P)

)
=

3∏

j=1

5∏

i=1

yj(ti)
y0ji · e−yj(ti)

y0ji!

.

Therefore, the negative log-likelihood function (NLF)

reduces to

NLF = − ln

(
3∏

j=1

5∏
i=1

yj(ti)
y0ji ·e−yj(ti)

y0ji!

)

= −
3∑

j=1

5∑
i=1

y0ji ln
(
yj (ti)

)
+

3∑
j=1

5∑
i=1

yj (ti) +
3∑

j=1

5∑
i=1

ln
(
y0ji!
)
.

Because the last term in the aforementioned equation is

constant, it will remain unchanged as the parametric values are

varied. Therefore, we can minimize only the first two terms of the

equation. Hence, the fitting problem can be expressed as

min(NLF) = min


−

3∑

j=1

5∑

i=1

y0ji ln
(
yj (ti)

)
+

3∑

j=1

5∑

i=1

yj (ti)




subject to

d
dt
X (t,P) = F (X,P, t) (7)

Y (t,P) = (A3 (t,P) , J2 (t,P) ,A2 (t,P))

X (0) = (J1 (2014) ,A1 (2014) , J2 (2014) ,A2 (2014) ,A3 (2014))

X (t,P) ,P ≥ 0.
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TABLE 4 Total populations of the USA and Pakistan from 2014 to 2018.

Year 2014 2015 2016 2017 2018

Total population of USA 318,301,008 320,635,163 322,941,311 324,985,539 326,687,501

Total population of Pakistan 195,306,825 199,426,964 203,627,284 207,896,686 212,215,030

These time-series data for the US and Pakistan populations were taken from the World Bank (52).

TABLE 5 HIV-diagnosed adult and juvenile populations and total adult infected populations in the USA from 2014 to 2018.

Year 2014 2015 2016 2017 2018

HIV-positive in treatment 926,209 951,346 976,097 1,000,062 1,023,832

Juvenile diagnosed HIV+ 2,477 2,344 2,226 2,072 1,912

Total adult HIV+ 1,085,100 1,108,400 1,131,100 1,152,500 1,173,900

Because the USA is a developed country, we assume that all diagnosed infected in the USA are in treatment. This time-series data for HIV-diagnosed adult population are from the CDC (51).

Because 14% of HIV-infected population do not know their status of infection (7), we add this population to the diagnosed juvenile population and assume that this is the total infected juvenile

population in the USA. The time-series data for HIV-diagnosed juvenile population are from the CDC (51). The time-series data for total estimated adult HIV-infected population are from the

CDC (7).

The aforementioned minimization problem will provide the

desired fitting with practically feasible values of parameters if P

is identifiable, which can be confirmed in two steps. First, we

examine the structural identifiability, and then we confirm the

practical identifiability.

Structural identifiability refers to the existence of a unique

solution to X (t,P) for each P under an initial condition. If any

component of P is implicitly related, different values of Pmay yield

the same solution X (t,P) for a given initial condition, which might

hinder the unique estimation of parameters P for the data.

We use the Fisher information matrix (FIM) to confirm the

structural identifiability. We have a set of observations at five

distinct points, a system represented by a five-dimensional state

vector, and a three-dimensional vector of parameters. Thus, the

sensitivity matrix S consists of five time-dependent 5 × 3 blocks

A (tn ):

S =




A (t1)

A (t2)
...

A (t5)




where

Ajk (tn) =
∂xj (tn,P)

∂Pk
, n = 1, · · · , 5, k = 1, 2, 3 and j = 1, · · · , 5.

The 3 × 3 FIM is M = STS. The rank of the matrix M

counts the number of identifiable parameter conditions in P, and

the parameters in P are structurally identifiable if and only ifM has

rank 3.

According to the aforementioned definition, the FIM for our

problem has three columns, which correspond to the parameters

to be estimated. Let us denote the parameter estimates by β̂2, v̂1,

and θ̂ . To approximate the FIM numerically, we perturb β̂2 to

the new values β̂+
2 = (1+ 0.001) β̂2 and β̂−

2 = (1− 0.001) β̂2,

for which we integrate the model for each observation time.

Then, we numerically approximate the derivatives, Aj1 (tn) =

∂xj

(
tn ,β̂2 ,v̂1 ,θ̂

)

∂β̂2
, n = 1, · · · , 5, j = 1, · · · , 5. This gives the first

column. Meanwhile, the other two variables v̂1 and θ̂2 remain

fixed. We repeat the same procedure for v̂1 and θ̂2 to obtain the

second and third columns, respectively. Then, we check the rank of

matrix M, which is 3. This ensures the structural identifiability of

the parameters.

Practical identifiability or “estimableness” refers to the

sufficiency of available observations, as too few observations

might be insufficient for fitting. To investigate the practical

identifiability, we compute the profile likelihood of the parameters

β2, v1, and θ2. Profile likelihood reveals the dependency of the

NLF on individual parameters, which helps us to find finite

confidence intervals for each parameter; otherwise, practical non-

identifiability is proved. The related profile likelihoods can be

defined as

PLβ2 (β2) = min
v1 ,θ

{NLF (β2, v1, θ)}

, PLv1 (v1) = min
β2 ,θ

{NLF (β2, v1, θ)}, and PLθ (θ) =
min
β2 ,v1

{NLF (β2, v1, θ)}.

where β2 ∈
[
β̂2 (1− 0.001) , β̂2 (1+ 0.001)

]
, v1 ∈

[v̂1 (1− 0.001) , v̂1 (1+ 0.001)], and

θ ∈
[
θ̂ (1− 0.001) , θ̂ (1+ 0.001)

]

To determine the confidence interval, we have

2
(
NLF (P) −NLF

(̂
P
))
˜χ2

3 . Therefore, the NLF threshold for

a 95% confidence interval is NLF
(̂
P
)
+ 7.815/2.

The maximum likelihood fitting of the time-series data for

the USA and Pakistan is shown in Figure 2; the corresponding

estimates of the parameters are shown in Table 3 along with

the 95% confidence intervals. The fittings for both the USA

and Pakistan appear relatively good at a glance. Moreover,

the estimated parameter values are biologically meaningful.

Because the birth rate of an infected population is less than

that of a susceptible adult, we observe that β1 > β̂2 in
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TABLE 6 HIV-positive (aware and in treatment) adult, juvenile infected, and total infected population in Pakistan from 2014 to 2018.

Year 2014 2015 2016 2017 2018

HIV-positive in treatment 6,292 6,500 8,900 12,046 15,821

Juvenile HIV+ 3,500 4,000 4,500 5,000 5,500

Total HIV+ 94,000 100,000 130,000 150,000 160,000

This time-series data for HIV-diagnosed adult population are from UNAIDS and the AIDS Data Hub (54). The time-series data for HIV juvenile population are from UNAIDS estimation (2),

and the time-series data for estimated total HIV-infected population are from UNAIDS and the AIDS Data Hub (54).

FIGURE 2

Simulation results for US and Pakistan data. Because the USA is a developed country, we assume that all diagnosed infected in the USA are in

treatment. The parametric values for the USA in Tables 2, 3 were used in this simulation, whereas the initial values are defined in Section 4.1. (a–c)

show the curves fitted with US data. Parametric values for Pakistan in Tables 2, 3 were used in this simulation, whereas the initial values are defined in

Section 4.2. (d–f) show the curves fitted with Pakistan data.

the estimation. In addition, v̂1 > v2 due to awareness

and treatment. When a person is aware of their infection,

the transmission rate may be reduced because of treatment

and precautions.

Profile likelihoods for the USA and Pakistan are shown

in Figure 3, revealing the minimization of the NLF at the

estimated values of the parameters while also confirming the

practical identifiability. The solid black lines indicate the cost

as a function of β2, v1, and θ . For each cost function, we

change the value of one parameter using the minimization

algorithm; the others vary on the parallel axis over the interval

shown. This pattern of the cost function verifies the identifiability

criteria of our estimated parameters. The red cross on each

curve shows the best-fitted value for the parameters β2, v1,

and θ .

4.4 Sensitivity analysis

Sensitivity indices were used to compute how minor variations

in the parameters of interest cause variability in the quantities of

interest (56). With the help of the normalized sensitivity index

(NSI) of R0 regarding the parameters, we can determine which

parameters have a greater impact on disease transmissibility. The

NSI of the basic reproduction number R0 to the parameter φ is

defined as

∂R0

∂φ
× φ

R0
,

where R0 is the quantity of interest and φ is

our parameter of interest. Table 7 lists the NSIs
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FIGURE 3

Estimated parameters versus profile likelihood function. (a–c) Show graphs of profile likelihood (cost) functions and estimated parameters β2, v1, and

θ for the USA, respectively, and (d–f) show the same for Pakistan. Red crosses indicate the estimated values of the parameters, whereas blue dots

show the confidence intervals.

TABLE 7 NSIs of basic reproduction number.

Parameters NSI (USA) NSI (Pakistan)

β1 −0.0333 −0.1907

r 1.1485 × 10−11 0.0046

ǫ 5.9286 × 10−11 0.0010

µ1 6.8130 × 10−4 0.0250

η 6.8328 × 10−4 −0.0321

β2 7.0771 × 10−11 0.0057

v1 1 0.9483

v2 1.0511 × 10−8 0.0461

µ2 −0.0067 −0.0443

θ −0.7938 −0.1110

α −0.1675 −0.6469

m 0 0

This table lists the sensitivity indices of the basic reproduction number R0 to the parameters

used in the mathematical model (Equations 1–5) at the parametric values in Tables 2, 3. Here,

NSI stands for local sensitivity index.

of R0 with respect to the parameters for our

current estimate.

According to our analysis, the parameters with comparatively

higher sensitivity are β1, v1, θ , and α. Negative signs of local

sensitivity indices indicate that if we increase the value of these

parameters of interest, then our quantity of interest will decrease,

and vice versa. In short, R0 reduces with an increase in awareness

and treatment rate θ .

5 Results

According to our estimation, the values of R0 for the USA and

Pakistan are 0.9688 and 2.2599, respectively, which reveals that

according to our analysis, HIV is approaching eradication in the

USA. This is in agreement with the recent trend of decreasing

incidence in the USA (Figure 2). Meanwhile, in Pakistan, the recent

trend of increasing incidence (Figure 2) is reflected in the high

estimate of the reproduction number.

We have two infectious classes, A2 and A3, which each

transmit the disease vertically and horizontally, constituting

four transmission pathways. We split the contributions of these

pathways to R0 in Figure 4.

This shows that horizontal transmission from A2 plays a vital

role in both countries. In the case of the USA, T3 ≈ R0, which

means the incidences in the USA are almost entirely due to adults

being unaware of infection, whereas transmission due to other

pathways is negligible. However, in the case of Pakistan, although

horizontal transmission from A2 plays a major role, transmissions

through the other three pathways also play a noticeable role.

Transmissions through these three pathways are several times

greater than in the USA. Moreover, the value of v2 is higher in

Pakistan than in the USA. That is, individuals who know their

status of infection and maintain treatment in the USA are more

vigilant than those in the same class in Pakistan. On the contrary,

T3 is higher and v1 is lower in Pakistan than in the USA, which

Frontiers in PublicHealth 13 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1437678
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Abbas et al. 10.3389/fpubh.2024.1437678

FIGURE 4

Contributions of horizontal and vertical transmissions to R0. Solid lines indicate horizontal transmission, and dotted lines indicate vertical

transmission. Horizontal transmission from A2 plays a major role in both cases. (a) Shows transmission in the USA, whereas (b) shows transmission in

Pakistan.

indicates that individuals who are unaware of their infection status

in Pakistan transmit less than those in the USA.

R0 has a negative sensitivity to the parameter θ (Table 7), which

is related to awareness and treatment. This is also portrayed in

Figure 5 for the estimated values of the parameters for both theUSA

and Pakistan. Here, the red crosses show the estimated values of θ ,

and the blue lines show the dependency of R0 on θ . According to

Figure 5, R0 is below one if θ is above a threshold, which is 0.2396

and 0.4298 in the USA and Pakistan, respectively.

In the case of the USA, we observe that the estimated value

of θ is 0.2495, which means that the disease is diagnosed within 4

years ( 1
0.2495 ≈ 4) of infection. This is above the threshold and has

recently resulted in a declining prevalence in the USA. At present,

R0 is very close to 1 in the USA, which implies that the disease will

be eradicated, but it will take a long time. In the case of Pakistan,

the estimated value of θ is below the threshold (Figure 5), and as a

result, the prevalence has an increasing trend (Figure 2).

If the unaware infected population learn their status of infection

and they are in treatment within ∼2 years ( 1
θ

≤ 1
0.4302 ) after

infection, then the disease will gradually be eradicated.

To clarify the role of θ in disease prevalence, we simulated our

model for different values of θ while keeping other parameters fixed

within a time interval of 10 years, and the results are shown in

Figure 6. For the US case, we show the simulation results for the

estimated value of θ and θ = 0.5 (these values and corresponding

R0 are shown in Figure 5 by a cross and dot, respectively). For

the estimated value of θ , the number of individuals in the J2 and

A2 classes decrease monotonically, whereas it increases for A3. For

θ = 0.5, the number of individuals in all infected classes decreases

monotonically except for A3.

A3 shows an increasing trend up to ∼5 years due to increasing

awareness and seeking treatment, and then it starts to decrease.

In the case of Pakistan, we show the simulation results for the

estimated value of θ , where θ = 0.25, 0.6, 0.9 (these values

and corresponding R0 are shown in Figure 5 by a cross and

dots, respectively). For the estimated value of θ , the number of

individuals in all infected classes increases monotonically. If θ =
0.6, a decreasing trend in all the infected classes could be achieved

after ∼9 years. A decreasing trend could be achieved in ∼5 years if

θ is as high as 0.9.

If we increase the coverage of treatment, the pace of disease

eradication will also increase. Therefore, screening and treatment

can help control the spread of the disease in Pakistan and accelerate

eradication in the USA.

6 Discussion

The HIV epidemic presents a distinct contrast between the

USA and Pakistan. While the USA has made significant strides

in controlling the spread of HIV, with continuous efforts in

treatment and screening. Pakistan has seen a concerning in HIV

in recent years. However, because of consistent improvement in

healthcare infrastructure and availability of antiretroviral therapy

(ART), infected people can lead an almost normal life with careful

medication and a punctilious lifestyle (39). This shift in treatment

efficacy addresses the concern raised decades ago that extending

the lifespan of HIV patients could exacerbate the epidemic by

increasing the basic reproduction number (R0) (27). To understand

the role of treatment with improved medication in today’s world,

we investigated the recent HIV trends in the USA and Pakistan

using a mathematical epidemic model.

HIV treatment brings the infected person closer to a normal life

from several perspectives. For instance, it (1) reduces the fatality of

the infection and increases lifespan, (2) reduces the probability of

transmission to partners, and (3) reduces the probability of vertical

transmission to children. To consider all these aspects, we assumed

a two-age group model. The mathematical analysis of our model

reveals that the basic reproduction number is the key threshold

for an outbreak. The model is defined by several parameters and

estimating all of them by fitting with time-series data of infected

individuals leads to identifiability issues. Hence, we determined the

values of most parameters from available literature and estimated

the key parameters, birth rate of infected adults, transmission rate

for infected not in treatment, and rate of screening and treatment,

by fitting with time-series data.

The central finding of our research emphasizes the significance

of the basic reproduction number (R0) as a key determinant

in assessing the severity of an outbreak. The model parameters,

which include birth rates, transmission rates, and treatment

initiation rates, are crucial in predicting disease progression.

Identifying all parameters from data is fraught with challenges,

primarily stemming from issues of identifiability. To address

this issue, we employed a combination of literature-based
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FIGURE 5

Basic reproduction number versus screening rate in the USA and Pakistan. The red crosses indicate the estimated value of the screening and

treatment rate θ . Other red circles indicate that if we increase θ , then R0 decreases.

FIGURE 6

Simulation results with di�erent values of treatment rate. These results show the situation of the infected population for the next 10 years with

di�erent values of θ . Initial values are US and Pakistan data from 2018 (see Tables 4–6).

parameters and estimation methods to determine crucial variables,

such as the infection rate of adults, transmission rates among

untreated individuals, and the rates of screening and treatment

initiation. Based on our findings, the USA should focus on

expanding treatment coverage, while Pakistan should emphasize

the promotion of preventive strategies and raising awareness.

First, we ensured the structural identifiability of these key

parameters with respect to the model set by checking the rank

of the FIM. Next, using the profile likelihood of the estimates,

we confirmed the practical identifiability of the parameters for

the time-series data of the infected. According to our estimates,

the birth rate of infected individuals is lower than that of
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susceptible individuals. In addition, our estimation shows that

treatment reduces the probability of both vertical and horizontal

transmission, which indicates the role of treatment inHIV infection

in both countries.

Furthermore, the reproduction number (R0) shows high

sensitivity to transmission rate from infected individuals not

in treatment and the rate of undergoing treatment following

screening. This highlights the critical importance of screening and

awareness programs. As infected individuals not in treatment are

mostly not aware of their infection, screening is a potential measure

to impede the incidence. This is also evident from the transmission

pathway-wise splitting of the reproduction number; transmission

from infected individuals not in treatment is the dominant factor

in both the USA and Pakistan. However, infected individuals

in treatment seem more mindful in the USA than in Pakistan.

Moreover, the screening rate is better in the USA than in Pakistan.

Given these findings, we emphasize that increased screening

and awareness campaigns could play an important role in

controlling the HIV epidemic in Pakistan. Although the USA has

made substantial progress, improving the rate of screening further

could still yield significant reductions in HIV incidence. Our model

suggests that by identifying infected individuals and putting them

in treatment within ∼2 years in the USA and 1.1 years in Pakistan,

it is possible to achieve a declining trend within ∼5 years in all

infected classes.

7 Conclusion

In this article, we proposed a two-age group model to

differentiate between the transmissibility of a juvenile and two

adult infected classes. We fitted it with time-series data of

infected individuals from the USA and Pakistan. According to

our estimation, the basic reproduction numbers for the USA

and Pakistan are 0.9688 and 2.2599, respectively. In addition, the

estimated values of the parameters show that the birth rate of

infected individuals is lower than that of susceptible individuals,

and the transmission rate due to the infected not undergoing

treatment is higher than that of infected individuals in treatment,

which demonstrates the consistency of our approach. The basic

reproduction number is most sensitive to the transmission rate

from infected individuals not in treatment and the rate at which

these individuals are screened and given treatment. Furthermore,

by splitting the roles of the different transmission pathways,

it became apparent that the infected group not in treatment

contributes the most to transmission in both countries. Therefore,

screening and treatment will reduce the most transmissible group

and work in a bi-directional manner to reduce the incidence

rate, which we also confirmed through appropriate simulations of

our model.

A comparison of the parameter values for the USA and

Pakistan showed that the infected individuals in treatment in

the USA are more inclined to follow the guidelines or take

better care than those in Pakistan. On the contrary, infected

individuals not in treatment transmit the disease in the USA

more than those in Pakistan. Although the USA already has a

healthy rate of screening and treatment, improvement in the rate is

necessary for prompt eradication of the disease. However, besides

screening and treatment, mass education and awareness are crucial

in Pakistan.

Our study inevitably had some limitations because of

certain assumptions. Different stages of HIV infection have

different degrees of transmissibility. Therefore, modeling

stage-dependent infectiousness may help identify the

most effective target group for screening. Furthermore,

considering a two-sex model would facilitate understanding

and reduce vertical transmission, as the probability of

mother-to-child transmission is much higher than that of

father-to-child transmission. Future research considering the

aforementioned factors could be useful for further enhancement of

control strategies.
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